Radial properties and 30.06.2025 evolution of magnetic reconnection near the Sun

Laboratoire d'Astrophysique de Bordeaux - M1NPU Internship

Sadou-Boudey Tiffany-Luna

≁Introduction

- Magnetic Reconnection and Flux Ropes
- The Sun and its Surrounding Environment
- Parker Solar Probe Mission and Instrumentation
- ★ Method : Flux Rope Fitting
- ★Example of an Event
- ★ Statistical Catalog of Fitted Flux Ropes
- Discussion and Conclusion

Introduction

- Solar corona : source of the solar wind
- Magnetic reconnection : field restructuring, energy release
- Flux ropes : twisted magnetic structures from reconnection
- Parker Solar Probe : in-situ data near the Sun

Figure 1 : Artistic view of PSP flying near the Sun

Magnetic Reconnection and Flux Ropes

- Reconnection = magnetic field lines break & reconnect
- Releases energy → plasma heating & acceleration
- Key process near the Sun (dense, turbulent plasma)
- Forms **small-scale structures** → **flux ropes**

Figure 5 : Magnetic reconnection process

The Sun and its Surrounding Environment

Parker Solar Probe Mission

- \circ Launched in **2018** first probe within **10** R \odot
- Studies coronal heating and solar wind acceleration
- In-situ measurements in turbulent magnetic environment

Figure 3 : Parker Solar Probe

Parker Solar Probe Instrumentation

- FIELDS : Magnetic & electric fields
 Reconnection, turbulence
- SWEAP (SPAN-e) : Electron distributions
 Strahls, bidirectional flows
- IS ··· IS

Figure 4 : Artistic view of PSP Instrumentation

Method : Flux Rope Fitting

- Flux ropes = twisted magnetic structures
- Signature : enhanced |B| + smooth rotation of B components
- Identified visually in PSP magnetic field data
- Key parameters :
 - $\circ \theta_0$: elevation angle
 - $\circ \phi_0$: azimuthal angle
 - **b**₀ : closest distance to magnetic axis

Figure 6 : Structure of a flux rope

Example of an Event : Detection

Example of an Event : Fitting

Event Illustration: Analysis

○ **5 key parameters**

- $\circ \alpha$ = twist
- \circ b_0 = distance to the center
- $\circ \theta_0, \phi_0$ = orientation
- loc = relative center position

Derived quantities

- Radius = based on b_0 , Δt , V_r
- Confidence intervals for $\theta_0 \& \phi_0$
- Parameter distributions

• Data processing

- 32 "ants" per event
- Python code for automated statistics

Detailed examination of the previous studied flux rope

 Δt automatically computed from data: 7139.51 seconds

===== PARAMETER STATISTICS =====

	Min	Max	Mean	Std
alpha	0.0351	0.9850	0.5204	0.3191
Ъ0	-6.0603	6.9853	1.9135	4.0238
phiO	-3.0682	2.6304	-0.1279	1.7752
theta0	-1.5681	1.4820	0.1451	0.9704
Radius [R_{\odot}]	1.7959	1.7959	1.7959	0.0000

===== 95% CONFIDENCE INTERVALS FOR ORIENTATION =====

Theta0: from -1.386 to 1.466 radians

Phi0 : from -2.894 to 2.507 radians

Statistical Catalog of Fitted Flux Ropes

- 11 flux ropes analyzed using the same fitting method
- \circ Key findings
 - Radius \approx similar for most events (1-2 R \odot)
 - $\circ \alpha$ and b_0 highly variable : diverse internal structures
 - \circ Mean $\theta_0 \& \phi_0$ near equator : global orientation trend
 - Large spreads : reconnection likely not uniform

Event	$lpha$ (mean \pm std)	${b_0}$ (mean)	$oldsymbol{ heta}_0$ (mean)	$oldsymbol{\phi}_0$ (mean)	Radius (R⊙)
20181028T0406	0.52 ± 0.32	1.91	0.15	-0.12	1.80
20181029T2118	0.47 ± 0.27	1.30	0.00	-0.03	1.52
20181030T0628	0.61 ± 0.28	0.69	0.34	-0.67	1.64

Discussion and Conclusion

Figure 7 : Artistic view of the Sun

- Identified flux ropes in PSP data via visual inspection + model fitting
- October 28, 2018 event : clear, well-structured force-free flux rope
- Statistical analysis shows diverse flux ropes, mostly equatorial, similar sizes
- Reconnection likely frequent in solar wind at various scales
- Current models limited → need for advanced methods

June 30, 2025

Thank you for your attention

Questions

