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Neutron star matter
Hydrostatic equilibrium and beyond

Fig courtesy:
Perego et. al., EPJA 55, 124 (2019)

Cold catalyzed matter in full
thermodynamic equilibrium at
T=0. (Isolated case)

Tidal deformability at the later
inspiral stage is a good probe of
cold catalyzed matter.

We need the equation of state
(EoS), i.e. the pressure P as a
function of energy density E .

Neutron stars heat up and go
beyond equilibrium. Typically
up to ∼ 50 MeVs are reached
during merger.

We need P(n, T, xp).
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RMF metamodelling
The question of composition

EoS

P. Char and CM, Phys.Rev.D 111, 103024 (2025).
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The question of composition
From single loud detection by ET (phase transition or PT)

Low density phase: nucleonic meta-modeling

High density phase: constant sound speed

Different choices for q, Mc, DL and PT injection models.
CM et.al., MNRAS 524, 3464 (2023)
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The question of composition
From single loud detection by ET (phase transition or PT)

Low density phase: nucleonic meta-modeling

High density phase: constant sound speed

Different choices for q, Mc, DL and PT injection models.
CM et.al., MNRAS 524, 3464 (2023)

Bpt,meta(Λ̃) =
ppt(Λ̃)

pmeta(Λ̃)
log (〈B〉pt,meta) =

∫

dΛ̃ pGW(Λ̃)log

[

ppt(Λ̃)

pmeta(Λ̃)

]

.

Chiranjib Mondal EoS in the new era 4/14



Bayesian studies with whole mass table?
Machine learning masses?
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Bayesian studies with whole mass table?
Machine learning masses?

The idea

Anagh Venneti, CM et. al., arXiv:2504.03333 (2025).
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Bayesian studies with whole mass table?
Machine learning masses?

Training

Anagh Venneti, CM et. al., arXiv:2504.03333 (2025).
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Bayesian studies with whole mass table?
Machine learning masses?

Training Prediction

Anagh Venneti, CM et. al., arXiv:2504.03333 (2025).
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Bayesian studies with whole mass table?
First proof-of-principle results

Anagh Venneti, CM et. al., arXiv:2504.03333 (2025).
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Relevance of temperature
Merger simulations
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Relevance of temperature
Merger simulations

Fig Courtesy:
Bauswein et. al. PRD 82, 084043 (2010)

Luminosity spectra for
M1 = M2 = 1.35M⊙ binary
system
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Relevance of temperature
Merger simulations

Luminosity spectra for
M1 = M2 = 1.35M⊙ binary
system

Ideal gas index:
Γth(n, T, xp) = Pth

nEth
+ 1.

Red:Γth = 1.5; Green:Γth = 2;
Black: Full temp dep.
The frequencies can vary from
50-250 Hz.
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Usage of a common framework
State-of-the-art BSkG3 model

End-to-end NS merger simulations =>

Hydrodynamics, Nucleosynthesis, radiative transfer
[See Just et. al. ApJL 951, 12 (2023), MNRAS 510, 2804 (2022), MNRAS 510,

2820 (2022)]
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2820 (2022)]

Reaction rates can be calculated with BSkG3 inputs including
the masses.

For the hydrodynamics part the EoS of hot dense matter is
needed.

Main Features:

Finite Nuclei: HFB equations on the grid, fitted on whole mass
table.
σrms

M = 0.631 MeV
σrch

= 0.0237 fm
σVfiss

= 0.33 MeV

Nuclear matter:
Constraints on effective mass, neutron matter, pairing gaps.

Neutron stars:
Fulfill the observational constraint on massive pulsars.
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Energy Density Functional
Brussels Skyrme model

At baryon density n, asymmetry δ
(

=
nn−np

n

)

, temperature T,

F ≡ E − TS,

where E =
∑

q

~
2

2M∗
q

τq +
1

8
t0

{

3 − (2x0 + 1)δ2
}

n2

+
1

48
t3

{

3 − (2x3 + 1)δ2
}

nα+2.

with
~

2

2M∗
q

=
~

2

2Mq
+ f (n, δ)
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=
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)

, temperature T,

F ≡ E − TS,

where E =
∑

q
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+
1
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3 − (2x3 + 1)δ2
}

nα+2.

with
~

2

2M∗
q

=
~

2

2Mq
+ f (n, δ)

The density and kinetic density involves Fermi integrals (q=n,p):

nq =
1

2π2

(

2M∗
q

~2

)
3
2

T
3
2 I 1

2
(νq); τq =

1

2π2

(

2M∗
q

~2

)
5
2

T
5
2 I 3

2
(νq)

where, Iσ(νq) =
∫ ∞

0
x

σ

1+exp(x−νq) dx
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WS cell at finite temperature
Thomas Fermi (fast approximation of HFB)

Form of the density:

nq(r) = nB,q +
n0,q

1 + exp

{

(

Cq−RWS

r−RWS

)2

− 1

}

exp
(

r−Cq

aq

)
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Form of the density:

nq(r) = nB,q +
n0,q

1 + exp

{

(

Cq−RWS

r−RWS

)2

− 1

}

exp
(

r−Cq

aq

)

Chemical potential for damped profile [Chamel, Shchechilin, and
Chugunov, PRC 111, 015805 (2025).]:

µ̃q =
3

R3
WS

∫ RWS

0

dr · r2 ∂F(r)

∂nq(r)
,

nq =
1

2π2

(

2M∗
q

~2

)
3
2

T
3
2 I 1

2
(νq); τq =

1

2π2

(

2M∗
q

~2

)
5
2

T
5
2 I 3

2
(νq);

Sq =
5

3T

~
2

2M∗
q

τq − νqnq.
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Clusters at finite temperature
Full grid

Given ρ, T, ye
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Clusters at finite temperature
Full grid

ρ-variation
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Prospects

Unified equation of state at zero and finite temperature.

Systematically ETF, ETF+SI, Pairing for inner crust......

Merger simulations using BSkG models are being explored.
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