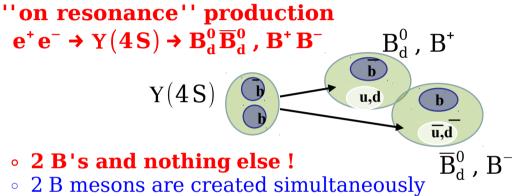
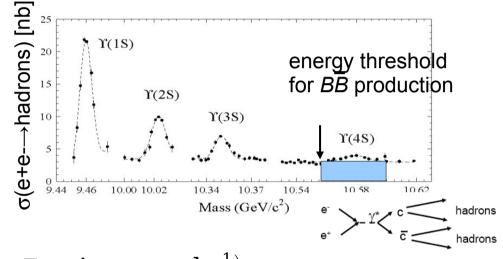

Search for new physics (and else) via modes with missing energy at Belle II

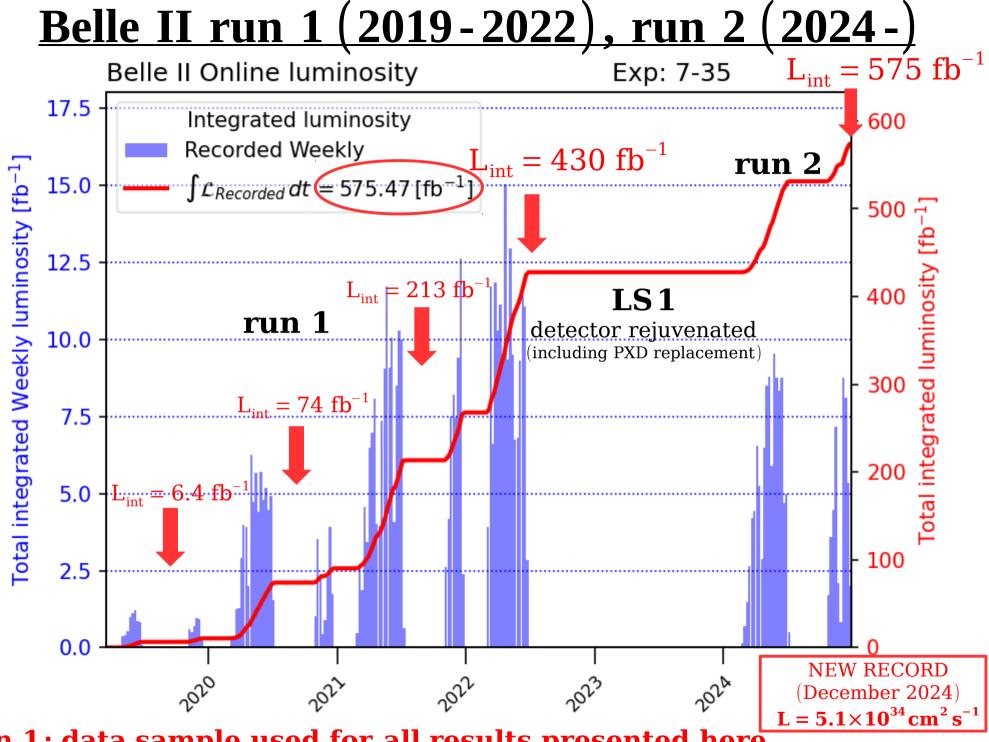
K. Trabelsi karim. trabelsi @ in 2p3.fr

GDR at Carry-Le-Rouet


November 13, 2025

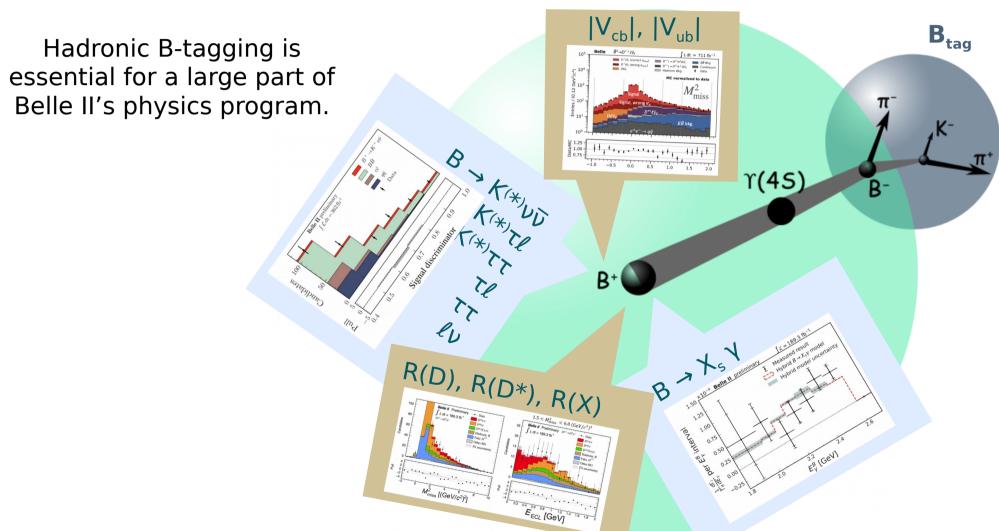

Belle II, a flavour-factory,

 $(Belle \simeq 1 ab^{-1})$


a rich physics program...

- We plan to collect $\sim 50 \text{ ab}^{-1}$ of e^+e^- collisions at (or close to) the Y(4S) resonance, where we have:
- a (Super) B-factory ($\sim 1.1 \times 10^9 \text{ BB pairs per ab}^{-1}$)

- in a L=1 coherent state
- a (Super) charm factory ($\sim 1.3 \times 10^9 \text{ c}\overline{\text{c}}$ pairs per ab⁻¹) (but also charmonium, X, Y, Z, pentaguarks, tetraguarks, bottomonium...)
- a (Super) τ factory ($\sim 0.9 \times 10^9 \, \tau^+ \tau^-$ pairs per ab⁻¹)
- exploit the clean e⁺e⁻ environment to probe the existence of exotic hadrons, dark photons/Higgs, light Dark Matter particles, ALPs, LLPs ...
 - \Rightarrow to reach few $\times 10^{35}$ cm⁻² s⁻¹
 - \Rightarrow cumulate few 10 ab⁻¹ 2



run 1: data sample used for all results presented here and when possible/relevant add the Belle data sample (+ 1ab⁻¹)

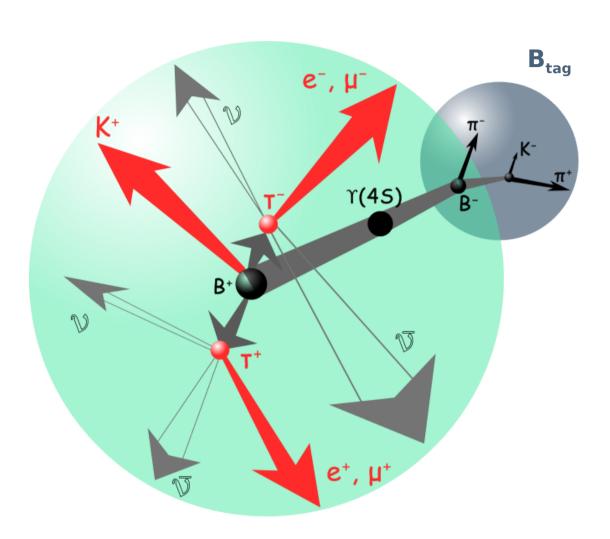
Hadronic B-tagging

is widely used in Belle II

It allows neutrino reconstruction at Belle II

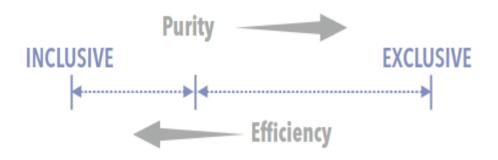
How do we search for $B \rightarrow K \tau \tau$?

The neutrinos escape → using the other B (tag-side)


Up to 4 neutrinos in $B^+ \rightarrow K^+\tau\tau$ \Rightarrow Cannot reconstruct invariant mass or energy of the B

But, two B-mesons and nothing else in the event!

If the B_{tag} is reconstructed using hadronic decays: Hadronic B-tagging


After reconstructing the 3 charged tracks on signal-side and the other B in the event, there will be no additional energy in the calorimeter (E_{FCI}).

 \Rightarrow In the rest of the event (ROE), sum of the energies of the clusters should peak at 0.

Missing energy modes and B-tagging

Many interesting B-physics studies involve missing energy: $R(D^{(*)})$, V_{cb} , $K^{(*)}\tau\ell$, $K^{(*)}\tau\tau$, $K^{(*)}\nu\nu$, $\pi l\nu$, $\tau\ell$, $\tau\nu$, $\mu\nu$... which require B-tagging.

Hadronic B-tagging can provide the direction of the B.

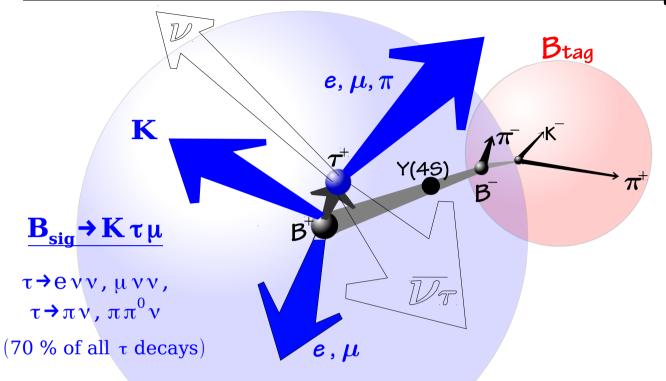
Essential in some analysis and unique to B factories!

The 3 important metrics of B-tagging are:

- Efficiency
- Purity
- Data-MC agreement (Calibration factor)

FEI does exclusive B-tagging: Hadronic and Semileptonic

Table 1 Summary of the maximum tag-side efficiency of the Full Event Interpretation and for the previously used exclusive tagging algorithms

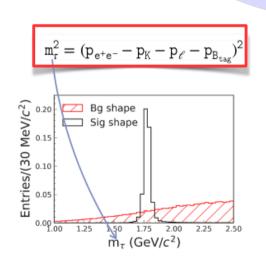

Old measurement in MC	B± (%)	$B^{0}(\%)$
Hadronic		
FEI with FR channels	0.53	0.33
FEI	0.76	0.46
FR	0.28	0.18
SER	0.4	0.2
Semileptonic		
FEI	1.80	2.04
FR	0.31	0.34
SER	0.3	0.6

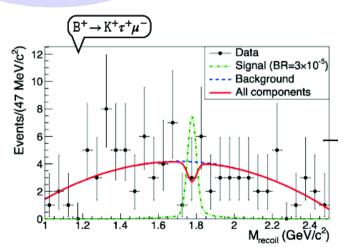
[T.Keck et. al, Comput Softw Big Sci (2019) 3: 6]

Exclusive B-tagging:

- \circ **Advantages**: purity, direction of B_{tag} , but also...
 - ... official training, validation, skims, calibration, systematic (shared knowledge)
- **Disadvantages**: low efficiency...

Event reconstruction in B→Kτμ at B factories

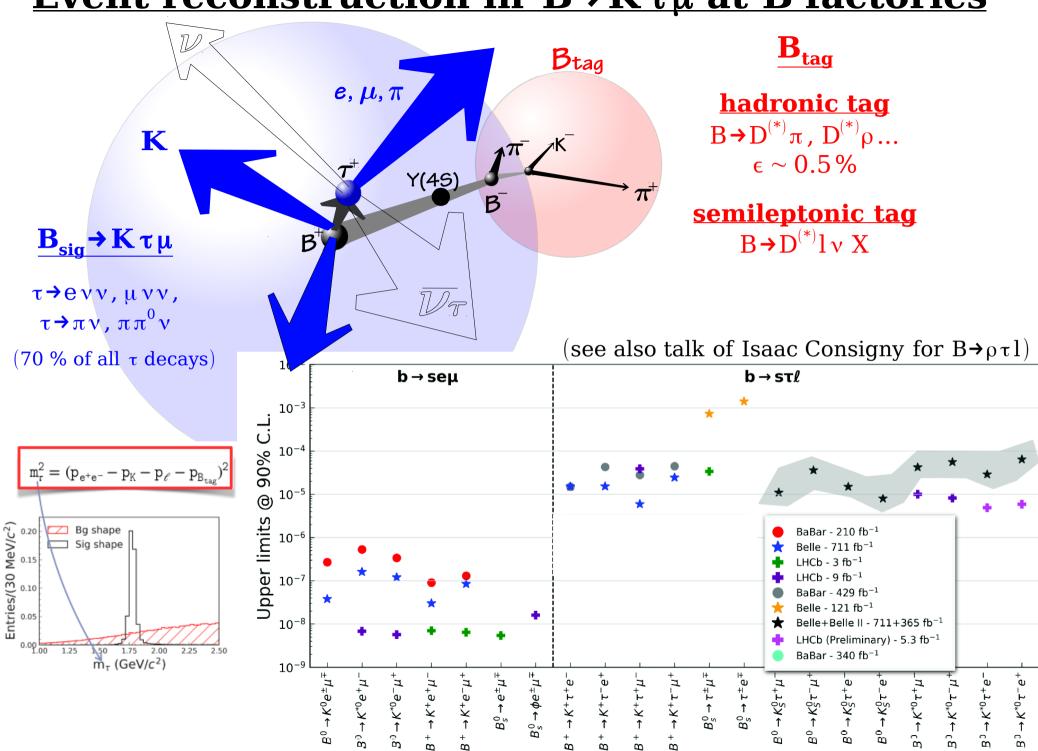

\mathbf{B}_{tag}


hadronic tag

semileptonic tag

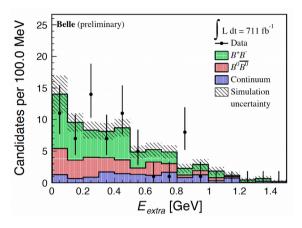
$$B \rightarrow D^{(*)} l \nu X$$

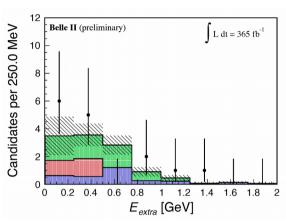
neutrinos are all coming from the tau here!



[Belle, PRL 130, 261802 (2023)]

Mode	$N_{ m sig}$	ε (%)	$\mathcal{B}^{ m UL} \ (10^{-5})$	${\cal B}_{ m NP}^{ m UL} \; (10^{-5})$
			0.59	0.65
$B^+ o K^+ au^+ e^-$	1.5 ± 5.5	0.084	1.51	1.71
$B^+ \to K^+ \tau^- \mu^+$			2.45	2.97
$B^+ o K^+ au^- e^+$			1.53	2.08
	,		PHSP	


Event reconstruction in B→Kτμ at B factories


When/why do we use exclusive B-tagging?

• signal side is reconstructed **exclusively** ... examples of 2025...

Search for $B^+ \rightarrow K^+ \tau \tau$

[PRELIMINARY]

shown at CKM 2025, Sep 2025

$$B_{SM}(B^+ \rightarrow K^+ \tau \tau) = (1.5 \pm 0.1) \times 10^{-7}$$

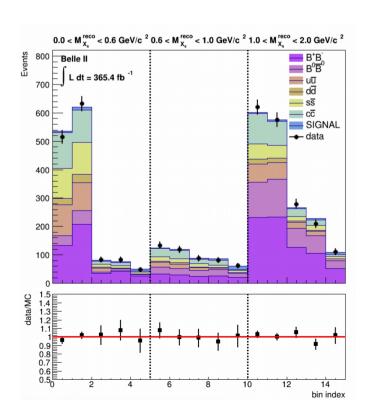
$$\mathcal{B}(B^+ \to K^+ \tau^+ \tau^-) = 3.13^{+3.70}_{-3.30} \times 10^{-4}$$

 $\mathcal{B}^{UL}(B^+ \to K^+ \tau^+ \tau^-) < 8.7 \times 10^{-4} \text{ at } 90\% \text{ CL}$

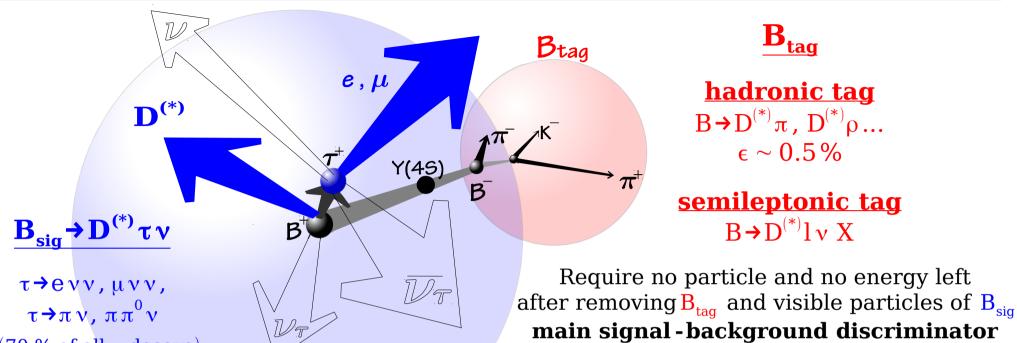
2.6 times better than current world best Most stringent limit in $B^+ \rightarrow K^+ \tau \tau$

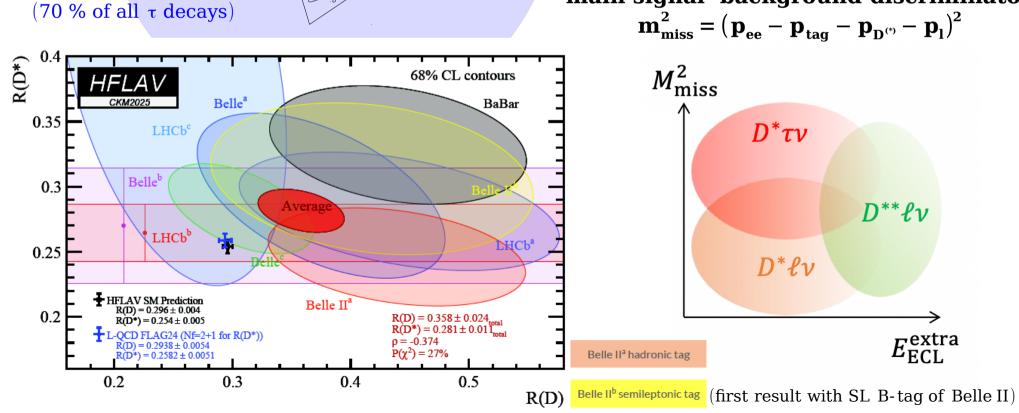
(see also talk of Mattia Marfoli for $B \rightarrow \tau \tau$)

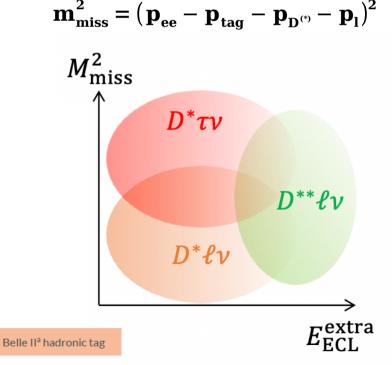
Search for $B \rightarrow X_s \nu \overline{\nu}$


[PRELIMINARY]

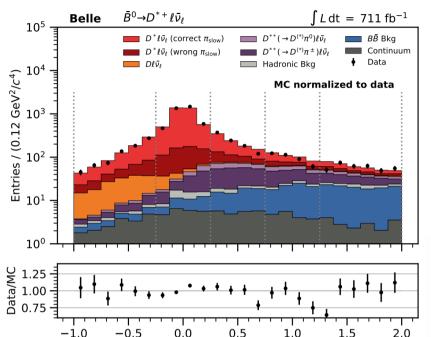
- \circ B_{SM} = $(2.9 \pm 0.3) \times 10^{-5} [JHEP 02 (2015) 184]$
- \circ B < 6.4 × 10⁻⁴ at 90 % C.L. [ALEPH, EPJC 19 (2001) 213]
- Sum-of-exclusive from 30 decay modes (\sim 90% of inclusive)


		$B^0ar{B}^0$			B^{\pm}	
\overline{K}	K_S^0			K^{\pm}		
$K\pi$	$K^{\pm}\pi^{\mp}$	$K^0_S\pi^0$		$K^{\pm}\pi^0$	$K^0_S\pi^\pm$	
$K2\pi$	$K^{\pm}\pi^{\mp}\pi^{0}$	$K^0_S\pi^\pm\pi^\mp$	$K^0_S\pi^0\pi^0$	$K^{\pm}\pi^{\mp}\pi^{\pm}$	$K_S^0\pi^\pm\pi^0$	$K^{\pm}\pi^0\pi^0$
$K3\pi$	$K^{\pm}\pi^{\mp}\pi^{\pm}\pi^{\mp}$	$K_S^0\pi^\pm\pi^\mp\pi^0$	$K^{\pm}\pi^{\mp}\pi^{0}\pi^{0}$	$K^{\pm}\pi^{\mp}\pi^{\pm}\pi^{0}$	$K^0_S\pi^\pm\pi^\mp\pi^\pm$	$K_S^0\pi^\pm\pi^0\pi^0$
$K4\pi$	$K^{\pm}\pi^{\mp}\pi^{\pm}\pi^{\mp}\pi$	${}^0K^0_S\pi^\pm\pi^\mp\pi^\pm\pi^\Xi$	$\mp K_S^0 \pi^{\pm} \pi^{\mp} \pi^0 \pi^0$	$K^{\pm}\pi^{\mp}\pi^{\pm}\pi^{\mp}\pi$	$\pm K_S^0 \pi^{\pm} \pi^{\mp} \pi^{\pm} \pi^0$	$K^{\pm}\pi^{\mp}\pi^{\pm}\pi^{0}\pi^{0}$
3K	$K^{\pm}K^{\mp}K^0_S$			$K^{\pm}K^{\mp}K^{\pm}$		
$3K\pi$	$K^{\pm}K^{\mp}K^{\pm}\pi^{\mp}$	$K^\pm K^\mp K^0_S \pi^0$		$K^{\pm}K^{\mp}K^{\pm}\pi^{0}$	$K_S^0 K^{\pm} K^{\mp} \pi^{\pm}$	


 $B(B \to X_s \nu \overline{\nu}) < 3.6 \times 10^{-4} \text{ at } 90 \% \text{ C.L.}$


⇒ The most stringent upper limit on $B \rightarrow X_s v \overline{v}$ decay

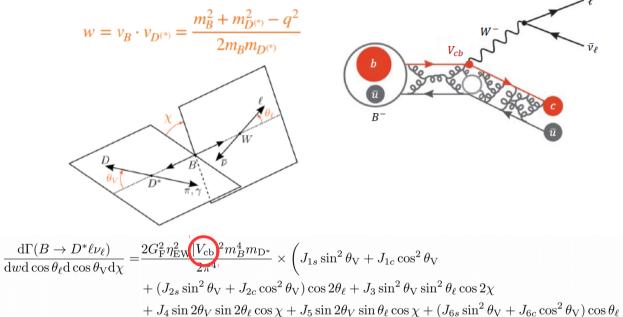
Event reconstruction in $B \rightarrow D^{(*)} \tau \nu$ at B factories

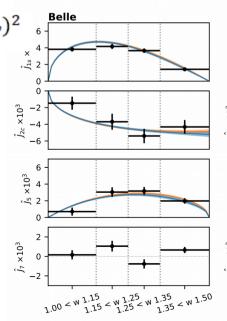


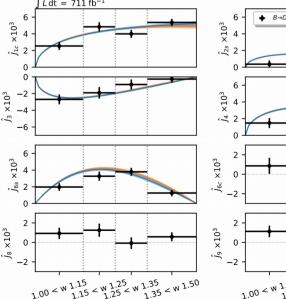
When/why do we use exclusive B-tagging?

• not only for search of rare/forbidden decays, or to have high purity...

 $Measurement\ of\ angular\ coefficients\ with\ D^*l\nu\ [Belle, PRD\ 108\ (2023)\ 1,\ 012002\ /PRL\ 133\ (2024)\ 131801\]$



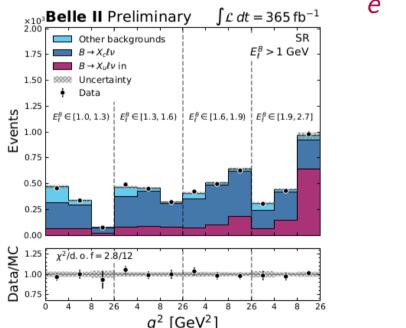


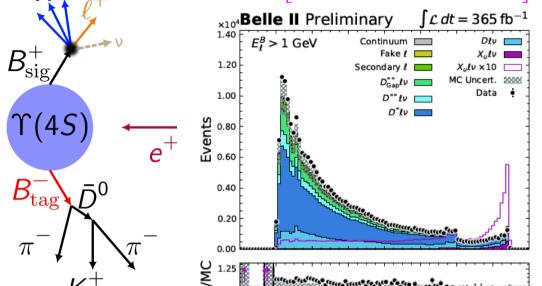

$$A_{\rm FB} = \frac{3}{2} \frac{(J_{6c} + 2J_{6s})}{3J_{1c} - J_{2c} + 2(3J_{1s} - J_{2s})},$$

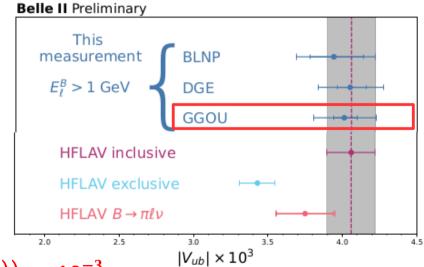
$$F_L(D^*) = \frac{(3J_{1c} - J_{2c})}{3J_{1c} - J_{2c} + 2(3J_{1s} - J_{2s})},$$

(see also talk of Claire Chevallier)

w bin	A_{FB}	$F_{\rm L}(D^*)$
1.00 < w < 1.15	0.23 ± 0.03	0.29 ± 0.04
1.15 < w < 1.25	0.30 ± 0.03	0.45 ± 0.04
1.25 < w < 1.35	0.29 ± 0.03	0.47 ± 0.03
1.35 < w < 1.50	0.16 ± 0.03	0.70 ± 0.03




 $+ J_7 \sin 2\theta_V \sin \theta_\ell \sin \chi + J_8 \sin 2\theta_V \sin 2\theta_\ell \sin \chi + J_9 \sin^2 \theta_V \sin^2 \theta_\ell \sin 2\chi$.

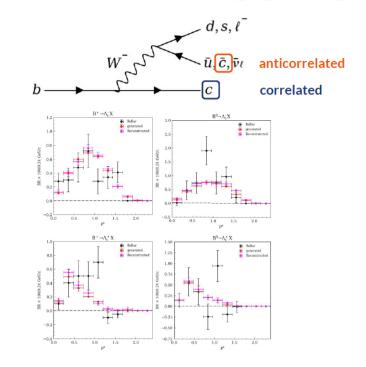

$|V_{ub}|$ from inclusive $B \rightarrow X_u | v$ decays (had tag)

- First Belle II measurement
- Hadronic B-tagging
- 3 main kinematical variables
 - $E_l^{(B)}$: lepton energy (in B_{sig} rest-frame)
 - M_x : mass of hadronic system
 - q²: momentum transfer

 S_{X_c}

Extract $|V_{ub}|$ from partial BR using the predicted partial decay rate over a given phase-space region

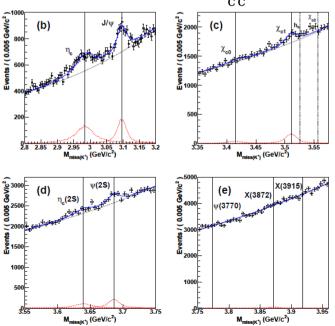
$$|V_{ub}| = \sqrt{\frac{\Delta \mathcal{B}(B \to X_u \ell \nu)}{\tau_B \Delta \Gamma(B \to X_u \ell \nu)}}$$


$$|V_{ub}|_{GGOU} = (4.01 \pm 0.11(stat) \pm 0.16(syst)^{+0.09}_{-0.07}(theo)) \times 10^{-3}$$

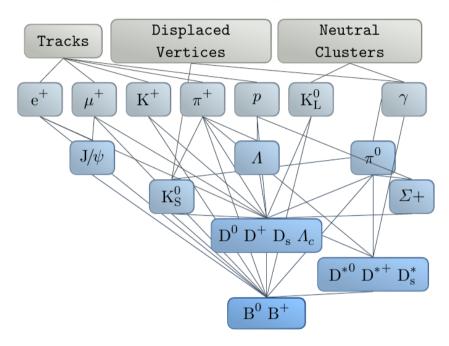
When/why do we use exclusive B-tagging?

- signal side is **partially** reconstructed...
 - measurement of inclusive differential BFs:

$$B^0 \rightarrow \Lambda_c^- X$$
, $B^0 \rightarrow \Lambda_c^+ X$, $B^+ \rightarrow \Lambda_c^- X$, $B^+ \rightarrow \Lambda_c^+ X$


Experimental results on inclusive (only BaBar hep-ex/0606026)

- $\circ B^{+/0} \rightarrow X_s \gamma$, $J/\psi X \dots$
- ∘ Measurements of the absolute branching fractions of $B^+ \rightarrow X_{c\bar{c}} K^+$


arXiv:1709.06108, Phys. Rev. D 97, 012005 (2018)

			-		<u> </u>
Mode	Yield	Significance (σ)	$\epsilon(10^{-3})$	\mathcal{B} (10 ⁻⁴)	World average for \mathcal{B} (10 ⁻⁴) [10]
η_c	2590 ± 180	14.2	2.73 ± 0.02	$12.0 \pm 0.8 \pm 0.7$	9.6 ± 1.1
J/ψ	1860 ± 140	13.7	2.65 ± 0.02	$8.9 \pm 0.6 \pm 0.5$	10.26 ± 0.031
χ_{c0}	430 ± 190	2.2	2.67 ± 0.02	$2.0 \pm 0.9 \pm 0.1$ (< 3.3)	$1.50^{+0.15}_{-0.14}$
χ_{c1}	1230 ± 180	6.8	2.68 ± 0.02	$5.8 \pm 0.9 \pm 0.5$	4.79 ± 0.23
$\eta_c(2S)$	1050 ± 240	4.1	2.77 ± 0.02	$4.8 \pm 1.1 \pm 0.3$	3.4 ± 1.8
$\psi(2S)$	1410 ± 210	6.6	2.79 ± 0.02	$6.4 \pm 1.0 \pm 0.4$	6.26 ± 0.24
$\psi(3770)$	-40 ± 310	-	2.76 ± 0.02	$-0.2 \pm 1.4 \pm 0.0 \ (< 2.3)$	4.9 ± 1.3
X(3872)	260 ± 230	1.1	2.79 ± 0.01	$1.2 \pm 1.1 \pm 0.1 \ (< 2.6)$	(< 3.2)
X(3915)	80 ± 350	0.3	2.79 ± 0.01	$0.4 \pm 1.6 \pm 0.0 \; (< 2.8)$	- -

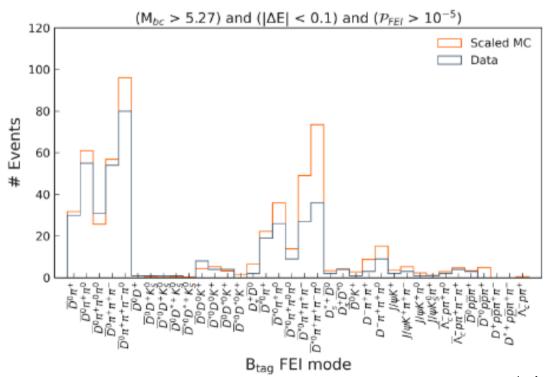
Hadronic B-tagging tool at Belle/Belle II

called Full Event Interpretation (FEI)

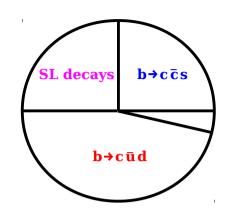
Designed for Belle II software, now used with Belle data also.

For each decay, BDTs trained on MC.

B+-tagging uses 36 decays. But only 12 of them, essentially B \to D^(*) $m\pi^{\pm}$ $n\pi^{0}$, gives ~90% of the efficiency.


Total efficiency < 1%.

Hierarchical reconstruction... $o(10^4)$ B total decay chains


Uses machine learning: over 200 BDTs trained on simulated BB data

Outputs:

- List of tagged B candidates (each in a specific B decay cascade)
- A "signal probability" for each...

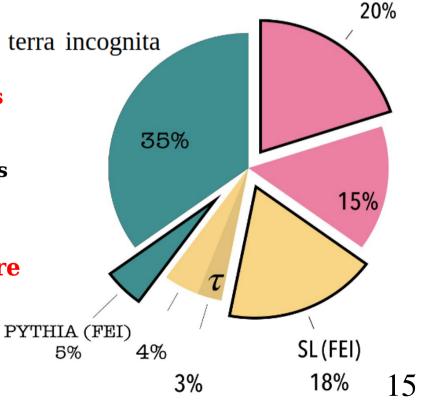
Why is B-decay modeling so hard?

Inclusive decays for b→c transition

A.Lenz et al, arXiv:1305.5390, 1404.6197

 $\begin{array}{lll} B(b\to c\bar{u}d) & = & 0.446\pm0.014 \\ B(b\to c\bar{c}s) & = & 0.232\pm0.007 \\ B(b\to ce\nu_e) & = & 0.116\pm0.008 \\ B(b\to c\mu\nu_\mu) & = & 0.116\pm0.008 \\ B(b\to c\tau\nu_\tau) & = & 0.027\pm0.001 \\ B(b\to c\bar{u}s) & = & 0.024\pm0.001 \\ B(b\to c\bar{c}d) & = & 0.0126\pm0.0005 \end{array}$

We will see that we (and PDG) use a 30-year-old measurement with \sim 75% uncertainty for one of the largest hadronic B-decays...

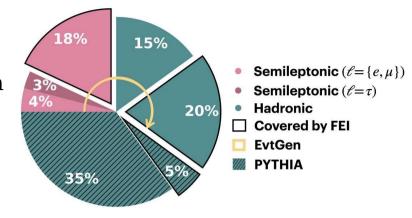

But on top of that, we don't know how B decays ~40% of the time! We ask **PYTHIA** to (poorly) generate them.

B-tagging is key tool for missing energy analyses

- low efficiency (efficiency for hadronic B-tagging < 1%)
- and ML can't (always) save you...
 B-tagging algorithms are trained using MC samples
- 40% of hadronic B decays generated by PYTHIA...
- and even among the EvtGen part...

most BFs measured are old measurements from ARGUS, CLEO...

lot of hadronic B decays to understand/measure ⇒ new contributions to B-tagging??



HAD (FEI)

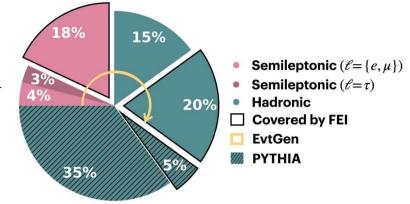
How are B decays generated?

EvtGen

Hadronic B-decays: ~ 75% of the total branching fraction

Decay B+

```
0.054900000 anti-D*0 e+ nu e
                                  BGL 0.02596 -0.06049 0.01311 0.01713 0.00753 -0.09346.
0.023100000 anti-D0 e+ nu e
                                  BGL 0.0126 -0.094 0.34 -0.1 0.0115 -0.057 0.12 0.4;
0.007570000 anti-D 10 e+ nu e
                                 LLSW 0.71 -1.6 -0.5 2.9;
0.003890000 anti-D 0*0 e+ nu e LLSW 0.68 -0.2 0.3;
0.004310000 anti-D' 10 e+ nu e LLSW 0.68 -0.2 0.3;
0.003730000 anti-D 2*0 e+ nu e
                                 LLSW 0.71 -1.6 -0.5 2.9:
                                                       The largest decays are at 10^{-2}, 10^{-3}
                                                       so talking about o(10<sup>4</sup>) decay channels
0.000383590 D+ anti-D0
                                PHSP:
                                                       we only list o(10^3) explicitly
0.000392390 D*+ anti-D0
                                SVS:
0.000630000 anti-D*0 D+
                                SVS:
0.000810000 anti-D*0 D*+
                                 SVV HELAMP 0.56 0.0 0.96 0.0 0.47 0.0;
```


This is from PDG and some guestimates... but what about the rest?

How are B decays generated?

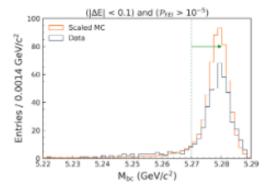
EvtGen + PYTHIA

Hadronic B-decays: $\sim 75\,\%$ of the total branching fraction but only about half of it is measured

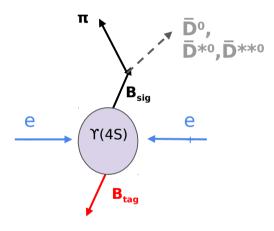
PYTHIA is used to generate the other half in MC

Quark transition	modeID in PYTHIA v8	$\mathcal{B}^{\mathrm{Belle}}(\%)$	$\mathcal{B}^{\mathrm{Belle\ II}}(\%)$
u anti-d anti-c u	23	31.23	20.26
u anti-d anti-c u	43	-	3.87
u anti-s anti-c u	43	2.23	2.02
c anti-s anti-c u	43	-	6.66
c anti-d anti-c u	43	-	0.36
u anti-d anti-u u	23	-	0.27
c anti-s anti-u u	23	-	0.36
u anti-u anti-d u	23	-	0.18
d anti-d anti-d u	23	-	< 0.01
s anti-s anti-d u	23	-	0.01
u anti-u anti-s u	23	-	0.20
d anti-d anti-s u	23	-	0.16
s anti-s anti-s u	23	-	0.13
anti-s u	91	-	0.45
anti-cd_1 uu_1	63	3.40	2.97
anti-cd_1 uu_1	64	1.27	-
anti-cs $_0$ cu $_0$	63	0.85	-
anti-cs $_1$ uu $_1$	63	0.18	0.81
anti-cs_1 uu_1	64	0.04	-
anti-cd_0 cu_0	63	0.04	-
Total PYT	HIA contribution	39.24	38.71

- PYTHIA is called for quark fragmentation according to relative rates determined by the parameters of the StringFlav class
- \circ We use the default values for most parameters, with the production of some excited mesons turned off, like a_1^{\pm} , a_1^{0} , D^{**} ...

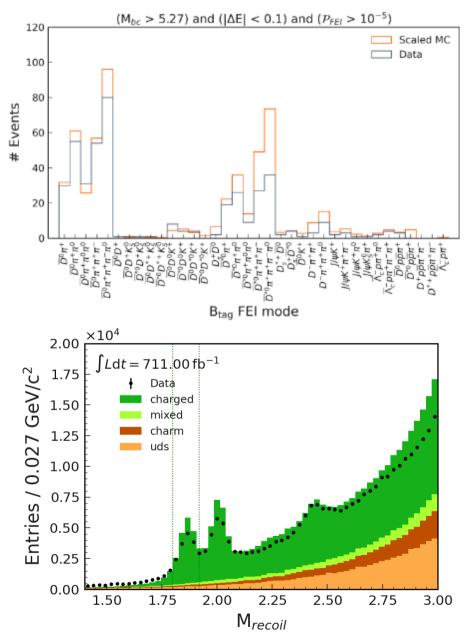

The StringFlav parameters as well as relative fractions assigned to different quark transitions need to be tuned

- Fragmentation compares the final state with the explicitly listed decays, and if found, performed again to produce an alternative final state
- Therefore, to exclude that a particular decay is generated by PYTHIA, it can be explicitly listed in DECAY.DEC with a branching fraction of 0%


Need to know what not to generate as well

Ideal control sample to study B-tagging

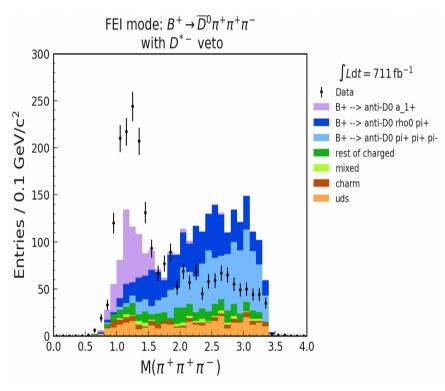
First idea, use $B \rightarrow J/\psi K$:



clean, allow first estimation (large MC/data differences) \Rightarrow but too limited stat (~ 400 evts after B-tagging)

We can look for D^0 , D^{*0} and even D^{**0} in the recoil mass of a fully reconstructed B and a $\pi\pm$

Within a narrow region around the peak, we know that one B decays to $D^0\pi^+$ and we can study the other B (decaying hadronically)


~16k events in a 3σ window around each peak in data.

Need to calibrate the algorithm, but more importantly, need to improve MC for training.

Improving MC model: an example

Let's take one final state for example: $B^+ \to \bar{D}^0 \pi^+ \pi^+ \pi^-$. It can be produced through many intermediate states:

Decay	Belle	Belle II
$B^+ \to \overline{D}^0 \pi^- \pi^+ \pi^+$	0.46	0.51
$B^+ \to \overline{D}^0 \rho(770)^0 \pi^+; \rho(770)^0 \to \pi^+ \pi^-$	0.39	0.42
$B^+ \to \overline{D}^0 a_1(1260)^+; a_1(1260)^+ \to \rho(770)^0 \pi^+; \rho(770)^0 \to \pi^+ \pi^-$	0.13	0.14
$\overline{B^+} \to \overline{D}^0 a_1(1260)^+; a_1(1260)^+ \to f_0(600)\pi^+; f_0(600) \to \pi^+\pi^-$	0.05	-
$B^+ \to \overline{D}_1(2420)^0 \pi^+; \overline{D}_1(2420)^0 \to D^*(2010)^- \pi^+; D^*(2010)^- \to \overline{D}^0 \pi^-$	0.04	0.02
$B^+ \to \overline{D}_1(2430)^0 \pi^+; \overline{D}_1(2430)^0 \to D^*(2010)^- \pi^+; D^*(2010)^- \to \overline{D}^0 \pi^-$	0.03	0.02
$B^+ \to \overline{D}_2^*(2460)^0 \pi^+; \overline{D}_2^*(2460)^0 \to D^*(2010)^- \pi^+; D^*(2010)^- \to \overline{D}^0 \pi^-$	0.01	0.01
$B^+ \to D^*(2010)^- \pi^+ \pi^+; D^*(2010)^- \to \overline{D}^0 \pi^-$	-	0.09
$B^+ \to \overline{D}^0 a_1(1260)^+; a_1(1260)^+ \to \pi^+ \pi^+ \pi^-$	-	0.07
$B^+ \to \overline{D}^0 a_1(1260)^+; a_1(1260)^+ \to f_0(500)\pi^+; f_0(500) \to \pi^+\pi^-$	-	0.05
$B^+ \to \overline{D}_1(2420)^0 \pi^+; \overline{D}_1(2420)^0 \to \overline{D}^0 \pi^- \pi^+$	-	0.02
$B^+ \to \overline{D}^0 K^*(892)^+; K^*(892)^+ \to K^0 \pi^+; K^0 \to K^0_S; K^0_S \to \pi^+ \pi^-$	-	0.01
Rest of Exclusive	0.03	0.03
Sum of Exclusive	1.12	1.38
Sum of Pythia	0	0
Total Sum	1.12	1.38

Comparing with data clearly shows that a_1^+ component is underestimated, and the $\rho^0\pi^+$ and direct π^+ π^+ π^- components are overestimated.

Similarly, for other final states

$B^+ \rightarrow \bar{D}^0 \pi^+ \pi^+ \pi^- \pi^0$

D	D 11	D 11 II
Decay	Belle	Belle II
$\overline{B^+ \to \overline{D}^{*0} \pi^- \pi^+ \pi^+ \pi^0}$	1.80	1.80
$B^+ \to \overline{D}^{*0} \omega(782) \pi^+; \omega(782) \to \pi^- \pi^+ \pi^0$	0.40	0.41
Rest of Exclusive	0.02	0.05
Sum of Exclusive	2.22	2.25
$\overline{B^+} \to \overline{D}^{*0} \rho(770)^0 \rho(770)^+; \ \rho(770)^0 \to \pi^+\pi^-; \ \rho(770)^+ \to \pi^+\pi^0$	0.49	0.20
$B^+ \to \overline{D}^{*0} \rho(770)^+ \pi^+ \pi^-; \rho(770)^+ \to \pi^+ \pi^0$	0.40	0.20
$B^+ \to \overline{D}^{*0} \rho(770)^0 \pi^+ \pi^0; \ \rho(770)^0 \to \pi^+ \pi^-$	0.40	0.20
$B^+ \to \overline{D}^{*0} \rho(770)^- \pi^+ \pi^+; \ \rho(770)^- \to \pi^- \pi^0$	0.20	0.10
$B^+ o \overline{D}^{*0} \eta \pi^+; \eta o \pi^- \pi^+ \pi^0$	0.14	0.07
$B^+ \to \overline{D}_1(2430)^0 \rho(770)^0 \pi^+; \overline{D}_1(2430)^0 \to \overline{D}^{*0} \pi^0; \rho(770)^0 \to \pi^+ \pi^-$	0.03	-
Rest of PYTHIA	0.02	0.01
Sum of PYTHIA	1.68	0.77
Total Sum	3.90	3.03

blue means generated by PYTHIA

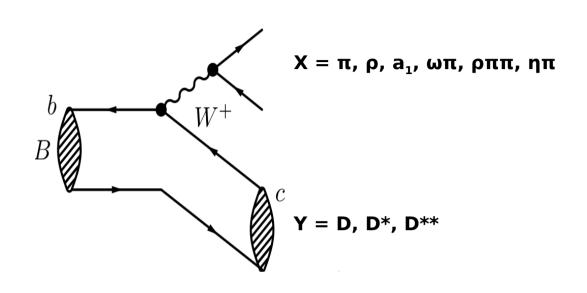
 $\bar{D}^{*0} \pi^+ \pi^+ \pi^-$

TABLE VI: Contents of the DECAY file concerning the $B^+ \to \overline{D}^{*0} \pi^+ \pi^+ \pi^-$ final state and corresponding measurements in PDG [in %]. The rows in blue correspond to decays produced by Pythia.

Decay	Belle	Belle II	Marker	Ref
$B^+ \to \overline{D}^* (2007)^0 \pi^- \pi^+ \pi^+$	1.03	-		[2], [7]
$B^+ \to \overline{D}^*(2007)^0 a_1(1260)^+; a_1(1260)^+ \to \rho(770)^0 \pi^+; \rho(770)^0 \to \pi^+\pi^-$	0.66	0.58	*	
$B^+ \to \overline{D}^*(2007)^0 a_1(1260)^+; a_1(1260)^+ \to f_0(600)\pi^+; f_0(600) \to \pi^+\pi^-$	0.25	-	*	
$B^+ \to \overline{D}^*(2007)^0 a_1(1260)^+; a_1(1260)^+ \to \pi^+\pi^+\pi^-$	-	0.28	*	
$B^+ \to \overline{D}^*(2007)^0 a_1(1260)^+; a_1(1260)^+ \to f_0(500)\pi^+; f_0(500) \to \pi^+\pi^-$	-	0.20	*	
$B^+ \to \overline{D}^*(2007)^0 \rho(770)^0 \pi^+; \ \rho(770)^0 \to \pi^+ \pi^-$	-	0.04	*	
Rest of Exclusive	0.02	0.05		
Sum of Exclusive	1.96	1.15		
$B^+ \to \overline{D}^*(2007)^0 f_0(980) \pi^+; f_0(980) \to \pi^+ \pi^-$	0.05	-	*	
$B^+ o \overline{D}^* (2007)^0 \pi^+ \pi^+ \pi^-$	-	0.20		
Rest of Pythia	0.00	0.00		
Sum of Pythia	0.05	0.20		
Total Sum	2.01	1.35		

Marker convention:

★ : Old/No measurement


■: Double counting

 $\mathsf{B}^+ \to \bar{\mathsf{D}}^{\scriptscriptstyle 0} \; \pi^+ \; \pi^+ \; \pi^- \; \pi^0$

TABLE IX: Contents of the DECAY file concerning the $B^+ \to \overline{D}{}^0\pi^+\pi^+\pi^-\pi^0$ final state and corresponding measurements in PDG [in %]. The rows in blue correspond to decays produced by Pythia.

Decay	Belle	Belle II	Markers	Re
$B^+ \to D^*(2010)^- \pi^0 \pi^+ \pi^+; \ D^*(2010)^- \to \overline{D}{}^0 \pi^-$	1.02	1.03	*	[8]
$B^+ \to \overline{D}^* (2007)^0 \pi^- \pi^+ \pi^+; \overline{D}^* (2007)^0 \to \overline{D}^0 \pi^0$	0.64	-		
$B^+ \to \overline{D}^*(2007)^0 a_1(1260)^+; \ \overline{D}^*(2007)^0 \to \overline{D}^0 \pi^0; \ a_1(1260)^+ \to \rho(770)^0 \pi^+; \ \rho(770)^0 \to \pi^+ \pi^-$	0.41	0.38	*	
$B^+ \to \overline{D}{}^0 \omega (782) \pi^+; \ \omega (782) \to \pi^- \pi^+ \pi^0$	0.37	0.37	*	[9]
$B^+ \to \overline{D}^*(2007)^0 a_1(1260)^+; \ \overline{D}^*(2007)^0 \to \overline{D}^0 \pi^0; \ a_1(1260)^+ \to f_0(600) \pi^+; \ f_0(600) \to \pi^+ \pi^-$	0.16	-	*	
$B^+ \to D^*(2010)^- \rho(770)^+ \pi^+; D^*(2010)^- \to \overline{D}^0 \pi^-; \rho(770)^+ \to \pi^+ \pi^0$	0.14	0.14	*	
$B^+ \to \overline{D}^*(2007)^0 a_1(1260)^+; \overline{D}^*(2007)^0 \to \overline{D}^0 \pi^0; a_1(1260)^+ \to \pi^+ \pi^+ \pi^-$	-	0.18	*	
$B^+ \to \overline{D}^*(2007)^0 a_1(1260)^+; \overline{D}^*(2007)^0 \to \overline{D}^0 \pi^0; a_1(1260)^+ \to f_0(500)\pi^+; f_0(500) \to \pi^+\pi^-$	-	0.13	*	
Rest of Exclusive	0.03	0.10		
Sum of Exclusive	2.75	2.32		
$B^+ \to \overline{D}^0 \rho(770)^+ \pi^+ \pi^-; \rho(770)^+ \to \pi^+ \pi^0$	0.20	0.30		
$B^+ \to \overline{D}{}^0 \rho (770)^0 \rho (770)^+; \rho (770)^0 \to \pi^+ \pi^-; \rho (770)^+ \to \pi^+ \pi^0$	0.20	0.20		
$B^+ \to \overline{D}^0 \rho (770)^- \pi^+ \pi^+; \rho (770)^- \to \pi^- \pi^0$	0.10	0.10		
$B^+ \to \overline{D}^0 \rho(770)^0 \pi^+ \pi^0; \rho(770)^0 \to \pi^+ \pi^-$	0.10	0.20		
$B^+ o \overline{D}{}^0 \eta \pi^+; \eta o \pi^- \pi^+ \pi^0$	0.05	0.07	*	
$B^+ \to \overline{D}_1(2430)^0 \pi^+ \pi^0; \ \overline{D}_1(2430)^0 \to D^*(2010)^- \pi^+; \ D^*(2010)^- \to \overline{D}^0 \pi^-$	0.05	-		
$B^+ \to \overline{D}_0^* (2300)^0 \rho (770)^0 \pi^+; \ \overline{D}_0^* (2300)^0 \to \overline{D}^0 \pi^0; \ \rho (770)^0 \to \pi^+ \pi^-$	0.03	-		
$B^+ \to \overline{D}^*(2007)^0 f_0(980) \pi^+; \overline{D}^*(2007)^0 \to \overline{D}^0 \pi^0; f_0(980) \to \pi^+ \pi^-$	0.03	-		
$B^+ \to \overline{D}_2^*(2460)^0 \rho(770)^0 \pi^+; \ \overline{D}_2^*(2460)^0 \to \overline{D}^0 \pi^0; \ \rho(770)^0 \to \pi^+ \pi^-$	0.02	-		
$B^+ \to \overline{D}_2^*(2460)^0 \pi^+ \pi^0; \ \overline{D}_2^*(2460)^0 \to D^*(2010)^- \pi^+; \ D^*(2010)^- \to \overline{D}^0 \pi^-$	0.01	-		
$B^+ \to \overline{D}^* (2007)^0 \pi^+ \pi^+ \pi^-; \ \overline{D}^* (2007)^0 \to \overline{D}^0 \pi^0$	-	0.13		
$B^+ ightarrow \overline{D}^0 \pi^+ \pi^+ \pi^- \pi^0$	-	0.10		
Rest of Pythia	0.01	0.01		
Sum of Pythia	0.79	1.10		
Total Sum	3.54	3.42	*	_

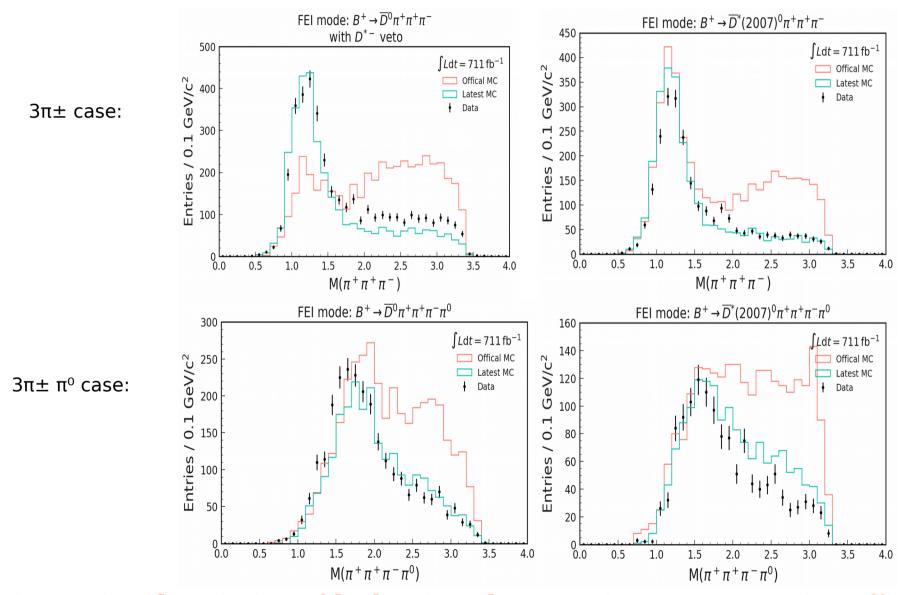
Model for $B \rightarrow D^{(*, **)} n\pi m\pi^0$ decays

Happens through 2 channels, one with spectator quarks (call Y) and one from the W (call X).

We modify the DECAY table to latest PDG/paper interpretations and this model to see the impact.

Essentially validation, we do not want to fine-tune (except set 0 there is no signal).

2 primary rules:


- D⁰ X: D*⁰ X : D**⁰ X \sim = 1 : 1 : 1 (based on observation from D π^- : D* π^- : D** π^- and D ρ^- : D* ρ^-)
- $Y \pi^-: Y \rho^-: Y a_1^- \sim = 1: 2.5: 2.5$ (based on predictions and confirmed with $\tau \to h \nu$ decays)

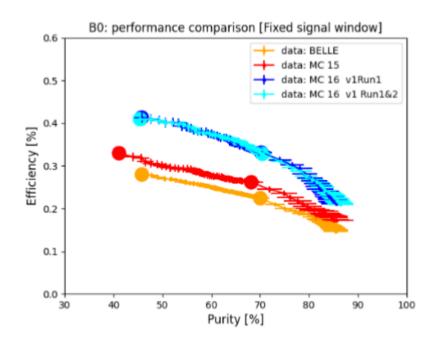
Additional information:

- $3\pi \pi^0$ is hard to model without some sort of ρ' resonance
 - For $\omega \pi$ we fix from measurements.
 - For $\rho\pi\pi$ and $\eta\pi$, we let PYTHIA generate it.
- Decays of D** particles is synchronized with Belle II
- The fraction of 4 different D** is fixed based on observations.

Decay description is improved!

The improvement is not limited to calibration factors, but more importantly in the invariant masses (of intermediate particles), which are used as training variables in FEI

improving description of hadronic B decays \Rightarrow improve B-tagging efficiency 22

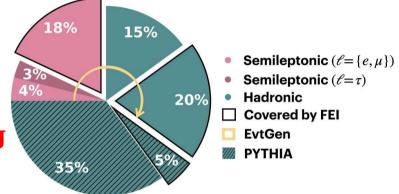

Hadronic B-tagging performance (in recently reprocessed data, run1+2)

B⁰:

o Purity: from 33% to 37% Efficiency: from 0.38% to 0.47% B⁺:

o Purity: from 34% to 39% Efficiency: from 1.06% to 1.54%

- improvement is clear... and already available for coming results
- now finally better than Belle
- run 2 seems to be of comparable quality

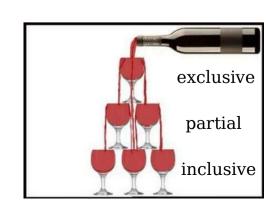

Summary

knowledge of hadronic B-decays is essential for B-tagging

• a large part (50%) of the hadronic B decays not measured...

...and PYTHIA is generating something...

 clear improvement of hadronic B-tagging in newly reprocessed data thanks to long term efforts on hadronic B decays modeling



Nice perspectives for using run1 + run2 + Belle with hadronic B-tagging for missing energy modes searches

Soon more results with SL B-tagging (especially for rare B decays) (see talk of Corentin Santos/Merna Abumusabh for $B \rightarrow K \nu \overline{\nu}$)

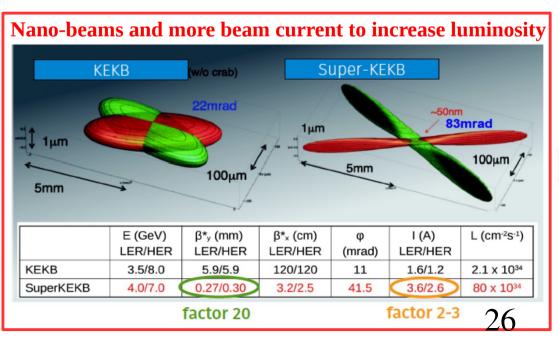
... and inclusive B-tagging

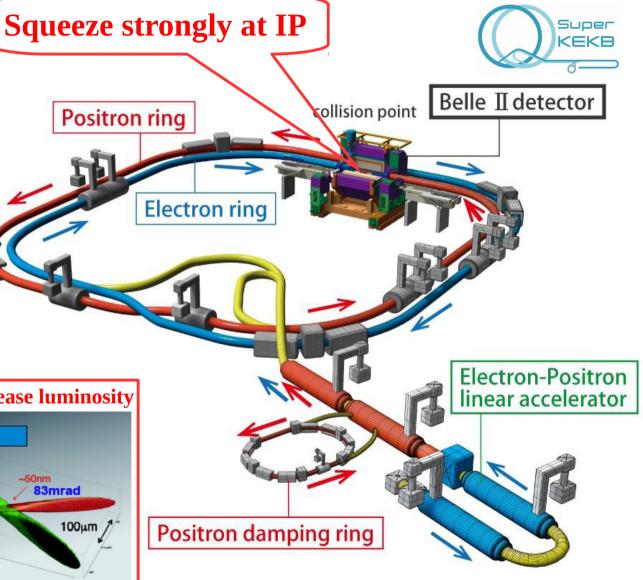
... and ultimately combination of B-taggings

SuperKEKB, the first new collider in particle physics since the LHC in 2008 (electron-positron (e^+e^-) rather than proton-proton (p-p))

Phase 1

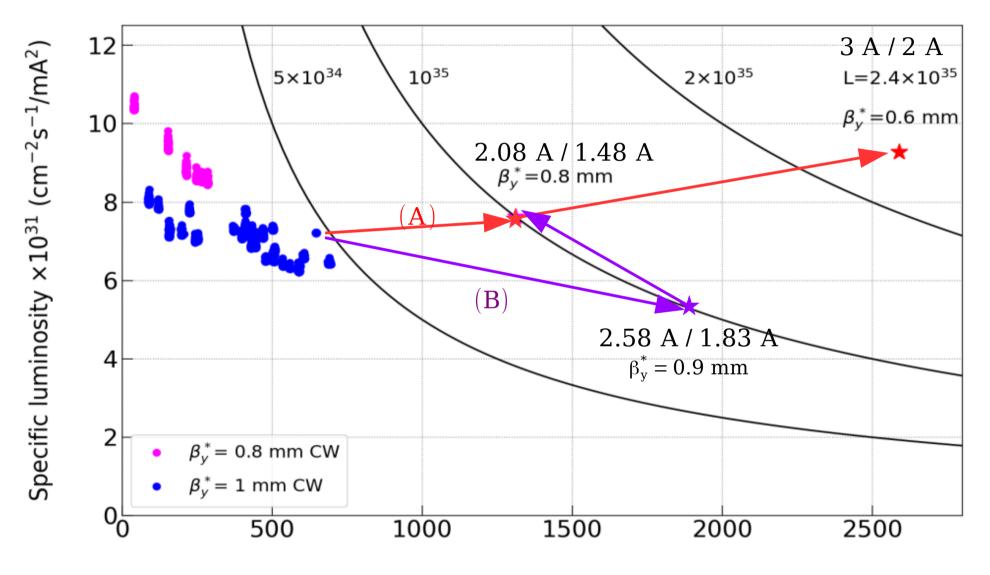
Background, Optics commissioning Feb - June **2016**

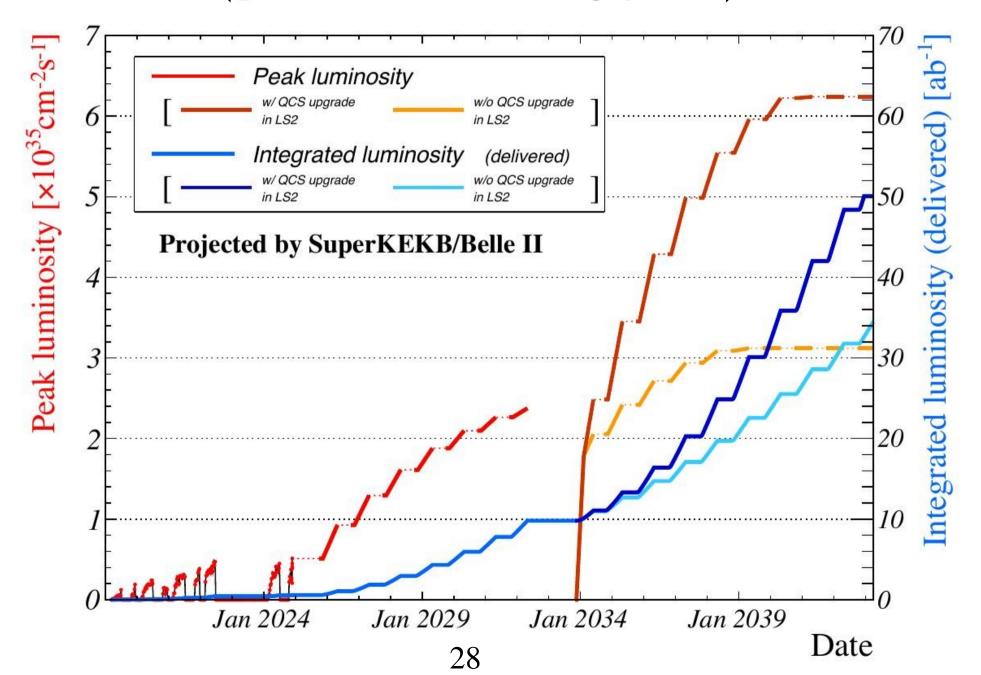

Brand new 3km positron ring


Phase 2: Pilot run

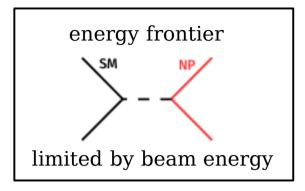
Superconducting Final Focus add positron damping ring First Collisions (0.5 fb⁻¹)
April 27-July 17, **2018**

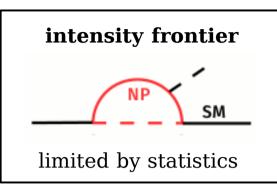
Phase 3: Physics run


Since April, 2019

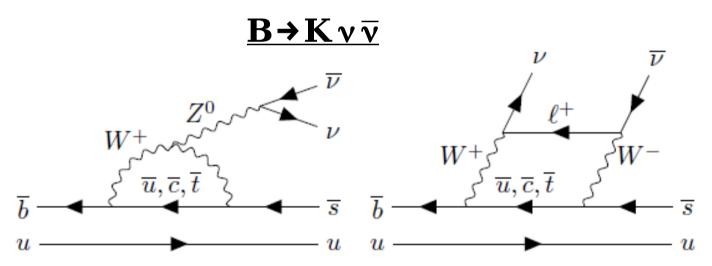

- \Rightarrow to reach $\sim 6 \times 10^{35}$ cm⁻² s⁻¹
- \Rightarrow cumulate 50 ab⁻¹ by ~ 2040

Strategy toward > $10^{35} \text{ cm}^{-2} \text{s}^{-1}$



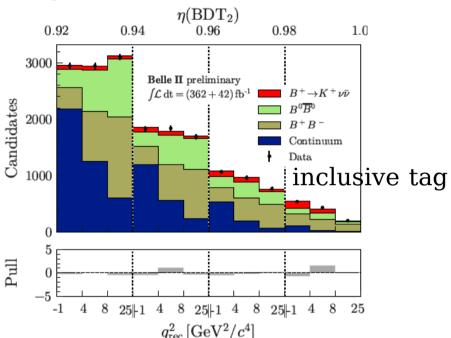

$$I_{b+}I_{b-}n_{b}$$
 (mA²)

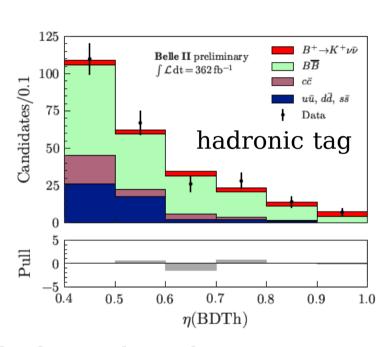
Luminosity projection plot (plan for the coming years)


Rare/Forbidden B decays

→ NP beyond the direct reach of the LHC

New particles can for example contribute to loop or tree level diagrams by enhancing/suppressing decay rates, introducing new sources of CP violation or modifying the angular distribution of the final-state particles

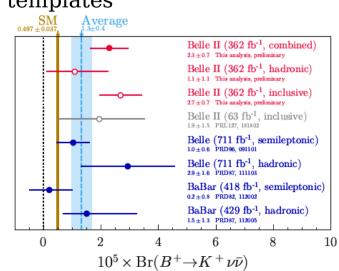



- ∘ B \rightarrow K $\nu\nu$ is known with high accuracy
 - $B(B \rightarrow K \nu \nu) = (5.6 \pm 0.4) \times 10^{-6} [arXiv:2207.13371]$
- Extensions beyond SM may lead to significant rate increase
- Very challenging experimentally, not yet observed
 - Low branching fraction, high background contributions
 - 3-body kinematics, no good kinematics
- Unique for Belle II

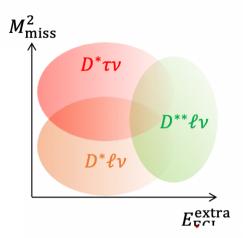
Evidence of B→Kvv

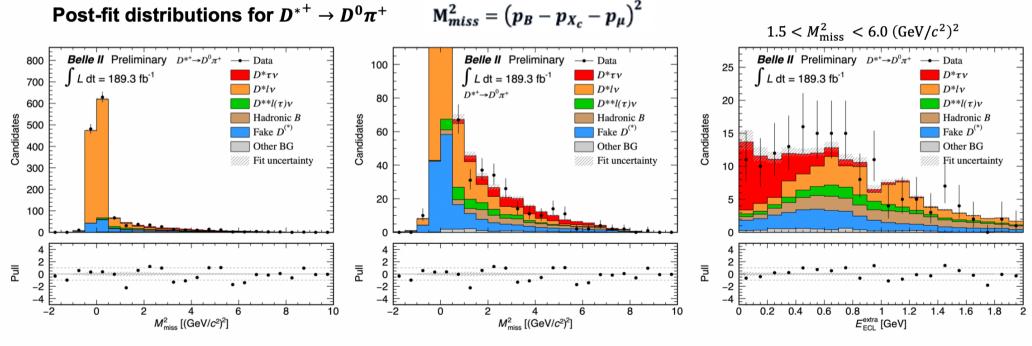
[arXiv:2311.14647] PRD109, 112006 (2024)

- Two analyses: more sensitive **inclusive** (eff = 8%), conventional **hadronic** tagging (eff = 0.4%)
- Use event properties to suppress background with multiple variables combined
- Use classifier output as (one of) the fit variables, use simulation for signal and background templates
- Use multiple control channels to validate simulation with data



Maximum likelihood fit to data using signal and background templates


$$\begin{aligned} \mathbf{B_{incl}} &= (\mathbf{2.7} \pm \mathbf{0.5} \, (\mathbf{stat}) \pm \mathbf{0.5} \, (\mathbf{syst})) \times \mathbf{10^{-5}} \\ \mathbf{B_{had}} &= (\mathbf{1.1} \, ^{+0.9}_{-0.8} \, (\mathbf{stat}) \, ^{+0.8}_{-0.5} \, (\mathbf{syst})) \times \mathbf{10^{-5}} \end{aligned}$$


- ∘ For inclusive analysis, evidence for $B \rightarrow K v \overline{v}$ at 3.5 σ branching fraction within 3σ of SM
- \circ For hadronic tag, the result is consistent with null hypothesis and SM at $1.1\,\sigma$ and $0.6\,\sigma$
- \Rightarrow Combination of two analyses provides first evidence of the decay at 2.7 σ from SM \$30\$

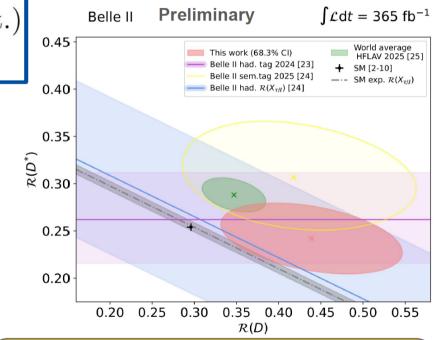
First Belle II result on $B(B \rightarrow D^* \tau \nu)/B(B \rightarrow D^* l \nu)$

- Half of available sample (200 million B\overline{B} pairs)
- Fully reconstruct the partner B in the event to suppress bckg
- \circ Reconstruct numerator and denominator with \sim same selections
- Two-dimensional fit of missing mass and total residual energy in calorimeter determines signal yields
- Data sidebands validate understanding of sample composition

Not leading, 40% improvement in statistical precision over Belle at the same sample size Consistent with WA

 $R(D^*) = 0.267^{+0.041}_{-0.039}(stat)^{+0.028}_{-0.033}(syst)$

$R_{\tau/\ell}(D^*)-R_{\tau/\ell}(D)$ H-tag leptonic τ from Belle II using 365 fb⁻¹ (Results)


Preliminary

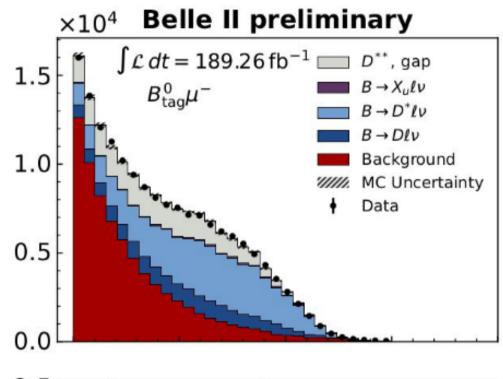
$$R(D^*) = 0.242 \pm 0.019 \,(\text{stat.}) \pm 0.016 \,(\text{syst.})$$

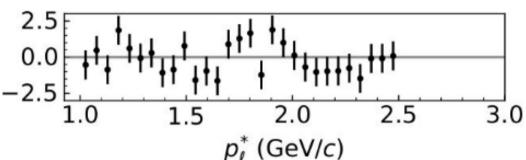
 $R(D) = 0.439 \pm 0.055 \,(\text{stat.}) \pm 0.046 \,(\text{syst.})$
 $\rho = -0.40 \,(\text{stat.}) - 0.20 \,(\text{syst.})$

Source	$R(D^*)$	R(D)	ρ
Simulation sample size	4.8%	8.4%	-0.44
gap-mode branching fraction	2.7%	3.1%	0.00
$B \to D^{**}\tau^-/(\ell^-)\nu_\ell$ branching fractions	0.3%	1.3%	0.25
Hadronic B decay branching fractions	1.6%	1.5%	-0.26
Form factors	0.5%	0.9%	-0.70
Fraction of misreconstructed $D^{(*)}$	0.5%	1.2%	0.00
Continuum background	2.4%	2.1%	0.93
Fit biases	0.9%	1.2%	0.00
Low-momentum π^0, γ efficiency	2.2%	2.4%	0.99
Other efficiency corrections	0.7%	1.4%	0.92
B-tagging efficiency of data	0.9%	1.8%	-1.00
B-tagging efficiency of $B \to D\tau\nu$	0.1%	1.8%	1.00
$M_{\rm miss}^2$ resolution	0.5%	0.8%	0.48
Total systematic uncertainty	6.7%	10.3%	-0.20
Statistical uncertainty	8.3%	16.3%	-0.40

Systematics determined with toy pseudoexperiments varying pdf with normal /uniform sampling

Most precise R(D*)-R(D) measurement using H-tag




In agreement with SM within 1.5 σ 0.5 σ for R(D*) and 2 σ for R(D) In agreement with the world average within 1.3 σ

B⁺-tagging: standard calibration sample

BDTs are trained on MC

⇒ The performance has to be calibrated with data.

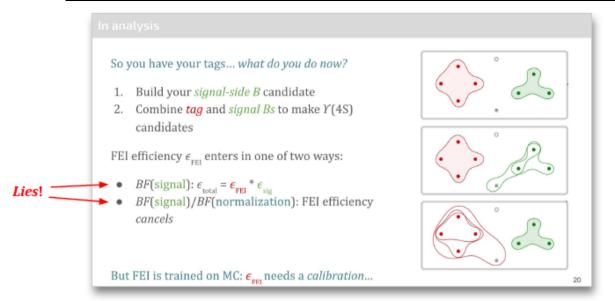
Traditionally, this calibration is done with semileptonic B on the signal side because it has large branching fraction.

Fit the lepton momentum in B rest frame. No clear peak

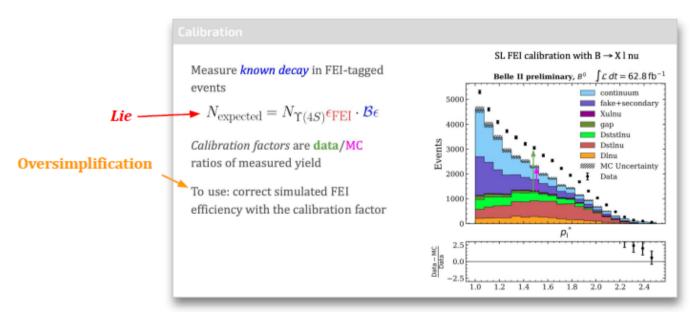
- ⇒ Complex template fitting strategy
- ⇒ Low signal-side purity

Systematically limited

- Highly dependent on the SL decay model including D** and SL gap components
- Significant cross-feed from B^o


But, if MC is not optimal, the BDT selection will not be optimal.

This cannot be easily studied with semi-leptonic B because there are no peaking structures.


An orthogonal sample is needed not only to provide calibration factors but to study the sources of discrepancy.

True lies and hard truths

(summarized by Peter Lewis)

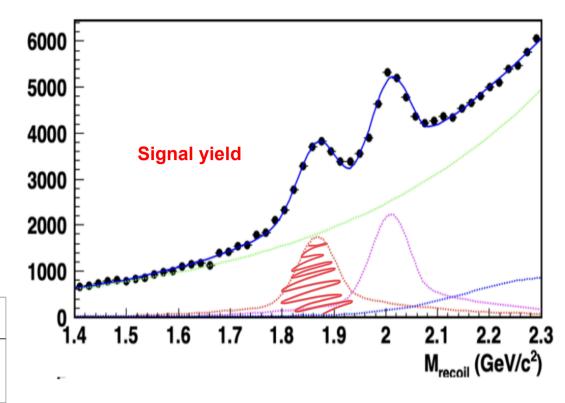
We now know that it is not possible to disentangle sig/tag efficiency, so a calibration may only be valid for the mode it is calibrated on (!)

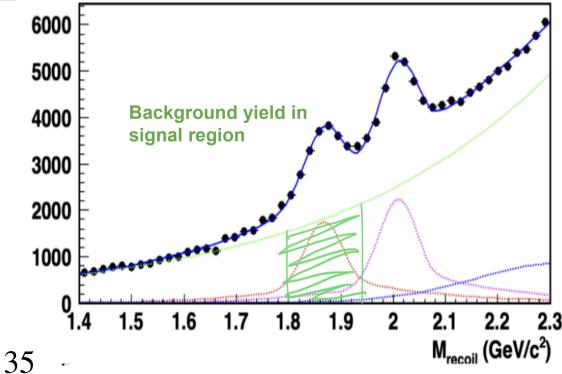
- having several calibration procedure (learn a lot about signal-side dependencies)
- $_{\circ}$ the closer the calibration factors are from 1, the better is our MC (so is the cross-feed simulation, the signal-side dependencies...) \$34\$

FEI metrics in data

Calculated directly on data:

- Calibration factor
 - = Signal yield in data
 Signal yield in MC
- Purity


= Signal yield


Signal yield + Background yield in signal region

Efficiency

 $= \frac{\text{Signal yield}}{\text{n_{BB} } \text{$BF_{\text{B+}\to\text{D}\pi}$ } \text{ε_{π}}}$

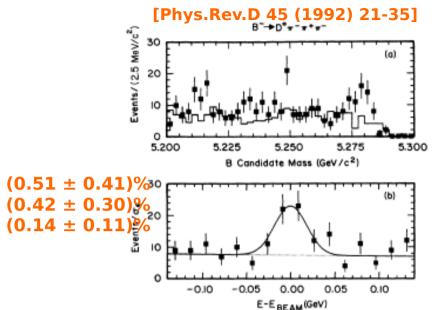
$$\begin{array}{ll} n_{BB} & = 392.5 \times 10^6 \\ BF_{B+\to\,D\pi} & = 0.467 \times 10^{-2} \\ \varepsilon_\pi & = 90\% \end{array}$$

But why calibration factors are still far from 1?

 \circ The fit allows to obtain calibration factors but also thanks to splot, obtain the distributions for B_{tag} decays: invariant mass of intermediate states, sigprob...

⇒ Need to understand and improve the MC modeling of B decays

⇒ bias introduced by training on MC!!

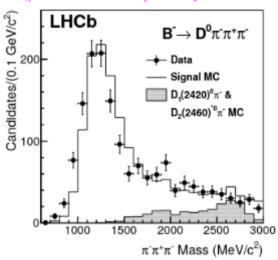

Let's take one final state for example: $B^+ \to \bar{D}^0 \pi^+ \pi^+ \pi^-$. It can be produced through many intermediate states:

Decay	Belle	Belle II
$B^+ \to \overline{D}^0 \pi^- \pi^+ \pi^+$	0.46	0.51
$B^+ \to \overline{D}^0 \rho(770)^0 \pi^+; \rho(770)^0 \to \pi^+ \pi^-$	0.39	0.42
$B^+ \to \overline{D}^0 a_1(1260)^+; a_1(1260)^+ \to \rho(770)^0 \pi^+; \rho(770)^0 \to \pi^+ \pi^-$	0.13	0.14
$B^+ \to \overline{D}^0 a_1(1260)^+; a_1(1260)^+ \to f_0(600)\pi^+; f_0(600) \to \pi^+\pi^-$	0.05	-
$B^+ \to \overline{D}_1(2420)^0 \pi^+; \overline{D}_1(2420)^0 \to D^*(2010)^- \pi^+; D^*(2010)^- \to \overline{D}^0 \pi^-$	0.04	0.02
$B^+ \to \overline{D}_1(2430)^0 \pi^+; \overline{D}_1(2430)^0 \to D^*(2010)^- \pi^+; D^*(2010)^- \to \overline{D}^0 \pi^-$	0.03	0.02
$B^+ \to \overline{D}_2^*(2460)^0 \pi^+; \overline{D}_2^*(2460)^0 \to D^*(2010)^- \pi^+; D^*(2010)^- \to \overline{D}^0 \pi^-$	0.01	0.01
$B^+ \to D^*(2010)^- \pi^+ \pi^+; D^*(2010)^- \to \overline{D}^0 \pi^-$	-	0.09
$B^+ \to \overline{D}^0 a_1(1260)^+; a_1(1260)^+ \to \pi^+ \pi^+ \pi^-$	-	0.07
$B^+ \to \overline{D}^0 a_1(1260)^+; a_1(1260)^+ \to f_0(500)\pi^+; f_0(500) \to \pi^+\pi^-$	-	0.05
$B^+ \to \overline{D}_1(2420)^0 \pi^+; \overline{D}_1(2420)^0 \to \overline{D}^0 \pi^- \pi^+$	-	0.02
$B^+ \to \overline{D}^0 K^*(892)^+; K^*(892)^+ \to K^0 \pi^+; K^0 \to K^0_S; K^0_S \to \pi^+ \pi^-$	-	0.01
Rest of Exclusive	0.03	0.03
Sum of Exclusive	1.12	1.38
Sum of Pythia	0	0
Total Sum	1.12	1.38

The π^+ π^+ π^- could be directly generated, could come through $\rho^0\pi^+$ or through an intermediate a_1^+ resonance.

Let's take one final state for example: $B^+ \to \bar{D}^0 \pi^+ \pi^+ \pi^-$. It can be produced through many intermediate states:

Decay	Belle	Belle II
$B^+ o \overline{D}^0 \pi^- \pi^+ \pi^+$	0.46	0.51
$B^+ \to \overline{D}^0 \rho(770)^0 \pi^+; \rho(770)^0 \to \pi^+ \pi^-$	0.39	0.42
$B^+ \to \overline{D}^0 a_1(1260)^+; a_1(1260)^+ \to \rho(770)^0 \pi^+; \rho(770)^0 \to \pi^+ \pi^-$	0.13	0.14
$B^+ \to \overline{D}^0 a_1(1260)^+; a_1(1260)^+ \to f_0(600)\pi^+; f_0(600) \to \pi^+\pi^-$	0.05	-
$B^+ \to \overline{D}_1(2420)^0 \pi^+; \overline{D}_1(2420)^0 \to D^*(2010)^- \pi^+; D^*(2010)^- \to \overline{D}^0 \pi^-$	0.04	0.02
$B^+ \to \overline{D}_1(2430)^0 \pi^+; \overline{D}_1(2430)^0 \to D^*(2010)^- \pi^+; D^*(2010)^- \to \overline{D}^0 \pi^-$	0.03	0.02
$B^+ \to \overline{D}_2^*(2460)^0 \pi^+; \overline{D}_2^*(2460)^0 \to D^*(2010)^- \pi^+; D^*(2010)^- \to \overline{D}^0 \pi^-$	0.01	0.01
$B^+ \to D^*(2010)^- \pi^+ \pi^+; D^*(2010)^- \to \overline{D}{}^0 \pi^-$	-	0.09
$B^+ \to \overline{D}^0 a_1(1260)^+; a_1(1260)^+ \to \pi^+ \pi^+ \pi^-$	-	0.07
$B^+ \to \overline{D}^0 a_1(1260)^+; a_1(1260)^+ \to f_0(500)\pi^+; f_0(500) \to \pi^+\pi^-$	-	0.05
$B^+ \to \overline{D}_1(2420)^0 \pi^+; \overline{D}_1(2420)^0 \to \overline{D}^0 \pi^- \pi^+$	-	0.02
$B^+ \to \overline{D}^0 K^*(892)^+; K^*(892)^+ \to K^0 \pi^+; K^0 \to K^0_S; K^0_S \to \pi^+ \pi^-$	-	0.01
Rest of Exclusive	0.03	0.03
Sum of Exclusive	1.12	1.38
Sum of Pythia	0	0
Total Sum	1.12	1.38

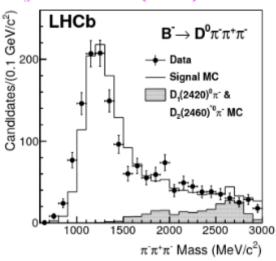


In 1992, CLEO experiment measured these 3 values but with ~75% uncertainty!

Let's take one final state for example: $B^+ \to \bar{D}^0 \pi^+ \pi^+ \pi^-$. It can be produced through many intermediate states:

Decay	Belle	Belle II
$B^+ o \overline{D}^0 \pi^- \pi^+ \pi^+$	0.46	0.51
$B^+ \to \overline{D}^0 \rho(770)^0 \pi^+; \rho(770)^0 \to \pi^+ \pi^-$	0.39	0.42
$B^+ \to \overline{D}^0 a_1(1260)^+; a_1(1260)^+ \to \rho(770)^0 \pi^+; \rho(770)^0 \to \pi^+ \pi^-$	0.13	0.14
$B^+ \to \overline{D}^0 a_1(1260)^+; a_1(1260)^+ \to f_0(600)\pi^+; f_0(600) \to \pi^+\pi^-$	0.05	-
$B^+ \to \overline{D}_1(2420)^0 \pi^+; \overline{D}_1(2420)^0 \to D^*(2010)^- \pi^+; D^*(2010)^- \to \overline{D}^0 \pi^-$	0.04	0.02
$B^+ \to \overline{D}_1(2430)^0 \pi^+; \overline{D}_1(2430)^0 \to D^*(2010)^- \pi^+; D^*(2010)^- \to \overline{D}^0 \pi^-$	0.03	0.02
$B^+ \to \overline{D}_2^*(2460)^0 \pi^+; \overline{D}_2^*(2460)^0 \to D^*(2010)^- \pi^+; D^*(2010)^- \to \overline{D}^0 \pi^-$	0.01	0.01
$B^+ \to D^*(2010)^- \pi^+ \pi^+; D^*(2010)^- \to \overline{D}{}^0 \pi^-$	-	0.09
$B^+ \to \overline{D}^0 a_1(1260)^+; a_1(1260)^+ \to \pi^+ \pi^+ \pi^-$	-	0.07
$B^+ \to \overline{D}^0 a_1(1260)^+; a_1(1260)^+ \to f_0(500)\pi^+; f_0(500) \to \pi^+\pi^-$	-	0.05
$B^+ \to \overline{D}_1(2420)^0 \pi^+; \overline{D}_1(2420)^0 \to \overline{D}^0 \pi^- \pi^+$	-	0.02
$B^+ \to \overline{D}^0 K^*(892)^+; K^*(892)^+ \to K^0 \pi^+; K^0 \to K^0_S; K^0_S \to \pi^+ \pi^-$	-	0.01
Rest of Exclusive	0.03	0.03
Sum of Exclusive	1.12	1.38
Sum of Pythia	0	0
Total Sum	1.12	1.38

Phys.Rev.D 84 (2011) 092001

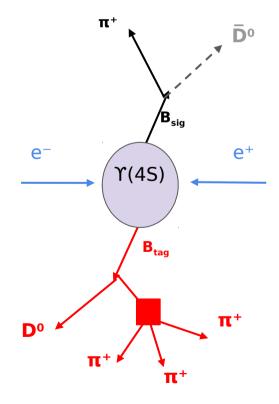

In 2011 (~20 years later), LHCb looked at this final state, but did not provide individual measurements.

So we are still suck with a 30 year old CLEO measurement in PDG.

Let's take one final state for example: $B^+ \to \bar{D}^0 \pi^+ \pi^+ \pi^-$. It can be produced through many intermediate states:

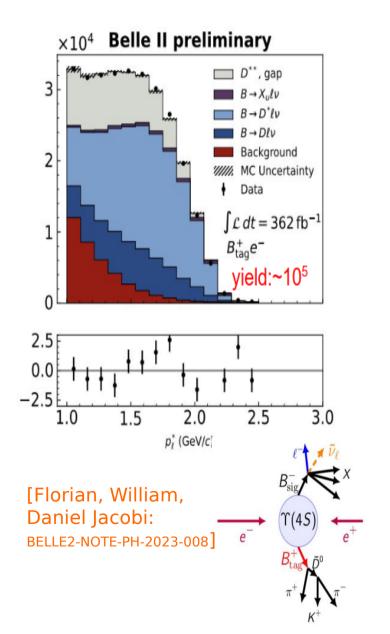
$ B^{+} \to \overline{D}^{0} \pi^{-} \pi^{+} \pi^{+} \qquad 0.46 0.51 $ $ B^{+} \to \overline{D}^{0} \rho(770)^{0} \pi^{+}; \rho(770)^{0} \to \pi^{+} \pi^{-} \qquad 0.39 0.42 $ $ B^{+} \to \overline{D}^{0} a_{1}(1260)^{+}; a_{1}(1260)^{+} \to \rho(770)^{0} \pi^{+}; \rho(770)^{0} \to \pi^{+} \pi^{-} \qquad 0.13 0.14 $ $ B^{+} \to \overline{D}^{0} a_{1}(1260)^{+}; a_{1}(1260)^{+} \to f_{0}(600) \pi^{+}; f_{0}(600) \to \pi^{+} \pi^{-} \qquad 0.05 - $ $ B^{+} \to \overline{D}_{1}(2420)^{0} \pi^{+}; \overline{D}_{1}(2420)^{0} \to D^{*}(2010)^{-} \pi^{+}; D^{*}(2010)^{-} \to \overline{D}^{0} \pi^{-} 0.04 0.02 $ $ B^{+} \to \overline{D}_{1}(2430)^{0} \pi^{+}; \overline{D}_{1}(2430)^{0} \to D^{*}(2010)^{-} \pi^{+}; D^{*}(2010)^{-} \to \overline{D}^{0} \pi^{-} 0.03 0.02 $ $ B^{+} \to \overline{D}_{2}(2460)^{0} \pi^{+}; \overline{D}_{2}(2460)^{0} \to D^{*}(2010)^{-} \pi^{+}; D^{*}(2010)^{-} \to \overline{D}^{0} \pi^{-} 0.01 0.01 $ $ B^{+} \to D^{*}(2010)^{-} \pi^{+} \pi^{+}; D^{*}(2010)^{-} \to \overline{D}^{0} \pi^{-} - 0.09 $ $ B^{+} \to \overline{D}_{1}(1260)^{+}; a_{1}(1260)^{+} \to \pi^{+} \pi^{+} \pi^{-} - 0.07 $ $ B^{+} \to \overline{D}_{1}(2420)^{0} \pi^{+}; \overline{D}_{1}(2420)^{0} \to \overline{D}^{0} \pi^{-} \pi^{+} - 0.05 $ $ B^{+} \to \overline{D}_{1}(2420)^{0} \pi^{+}; \overline{D}_{1}(2420)^{0} \to \overline{D}^{0} \pi^{-} \pi^{+} - 0.02 $ $ B^{+} \to \overline{D}_{1}(2420)^{0} \pi^{+}; \overline{D}_{1}(2420)^{0} \to \overline{D}^{0} \pi^{-} \pi^{+} - 0.02 $	Decay	Belle	Belle II
$B^{+} \to \overline{D}^{0} a_{1}(1260)^{+}; a_{1}(1260)^{+} \to \rho(770)^{0} \pi^{+}; \rho(770)^{0} \to \pi^{+} \pi^{-} \qquad 0.13 0.14$ $B^{+} \to \overline{D}^{0} a_{1}(1260)^{+}; a_{1}(1260)^{+} \to f_{0}(600) \pi^{+}; f_{0}(600) \to \pi^{+} \pi^{-} \qquad 0.05 -$ $B^{+} \to \overline{D}_{1}(2420)^{0} \pi^{+}; \overline{D}_{1}(2420)^{0} \to D^{*}(2010)^{-} \pi^{+}; D^{*}(2010)^{-} \to \overline{D}^{0} \pi^{-} 0.04 0.02$ $B^{+} \to \overline{D}_{1}(2430)^{0} \pi^{+}; \overline{D}_{1}(2430)^{0} \to D^{*}(2010)^{-} \pi^{+}; D^{*}(2010)^{-} \to \overline{D}^{0} \pi^{-} 0.03 0.02$ $B^{+} \to \overline{D}_{2}^{*}(2460)^{0} \pi^{+}; \overline{D}_{2}^{*}(2460)^{0} \to D^{*}(2010)^{-} \pi^{+}; D^{*}(2010)^{-} \to \overline{D}^{0} \pi^{-} 0.01 0.01$ $B^{+} \to D^{*}(2010)^{-} \pi^{+} \pi^{+}; D^{*}(2010)^{-} \to \overline{D}^{0} \pi^{-} \qquad - 0.09$ $B^{+} \to \overline{D}_{1}^{0} a_{1}(1260)^{+}; a_{1}(1260)^{+} \to \pi^{+} \pi^{+} \pi^{-} \qquad - 0.07$ $B^{+} \to \overline{D}_{1}^{0} a_{1}(1260)^{+}; a_{1}(1260)^{+} \to f_{0}(500) \pi^{+}; f_{0}(500) \to \pi^{+} \pi^{-} \qquad - 0.05$ $B^{+} \to \overline{D}_{1}(2420)^{0} \pi^{+}; \overline{D}_{1}(2420)^{0} \to \overline{D}^{0} \pi^{-} \pi^{+} \qquad - 0.02$	$B^+ \to \overline{D}^0 \pi^- \pi^+ \pi^+$	0.46	0.51
$B^{+} \to \overline{D}^{0} a_{1}(1260)^{+}; a_{1}(1260)^{+} \to f_{0}(600)\pi^{+}; f_{0}(600) \to \pi^{+}\pi^{-} \qquad 0.05 \qquad -$ $B^{+} \to \overline{D}_{1}(2420)^{0}\pi^{+}; \overline{D}_{1}(2420)^{0} \to D^{*}(2010)^{-}\pi^{+}; D^{*}(2010)^{-} \to \overline{D}^{0}\pi^{-} 0.04 \qquad 0.02$ $B^{+} \to \overline{D}_{1}(2430)^{0}\pi^{+}; \overline{D}_{1}(2430)^{0} \to D^{*}(2010)^{-}\pi^{+}; D^{*}(2010)^{-} \to \overline{D}^{0}\pi^{-} 0.03 \qquad 0.02$ $B^{+} \to \overline{D}_{2}^{*}(2460)^{0}\pi^{+}; \overline{D}_{2}^{*}(2460)^{0} \to D^{*}(2010)^{-}\pi^{+}; D^{*}(2010)^{-} \to \overline{D}^{0}\pi^{-} 0.01 \qquad 0.01$ $B^{+} \to D^{*}(2010)^{-}\pi^{+}\pi^{+}; D^{*}(2010)^{-} \to \overline{D}^{0}\pi^{-} \qquad - 0.09$ $B^{+} \to \overline{D}^{0}a_{1}(1260)^{+}; a_{1}(1260)^{+} \to \pi^{+}\pi^{+}\pi^{-} \qquad - 0.07$ $B^{+} \to \overline{D}^{0}a_{1}(1260)^{+}; a_{1}(1260)^{+} \to f_{0}(500)\pi^{+}; f_{0}(500) \to \pi^{+}\pi^{-} \qquad - 0.05$ $B^{+} \to \overline{D}_{1}(2420)^{0}\pi^{+}; \overline{D}_{1}(2420)^{0} \to \overline{D}^{0}\pi^{-}\pi^{+} \qquad - 0.02$	$B^+ \to \overline{D}^0 \rho(770)^0 \pi^+; \rho(770)^0 \to \pi^+ \pi^-$	0.39	0.42
$B^{+} \to \overline{D}_{1}(2420)^{0}\pi^{+}; \overline{D}_{1}(2420)^{0} \to D^{*}(2010)^{-}\pi^{+}; D^{*}(2010)^{-} \to \overline{D}^{0}\pi^{-} 0.04 0.02$ $B^{+} \to \overline{D}_{1}(2430)^{0}\pi^{+}; \overline{D}_{1}(2430)^{0} \to D^{*}(2010)^{-}\pi^{+}; D^{*}(2010)^{-} \to \overline{D}^{0}\pi^{-} 0.03 0.02$ $B^{+} \to \overline{D}_{2}^{*}(2460)^{0}\pi^{+}; \overline{D}_{2}^{*}(2460)^{0} \to D^{*}(2010)^{-}\pi^{+}; D^{*}(2010)^{-} \to \overline{D}^{0}\pi^{-} 0.01 0.01$ $B^{+} \to D^{*}(2010)^{-}\pi^{+}\pi^{+}; D^{*}(2010)^{-} \to \overline{D}^{0}\pi^{-} \qquad - 0.09$ $B^{+} \to \overline{D}_{1}^{0}a_{1}(1260)^{+}; a_{1}(1260)^{+} \to \pi^{+}\pi^{+}\pi^{-} \qquad - 0.07$ $B^{+} \to \overline{D}_{1}^{0}a_{1}(1260)^{+}; a_{1}(1260)^{+} \to f_{0}(500)\pi^{+}; f_{0}(500) \to \pi^{+}\pi^{-} \qquad - 0.05$ $B^{+} \to \overline{D}_{1}(2420)^{0}\pi^{+}; \overline{D}_{1}(2420)^{0} \to \overline{D}^{0}\pi^{-}\pi^{+} \qquad - 0.02$		0.13	0.14
$B^{+} \to \overline{D}_{1}(2430)^{0}\pi^{+}; \overline{D}_{1}(2430)^{0} \to D^{*}(2010)^{-}\pi^{+}; D^{*}(2010)^{-} \to \overline{D}^{0}\pi^{-} 0.03 0.02$ $B^{+} \to \overline{D}_{2}^{*}(2460)^{0}\pi^{+}; \overline{D}_{2}^{*}(2460)^{0} \to D^{*}(2010)^{-}\pi^{+}; D^{*}(2010)^{-} \to \overline{D}^{0}\pi^{-} 0.01 0.01$ $B^{+} \to D^{*}(2010)^{-}\pi^{+}\pi^{+}; D^{*}(2010)^{-} \to \overline{D}^{0}\pi^{-} \qquad - 0.09$ $B^{+} \to \overline{D}^{0}a_{1}(1260)^{+}; a_{1}(1260)^{+} \to \pi^{+}\pi^{+}\pi^{-} \qquad - 0.07$ $B^{+} \to \overline{D}^{0}a_{1}(1260)^{+}; a_{1}(1260)^{+} \to f_{0}(500)\pi^{+}; f_{0}(500) \to \pi^{+}\pi^{-} \qquad - 0.05$ $B^{+} \to \overline{D}_{1}(2420)^{0}\pi^{+}; \overline{D}_{1}(2420)^{0} \to \overline{D}^{0}\pi^{-}\pi^{+} \qquad - 0.02$			-
$B^{+} \to \overline{D}_{2}^{*}(2460)^{0}\pi^{+}; \overline{D}_{2}^{*}(2460)^{0} \to D^{*}(2010)^{-}\pi^{+}; D^{*}(2010)^{-} \to \overline{D}^{0}\pi^{-} 0.01 0.01$ $B^{+} \to D^{*}(2010)^{-}\pi^{+}\pi^{+}; D^{*}(2010)^{-} \to \overline{D}^{0}\pi^{-} - 0.09$ $B^{+} \to \overline{D}^{0}a_{1}(1260)^{+}; a_{1}(1260)^{+} \to \pi^{+}\pi^{+}\pi^{-} - 0.07$ $B^{+} \to \overline{D}^{0}a_{1}(1260)^{+}; a_{1}(1260)^{+} \to f_{0}(500)\pi^{+}; f_{0}(500) \to \pi^{+}\pi^{-} - 0.05$ $B^{+} \to \overline{D}_{1}(2420)^{0}\pi^{+}; \overline{D}_{1}(2420)^{0} \to \overline{D}^{0}\pi^{-}\pi^{+} - 0.02$	$B^+ \to \overline{D}_1(2420)^0 \pi^+; \overline{D}_1(2420)^0 \to D^*(2010)^- \pi^+; D^*(2010)^- \to \overline{D}^0 \pi^-$	0.04	0.02
$B^{+} \to D^{*}(2010)^{-}\pi^{+}\pi^{+}; D^{*}(2010)^{-} \to \overline{D}^{0}\pi^{-} - 0.09$ $B^{+} \to \overline{D}^{0}a_{1}(1260)^{+}; a_{1}(1260)^{+} \to \pi^{+}\pi^{+}\pi^{-} - 0.07$ $B^{+} \to \overline{D}^{0}a_{1}(1260)^{+}; a_{1}(1260)^{+} \to f_{0}(500)\pi^{+}; f_{0}(500) \to \pi^{+}\pi^{-} - 0.05$ $B^{+} \to \overline{D}_{1}(2420)^{0}\pi^{+}; \overline{D}_{1}(2420)^{0} \to \overline{D}^{0}\pi^{-}\pi^{+} - 0.02$	$B^+ \to \overline{D}_1(2430)^0 \pi^+; \overline{D}_1(2430)^0 \to D^*(2010)^- \pi^+; D^*(2010)^- \to \overline{D}^0 \pi^-$	0.03	0.02
$B^{+} \to \overline{D}^{0} a_{1}(1260)^{+}; a_{1}(1260)^{+} \to \pi^{+}\pi^{+}\pi^{-} - 0.07$ $B^{+} \to \overline{D}^{0} a_{1}(1260)^{+}; a_{1}(1260)^{+} \to f_{0}(500)\pi^{+}; f_{0}(500) \to \pi^{+}\pi^{-} - 0.05$ $B^{+} \to \overline{D}_{1}(2420)^{0}\pi^{+}; \overline{D}_{1}(2420)^{0} \to \overline{D}^{0}\pi^{-}\pi^{+} - 0.02$	$B^+ \to \overline{D}_2^*(2460)^0 \pi^+; \overline{D}_2^*(2460)^0 \to D^*(2010)^- \pi^+; D^*(2010)^- \to \overline{D}^0 \pi^-$	0.01	0.01
$B^{+} \to \overline{D}^{0} a_{1}(1260)^{+}; a_{1}(1260)^{+} \to f_{0}(500)\pi^{+}; f_{0}(500) \to \pi^{+}\pi^{-} - 0.05$ $B^{+} \to \overline{D}_{1}(2420)^{0}\pi^{+}; \overline{D}_{1}(2420)^{0} \to \overline{D}^{0}\pi^{-}\pi^{+} - 0.02$	$B^+ \to D^*(2010)^- \pi^+ \pi^+; D^*(2010)^- \to \overline{D}{}^0 \pi^-$	-	0.09
$B^+ \to \overline{D}_1(2420)^0 \pi^+; \overline{D}_1(2420)^0 \to \overline{D}^0 \pi^- \pi^+$ - 0.02	$B^+ \to \overline{D}^0 a_1(1260)^+; a_1(1260)^+ \to \pi^+ \pi^+ \pi^-$	-	0.07
	$B^+ \to \overline{D}^0 a_1(1260)^+; a_1(1260)^+ \to f_0(500)\pi^+; f_0(500) \to \pi^+\pi^-$	-	0.05
$D^{+} \setminus \overline{D}^{0} V^{*}(902)^{+}, V^{*}(902)^{+} \setminus V^{0} -^{+}, V^{0} \setminus V^{0}, V^{0} \setminus \pi^{+} -^{-}$	$B^+ \to \overline{D}_1(2420)^0 \pi^+; \overline{D}_1(2420)^0 \to \overline{D}^0 \pi^- \pi^+$	-	0.02
$D \rightarrow D \cap K (092) \rightarrow K \wedge W \rightarrow K_{\tilde{S}}, K_{\tilde{S}} \rightarrow W \wedge W \rightarrow 0.01$	$B^+ \to \overline{D}^0 K^*(892)^+; K^*(892)^+ \to K^0 \pi^+; K^0 \to K^0_S; K^0_S \to \pi^+ \pi^-$	-	0.01
Rest of Exclusive 0.03 0.03	Rest of Exclusive	0.03	0.03
Sum of Exclusive 1.12 1.38	Sum of Exclusive	1.12	1.38
Sum of Pythia 0 0	Sum of Pythia	0	0
Total Sum 1.12 1.38	Total Sum	1.12	1.38

Phys.Rev.D 84 (2011) 092001

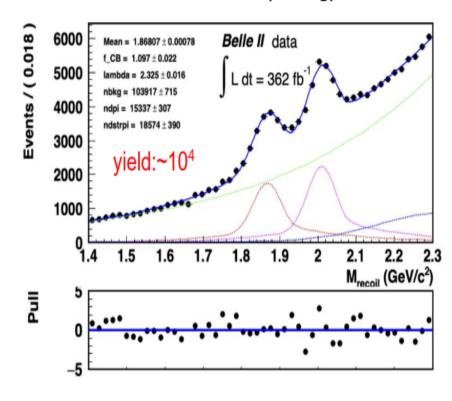


But looking at this plot, it looks like most contribution comes through a_1 + resonance (mass 1400 MeV/c²).

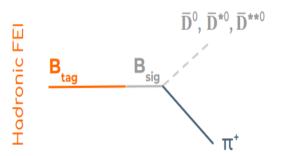
Let's take one final state for example: $B^+ \to \bar{D}^0 \pi^+ \pi^+ \pi^-$. It can be produced through many intermediate states:


· ·		
Decay	Belle	Belle II
$B^+ o \overline{D}^0 \pi^- \pi^+ \pi^+$	0.46	0.51
$B^+ \to \overline{D}^0 \rho(770)^0 \pi^+; \rho(770)^0 \to \pi^+ \pi^-$	0.39	0.42
$B^+ \to \overline{D}^0 a_1(1260)^+; a_1(1260)^+ \to \rho(770)^0 \pi^+; \rho(770)^0 \to \pi^+ \pi^-$	0.13	0.14
$\overline{B^+} \to \overline{D}^0 a_1(1260)^+; a_1(1260)^+ \to f_0(600)\pi^+; f_0(600) \to \pi^+\pi^-$	0.05	-
$B^+ \to \overline{D}_1(2420)^0 \pi^+; \overline{D}_1(2420)^0 \to D^*(2010)^- \pi^+; D^*(2010)^- \to \overline{D}^0 \pi^-$	0.04	0.02
$B^+ \to \overline{D}_1(2430)^0 \pi^+; \overline{D}_1(2430)^0 \to D^*(2010)^- \pi^+; D^*(2010)^- \to \overline{D}^0 \pi^-$	0.03	0.02
$B^+ \to \overline{D}_2^*(2460)^0 \pi^+; \overline{D}_2^*(2460)^0 \to D^*(2010)^- \pi^+; D^*(2010)^- \to \overline{D}^0 \pi^-$	0.01	0.01
$B^+ \to D^*(2010)^- \pi^+ \pi^+; D^*(2010)^- \to \overline{D}{}^0 \pi^-$	-	0.09
$B^+ \to \overline{D}^0 a_1(1260)^+; a_1(1260)^+ \to \pi^+ \pi^+ \pi^-$	-	0.07
$B^+ \to \overline{D}^0 a_1(1260)^+; a_1(1260)^+ \to f_0(500)\pi^+; f_0(500) \to \pi^+\pi^-$	-	0.05
$B^+ \to \overline{D}_1(2420)^0 \pi^+; \overline{D}_1(2420)^0 \to \overline{D}^0 \pi^- \pi^+$	-	0.02
$B^+ \to \overline{D}^0 K^*(892)^+; K^*(892)^+ \to K^0 \pi^+; K^0 \to K^0_S; K^0_S \to \pi^+ \pi^-$	-	0.01
Rest of Exclusive	0.03	0.03
Sum of Exclusive	1.12	1.38
Sum of Pythia	0	0
Total Sum	1.12	1.38

Can be compared with data at Belle, if we reconstruct one B as $B^+ \to \bar{D}^0 \pi^+$ and other B as $B^- \to D^0 \pi^+ \pi^+ \pi^-$

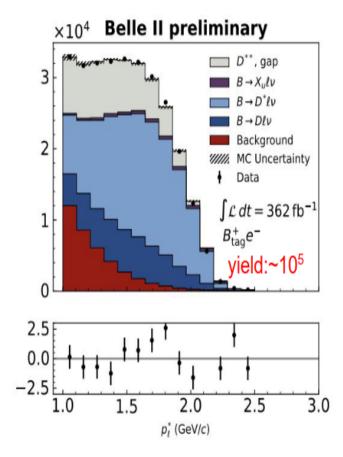

Had FEI calibration with Xl ν and D π samples

 $X\ell v$ sample: High statistics, low purity

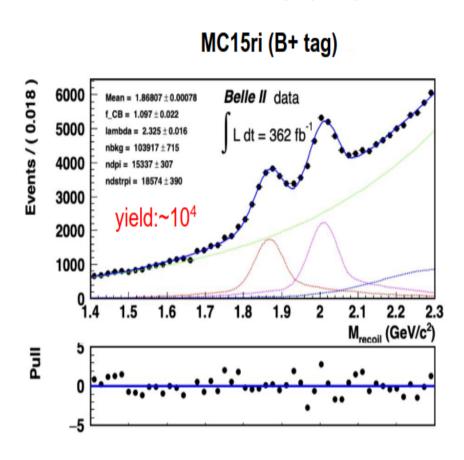


Dπ sample: Low statistics, high purity

MC15ri (B+ tag)



[Karim, Meihong, Niharika, Vidya: BELLE2-NOTE-PH-2023-004]

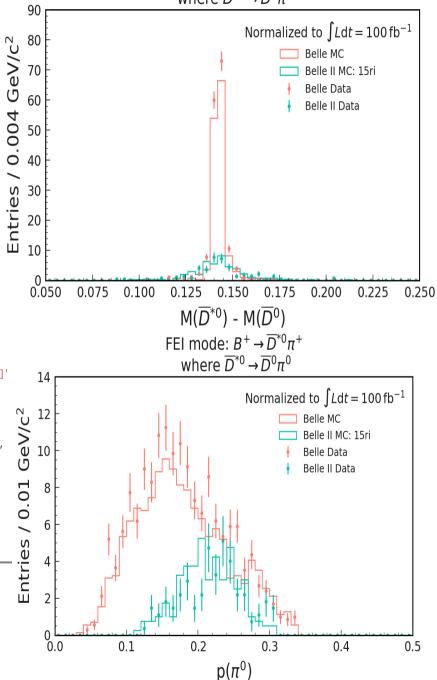


Had FEI calibration with Xl ν and D π samples

 $X\ell\nu$ sample: High statistics, low purity

 $D\pi$ sample: Low statistics, high purity

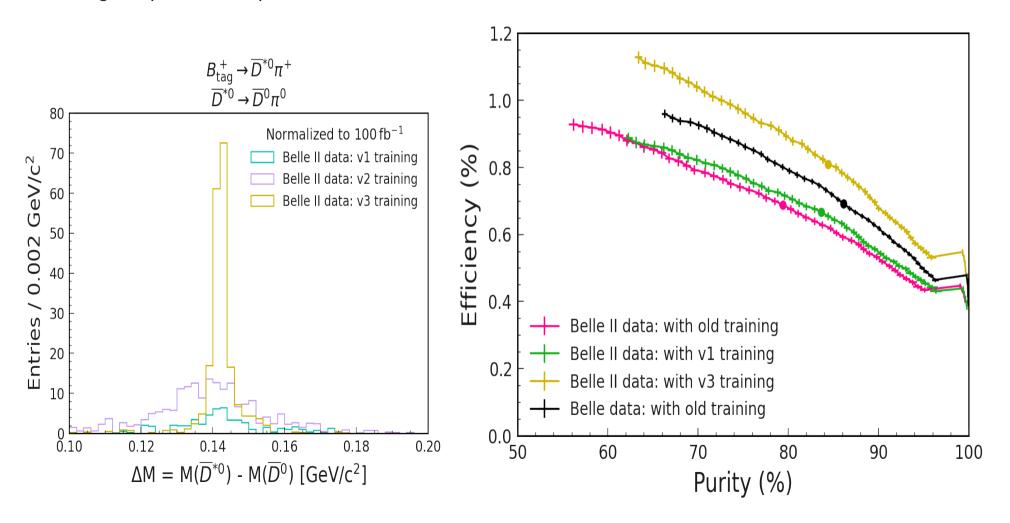
Calibration factors are calculated from signal yields i.e., correctly-reconstructed B_{tag} . Hence, applicable on Signal MC.


$D^{*0} \rightarrow D^0 \pi^0$ reconstruction

FEI mode: $B^+ \to \overline{D}^{*0} \pi^+$ where $\overline{D}^{*0} \to \overline{D}^0 \pi^0$

In Belle II, the yield of $D^{*0} \rightarrow D^0 \pi^0$ is much worse than Belle.

E > 0.09 GeV cut for γ is too tight for slow π^{o} Should be loosened.


```
if convertedFromBelle:
    gamma_cut = 'goodBelleGamma == 1 and clusterBelleQuality == 0'
else:
    gamma_cut = '[[clusterReg == 1 and E > 0.10] on [clusterReg == 2
                                                                                    or [clusterReg == 3 and E > 0.16]]'
if specific:
    gamma cut += ' and isInRestOfEvent > 0.5'
gamma = Particle('gamma',
                 MVAConfiguration(variables=['clusterReg', 'clusterNHits', 'clusterTiming', 'extraInfo(preCut_rank)',
                                             'clusterE9E25', 'pt', 'E', 'pz'],
                                  target='isPrimarySignal'),
                 PreCutConfiguration(userCut=gamma cut,
                                     bestCandidateMode='highest',
                                     bestCandidateVariable='E'.
                                     bestCandidateCut=40).
                 PostCutConfiguration(bestCandidateCut=20, value=0.01))
gamma.addChannel(['gamma:FSP'])
```


$D^{*0} \rightarrow D^0 \pi^0$ reconstruction

Optimize ΔM for D^{*0} reconstruction

Along with looser preselection for photons, mass-constraint is applied for π^0 candidates in Belle II. This will improve ΔM distribution which is used in preselection and training for D*0. Retraining FEI provides expected results:

Improving metrics of FEI

For Hadronic B+:

Updated decay model for the most efficient B decay modes

Belle $0.75 \rightarrow 1.04$: 39% **1** in Calibration factor

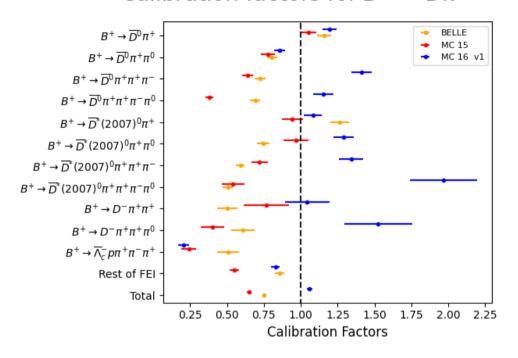
 $0.65 \rightarrow 0.81$: 25% 1 in Calibration factor

➤ Training with the MCri-up (new DECAY.dec)

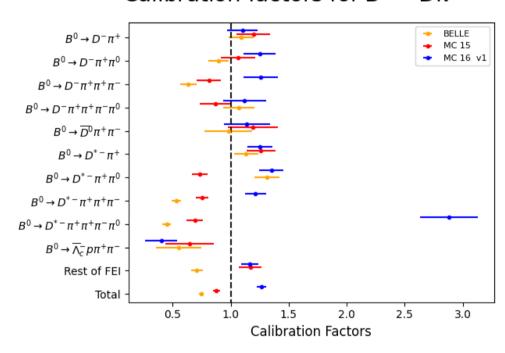
 $56\% \rightarrow 63\%$: 12% 1 in purity

 \succ Loosen the γ preselection and mass-constraint π^0

 $0.93\% \rightarrow 1.13\% : 21\%$ in efficiency


All these improvements are default for MC16/proc16 (shared knowledge) still studying the impact on SL FEI

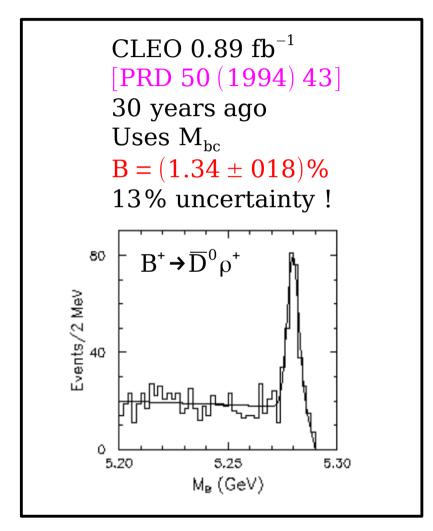
Hadronic B-tagging with proc16

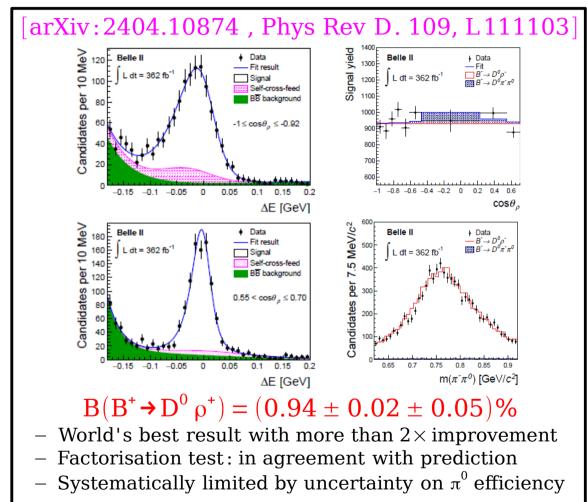

see M.Marfoli's talk (+BELLE2-NOTE-PH-2025-033)

Calibration factors at P_{FFI}>0.001 for Belle - MC15 - MC16

Calibration factors for $B^+ \rightarrow D\pi$

Calibration factors for $B^0 \rightarrow D\pi$

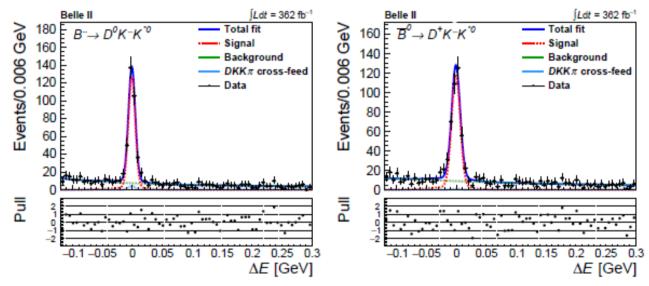

General improvements

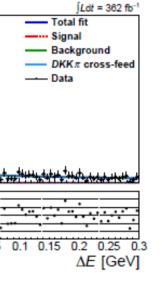

B⁺: from 0.65 + /-0.01 to 1.04 + /-0.02

 B^0 : from 0.88 + /-0.03 to 1.22 + /-0.04

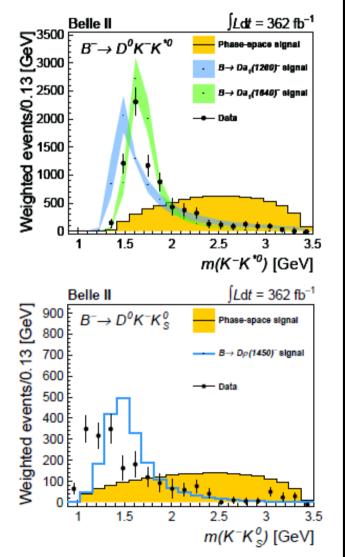
Still some discrepancies, especially in $D^{(*)}3(^{0})$ and Λ_{c} modes

First, understand better the B decays...


First, understand better the B decays...

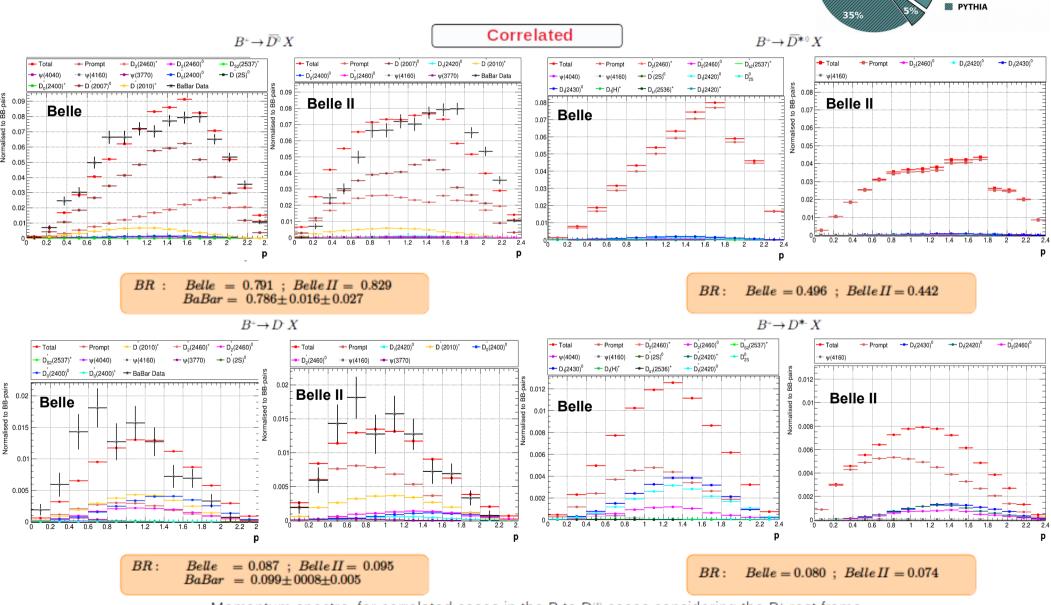

B→DKK: largely unexplored sector

- few % of B branching fraction expected
- Only 0.3% measured so far


[arXiv:2406.06277, JHEP 08 (2024) 206]

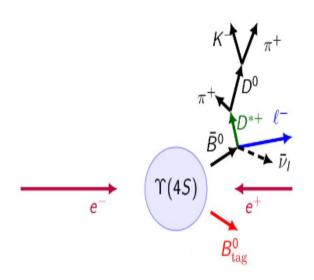
Measurement of the branching fractions of $B \rightarrow D^{(*)}KK_s^{(*)}...$

- Efficiency correction applied in the planes $m(D^{(*)}K^{-})$ and $m(K^{-}K_{(S)}^{(*)0})$
- Extraction of bkg-subtracted and efficiency corrected invariant mass and helicity
- Dominant transitions $J^P = 1^{-/+}$
- $B \rightarrow D^{(*)}D_s(\rightarrow KK^{(*)})$ are used as control modes

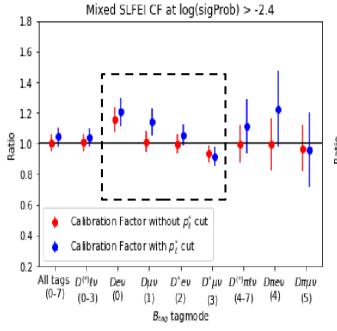


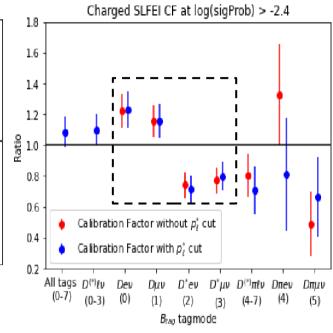
Further improvements → inclusive

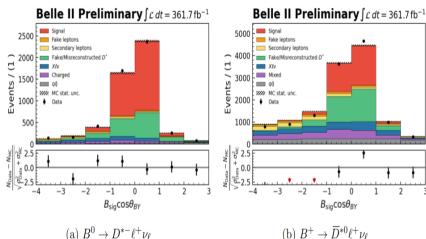
Semileptonic ($\ell = \{e, \mu\}$) Semileptonic ($\ell = \tau$)


HadronicCovered by FEIEvtGen

- need more measurements to ''constrain'' our MC
- ∘ $B \rightarrow DX$ (**but also B \rightarrow D^*X**), on -going analysis...
- o difference between Belle and Belle II MC shows room for improvement:


Momentum spectra, for correlated cases in the B to D() cases considering the B+ rest frame,


SL FEI calibration with D^{*}l_v sample



Consistent selection between B_{siq} and B_{taq}

The calibration factors for MC15ri:

RC in progress to approve the procedure. Yet to check for MC15rd (Not used for this winter).

Recommendations:

- > Use only the 4 $D^{(*)}\ell\nu$ modes (select after BCS).
- Apply mode-dependent CF, not the overall.
- > The p_{ℓ} * selection could be analysis dependant.