Equation of State in the era of new nuclear physics and multi-messenger constraints

Chiranjib Mondal

Modélisation des Astres Compacts Caen July 10, 2025

Hydrostatic equilibrium

Hydrostatic equilibrium

• Cold catalyzed matter in full thermodynamic equilibrium at T=0. (Isolated case)

Fig courtesy: C. Gonzalez-Boquera

- Cold catalyzed matter in full thermodynamic equilibrium at T=0. (Isolated case)
- Tidal deformability at the later inspiral stage is a good probe of cold catalyzed matter.

- Cold catalyzed matter in full thermodynamic equilibrium at T=0. (Isolated case)
- Tidal deformability at the later inspiral stage is a good probe of cold catalyzed matter.
- We need the equation of state (EoS), *i.e.* the pressure P as a function of energy density \mathcal{E} .

Fig courtesy: Perego et. al., EPJA 55, 124 (2019)

- Cold catalyzed matter in full thermodynamic equilibrium at T=0. (Isolated case)
- Tidal deformability at the later inspiral stage is a good probe of cold catalyzed matter.
- We need the equation of state (EoS), *i.e.* the pressure P as a function of energy density \mathcal{E} .
- Neutron stars heat up and go beyond equilibrium. Typically up to ~ 50 MeVs are reached during merger.

Fig courtesy: Perego et. al., EPJA 55, 124 (2019)

- Cold catalyzed matter in full thermodynamic equilibrium at T=0. (Isolated case)
- Tidal deformability at the later inspiral stage is a good probe of cold catalyzed matter.
- We need the equation of state (EoS), *i.e.* the pressure P as a function of energy density \mathcal{E} .
- Neutron stars heat up and go beyond equilibrium. Typically up to ~ 50 MeVs are reached during merger.
- We need P(n, T, x_p).

RMF metamodelling

The question of composition

RMF metamodelling

The question of composition

P. Char and CM, Phys.Rev.D 111, 103024 (2025).

RMF metamodelling

EoS

The question of composition

P. Char and CM, Phys.Rev.D 111, 103024 (2025).

Composition

The question of composition

From single loud detection by ET (phase transition or PT)

- Low density phase: nucleonic meta-modeling
- High density phase: constant sound speed

Different choices for $q, \mathcal{M}_c, \mathcal{D}_L$ and PT injection models. CM et.al., MNRAS 524, 3464 (2023)

The question of composition

From single loud detection by ET (phase transition or PT)

- Low density phase: nucleonic meta-modeling
- High density phase: constant sound speed

Different choices for $q, \mathcal{M}_c, \mathcal{D}_L$ and PT injection models. CM et.al., MNRAS 524, 3464 (2023)

The question of composition

From single loud detection by ET (phase transition or PT)

- Low density phase: nucleonic meta-modeling
- High density phase: constant sound speed

Different choices for $q, \mathcal{M}_c, \mathcal{D}_L$ and PT injection models. CM et.al., MNRAS 524, 3464 (2023)

Machine learning masses?

Machine learning masses?

Anagh Venneti, CM et. al., arXiv:2504.03333 (2025).

Machine learning masses?

Training

Machine learning masses?

First proof-of-principle results

Anagh Venneti, CM et. al., arXiv:2504.03333 (2025).

Relevance of temperature

Merger simulations

Relevance of temperature

Merger simulations

Fig Courtesy: Bauswein et. al. PRD 82, 084043 (2010)

• Luminosity spectra for $M_1 = M_2 = 1.35 M_{\odot}$ binary system

Relevance of temperature

Merger simulations

- Luminosity spectra for $M_1 = M_2 = 1.35 M_{\odot}$ binary system
- Ideal gas index: $\Gamma_{\rm th}(n, T, x_p) = \frac{P_{\rm th}}{n\mathcal{E}_{\rm th}} + 1.$
- Red:Γ_{th} = 1.5; Green:Γ_{th} = 2; Black: Full temp dep. The frequencies can vary from
 - 50-250 Hz.

State-of-the-art BSkG3 model

• End-to-end NS merger simulations => Hydrodynamics, Nucleosynthesis, radiative transfer [See Just *et. al.* ApJL 951, 12 (2023), MNRAS 510, 2804 (2022), MNRAS 510, 2820 (2022)]

State-of-the-art BSkG3 model

- End-to-end NS merger simulations => Hydrodynamics, Nucleosynthesis, radiative transfer [See Just *et. al.* ApJL 951, 12 (2023), MNRAS 510, 2804 (2022), MNRAS 510, 2820 (2022)]
- Reaction rates can be calculated with BSkG3 inputs including the masses.

State-of-the-art BSkG3 model

- End-to-end NS merger simulations => Hydrodynamics, Nucleosynthesis, radiative transfer [See Just *et. al.* ApJL 951, 12 (2023), MNRAS 510, 2804 (2022), MNRAS 510, 2820 (2022)]
- Reaction rates can be calculated with BSkG3 inputs including the masses.
- For the hydrodynamics part the EoS of hot dense matter is needed.

Main Features:

State-of-the-art BSkG3 model

- End-to-end NS merger simulations => Hydrodynamics, Nucleosynthesis, radiative transfer [See Just *et. al.* ApJL 951, 12 (2023), MNRAS 510, 2804 (2022), MNRAS 510, 2820 (2022)]
- Reaction rates can be calculated with BSkG3 inputs including the masses.
- For the hydrodynamics part the EoS of hot dense matter is needed.

Main Features:

• Finite Nuclei: HFB equations on the grid, fitted on whole mass table.

$$\begin{split} \sigma_{\rm M}^{rms} &= 0.631~{\rm MeV}\\ \sigma_{r_{\rm ch}} &= 0.0237~{\rm fm}\\ \sigma_{\rm V_{fiss}} &= 0.33~{\rm MeV} \end{split}$$

State-of-the-art BSkG3 model

- End-to-end NS merger simulations => Hydrodynamics, Nucleosynthesis, radiative transfer [See Just *et. al.* ApJL 951, 12 (2023), MNRAS 510, 2804 (2022), MNRAS 510, 2820 (2022)]
- Reaction rates can be calculated with BSkG3 inputs including the masses.
- For the hydrodynamics part the EoS of hot dense matter is needed.

Main Features:

• Finite Nuclei: HFB equations on the grid, fitted on whole mass table.

$$\begin{split} \sigma^{rms}_{\rm M} &= 0.631~{\rm MeV}\\ \sigma_{r_{\rm ch}} &= 0.0237~{\rm fm}\\ \sigma_{\rm V_{fiss}} &= 0.33~{\rm MeV} \end{split}$$

• Nuclear matter:

Constraints on effective mass, neutron matter, pairing gaps.

State-of-the-art BSkG3 model

- End-to-end NS merger simulations => Hydrodynamics, Nucleosynthesis, radiative transfer [See Just *et. al.* ApJL 951, 12 (2023), MNRAS 510, 2804 (2022), MNRAS 510, 2820 (2022)]
- Reaction rates can be calculated with BSkG3 inputs including the masses.
- For the hydrodynamics part the EoS of hot dense matter is needed.

Main Features:

• Finite Nuclei: HFB equations on the grid, fitted on whole mass table.

$$\begin{split} \sigma_{\rm M}^{rms} &= 0.631~{\rm MeV}\\ \sigma_{r_{\rm ch}} &= 0.0237~{\rm fm}\\ \sigma_{\rm V_{fiss}} &= 0.33~{\rm MeV} \end{split}$$

• Nuclear matter:

Constraints on effective mass, neutron matter, pairing gaps.

• Neutron stars:

Fulfill the observational constraint on massive pulsars.

Energy Density Functional

Brussels Skyrme model

• At baryon density n, asymmetry $\delta\left(=\frac{n_n-n_p}{n}\right)$, temperature T,

$$\begin{split} \mathcal{F} &\equiv \mathcal{E} - T\mathcal{S}, \\ \text{where } \mathcal{E} &= \sum_{q} \frac{\hbar^2}{2M_q^*} \tau_q + \frac{1}{8} t_0 \left\{ 3 - (2x_0 + 1)\delta^2 \right\} n^2 \\ &+ \frac{1}{48} t_3 \left\{ 3 - (2x_3 + 1)\delta^2 \right\} n^{\alpha + 2}. \\ \text{with } \frac{\hbar^2}{2M_q^*} &= \frac{\hbar^2}{2M_q} + f(n, \delta) \end{split}$$

Energy Density Functional

Brussels Skyrme model

• At baryon density n, asymmetry
$$\delta\left(=\frac{n_n-n_p}{n}\right)$$
, temperature T,

$$\begin{split} \mathcal{F} &\equiv \mathcal{E} - T\mathcal{S}, \\ \text{where } \mathcal{E} &= \sum_{q} \frac{\hbar^2}{2M_q^*} \tau_q + \frac{1}{8} t_0 \left\{ 3 - (2x_0 + 1)\delta^2 \right\} n^2 \\ &+ \frac{1}{48} t_3 \left\{ 3 - (2x_3 + 1)\delta^2 \right\} n^{\alpha + 2}. \\ \text{with } \frac{\hbar^2}{2M_q^*} &= \frac{\hbar^2}{2M_q} + f(n, \delta) \end{split}$$

• The density and kinetic density involves Fermi integrals (q=n,p):

$$n_{q} = \frac{1}{2\pi^{2}} \left(\frac{2M_{q}^{*}}{\hbar^{2}}\right)^{\frac{3}{2}} T^{\frac{3}{2}} I_{\frac{1}{2}}(\nu_{q}); \quad \tau_{q} = \frac{1}{2\pi^{2}} \left(\frac{2M_{q}^{*}}{\hbar^{2}}\right)^{\frac{5}{2}} T^{\frac{5}{2}} I_{\frac{3}{2}}(\nu_{q})$$

where, $I_{\sigma}(\nu_q) = \int_0^\infty \frac{x^{\sigma}}{1 + \exp(x - \nu_q)} dx$

WS cell at finite temperature

Thomas Fermi (fast approximation of HFB)

Form of the density:

$$n_{q}(r) = n_{B,q} + \frac{n_{0,q}}{1 + \exp\left\{\left(\frac{C_{q} - R_{WS}}{r - R_{WS}}\right)^{2} - 1\right\}\exp\left(\frac{r - C_{q}}{a_{q}}\right)}$$

WS cell at finite temperature

Thomas Fermi (fast approximation of HFB)

Form of the density:

$$n_{q}(r) = n_{B,q} + \frac{n_{0,q}}{1 + \exp\left\{\left(\frac{C_{q} - R_{WS}}{r - R_{WS}}\right)^{2} - 1\right\}\exp\left(\frac{r - C_{q}}{a_{q}}\right)}$$

Chemical potential for damped profile [Chamel, **Shchechilin**, and Chugunov, PRC 111, 015805 (2025).]:

$$\tilde{\mu}_{q} = \frac{3}{R_{WS}^{3}} \int_{0}^{R_{WS}} dr \cdot r^{2} \frac{\partial \mathcal{F}(r)}{\partial n_{q}(r)},$$

$$n_{q} = \frac{1}{2\pi^{2}} \left(\frac{2M_{q}^{*}}{\hbar^{2}}\right)^{\frac{3}{2}} T^{\frac{3}{2}} I_{\frac{1}{2}}(\nu_{q}); \quad \tau_{q} = \frac{1}{2\pi^{2}} \left(\frac{2M_{q}^{*}}{\hbar^{2}}\right)^{\frac{5}{2}} T^{\frac{5}{2}} I_{\frac{3}{2}}(\nu_{q});$$

$$S_q = \frac{5}{3T} \frac{\hbar^2}{2M_q^*} \tau_q - \nu_q n_q.$$

Full grid

Given ρ , T, y_e

Full grid

Given ρ , T, y_e

f (MeV fm⁻³)

Full grid

Full grid

- Unified equation of state at zero and finite temperature.
- Systematically ETF, ETF+SI, Pairing for inner crust.....
- Merger simulations using BSkG models are being explored.