Bayesian inference on nuclear data and neutron star observations for the nuclear equation of state

(or From crunchy to smooth: nuclear-informed study of the crust-core transition)

Pietro Klausner MAC meeting 2025 LPC, Caen, 10/7/2025

Collaborators

Gianluca **Colò** (University of Milano) Xavier **Roca-Maza** (University of Milano & University of Barcelona) Enrico Vigezzi (I.N.F.N. Milano) Francesca Gulminelli (University of Normandie-Caen & L.P.C. Caen) Anthea **Fantina** (GANIL) Marco Antonelli (L.P.C. Caen)

Bayesian inference on nuclear data and neutron star observations for the nuclear equation of state

Bayesian study of NS EoS and predictions on NS properties¹

The prior distribution is the result of a previous Bayesian analysis, with Skyrme functionals fit on a large set of static and dynamical nuclear experimental observables²

Final result informed by both nuclear physics experiments and **NS observations**

Klausner et al., arxiv 2505.16929

²<u>Klausner et al., Phys. Rev. C 111, 014311 (2025)</u>

Background: Skyrme Bayesian analysis (1)

Binding Energies

⁴⁰Ca, ⁴⁸Ca, ⁵⁶Ni, ⁶⁸Ni, ⁹⁰Zr, ¹⁰⁰Sn, ¹³²Sn, ²⁰⁸Pb

<u>Charge radii</u>

⁴⁰Ca, ⁴⁸Ca, ⁹⁰Zr, ¹³²Sn, ²⁰⁸Pb

Spin-orbit splittings ⁴⁸Ca ($\nu 2p$), ²⁰⁸Pb ($\pi 2f$)

Isoscalar Giant Resonances

Monopole

⁹⁰Zr, ²⁰⁸Pb

Quadrupole ²⁰⁸Pb

Constraints on symmetric matter nEos

Nuclear polarizability ⁴⁸Ca. ²⁰⁸Pb

EWSR IVGDR 208Pb

Parity-violating asymmetry

⁴⁸Ca, ²⁰⁸Pb (CREX, PREX-II)

Constraints on Symmetry energy

Background: Skyrme Bayesian analysis (2) ρ_0 [fm EA Me 0.132 0.160 0.168 22 - 760 6.23 76. 12. 12. 5. 00. 2(2) 200 ngo 100 Z 3 'n 40 8 min Me J K_0 L ho_0 E_0

Background: Skyrme Bayesian analysis (2)

From nuclear experiments to NS properties

Skyrme parametrization $M.M.^1$ **Neutron star EoS Compute NS properties**

¹Margueron et al., Phys. Rev. C **97**, 025805 (2018)

From nuclear experiments to NS properties

Skyrme parametrization $M.M.^1$ **Neutron star EoS Compute NS properties**

¹Margueron et al., Phys. Rev. C **97**, 025805 (2018)

Skyrme's parameters¹

 $n_{sat}, E_{sat}, K_{sat}$

 E_{sym}, L_{sym}

 $G_0, G_1, w_0, m_0^*/m, m_1^*/m$

M.M.'s parameters

 $n_{sat}, E_{sat}, K_{sat}, Q_{sat}, Z_{sat}$ $E_{sym}, L_{sym}, K_{sym}, Q_{sym}, Z_{sym}$ $m_0^*/m, m_1^*/m$

Skyrme's parameters¹

 $n_{sat}, E_{sat}, K_{sat}$

 E_{sym}, L_{sym}

 $G_0, G_1, w_0, m_0^*/m, m_1^*/m$

M.M.'s parameters

 $n_{sat}, E_{sat}, K_{sat}, Q_{sat}, Z_{sat}$

 $E_{sym}, L_{sym}, K_{sym}, Q_{sym}, Z_{sym}$ $m_0^*/m, m_1^*/m$

Skyrme's parameters¹

 $n_{sat}, E_{sat}, K_{sat}$

 E_{sym}, L_{sym}

 $G_0, G_1, w_0, m_0^*/m, m_1^*/m$

M.M.'s parameters

 $n_{sat}, E_{sat}, K_{sat}, Q_{sat}, Z_{sat}$ $E_{svm}, L_{svm}, K_{svm}, Q_{svm}, Z_{svm}$

 $m_0^*/m, m_1^*/m$

 $K_{svm} = K_{svm}(n_{sat}, E_{sat}, K_{sat}, \dots)$

Skyrme's parameters¹

 $n_{sat}, E_{sat}, K_{sat}$

 E_{svm}, L_{svm}

 $G_0, G_1, w_0, m_0^*/m, m_1^*/m$

M.M.'s parameters

 $n_{sat}, E_{sat}, K_{sat}, Q_{sat}, Z_{sat}, Q_{sat}, Z_{sat}$ $E_{svm}, L_{svm}, K_{svm}, Q_{svm}, Z_{svm}, Q_{svm}^*, Z_{svm}^*, Z_{svm}^*$ $m_0^*/m, m_1^*/m$

¹1-to-1 correspondence with usual Skyrme's parameters (L.-W. Chen et al. Phys. Rev. C 80, 014322 (2009))

 $K_{svm} = K_{svm}(n_{sat}, E_{sat}, K_{sat}, \dots)$

Skyrme's formula $n < n_{sat}$ $Q_{sat} = Q_{sat}(n_{sat}, E_{sat}, \dots) \qquad Z_{sat} = Z_{sat}(n_{sat}, E_{sat}, \dots)$ $Q_{sym} = Q_{sym}(n_{sat}, E_{sat}, \ldots)$ $Z_{sym} = Z_{sym}(n_{sat}, E_{sat}, \ldots)$

Randomly extracted $n > n_{sat}$ $Q^*_{sat.svm}, Z^*_{sat.svm}$

[MeV]

Skyrme's parameters¹

 $n_{sat}, E_{sat}, K_{sat}$

 E_{sym}, L_{sym} $G_0, G_1, w_0, m_0^*/m, m_1^*/m$

M.M.'s parameters

 $n_{sat}, E_{sat}, K_{sat}, Q_{sat}, Z_{sat}, Q_{sat}^{*}, Z_{sat}^{*}$ $E_{sym}, L_{sym}, K_{sym}, Q_{sym}, Z_{sym}, Q_{sym}^{*}, Z_{sym}^{*}$ $m_{0}^{*}/m, m_{1}^{*}/m$

[MeV]

Skyrme's parameters¹

 $n_{sat}, E_{sat}, K_{sat}$

 E_{sym}, L_{sym} $G_0, G_1, w_0, m_0^*/m, m_1^*/m$

M.M.'s parameters

 $n_{sat}, E_{sat}, K_{sat}, Q_{sat}, Z_{sat}, Q_{sat}^{*}, Z_{sat}^{*}$ $E_{sym}, L_{sym}, K_{sym}, Q_{sym}, Z_{sym}, Q_{sym}^{*}, Z_{sym}^{*}$ $m_{0}^{*}/m, m_{1}^{*}/m$

[MeV]

Skyrme's parameters¹

 $n_{sat}, E_{sat}, K_{sat}$

 E_{sym}, L_{sym} $G_0, G_1, w_0, m_0^*/m, m_1^*/m$

M.M.'s parameters

 $n_{sat}, E_{sat}, K_{sat}, Q_{sat}, Z_{sat}, Q_{sat}^{*}, Z_{sat}^{*}$ $E_{sym}, L_{sym}, K_{sym}, Q_{sym}, Z_{sym}, Q_{sym}^{*}, Z_{sym}^{*}$ $G_{0}, G_{1}, w_{0}, m_{0}^{*}/m, m_{1}^{*}/m$

From nuclear experiments to NS properties

Skyrme parametrization $M.M.^1$ **Neutron star EoS Compute NS properties**

¹Margueron et al., Phys. Rev. C **97**, 025805 (2018)

Crust composition in simplified ETF

$$\varepsilon_{WS} = \frac{1}{V_{WS}} \int_{0}^{R_{WS}} dt$$

Woods-Saxons's profiles

 $lr r^{2} \varepsilon_{ETF}^{Sky}(n(r), n_{p}(r)) + \varepsilon_{e^{-1}}$

- Convergence problems at $n_R \sim 0.06 \,\mathrm{fm}^{-3}$
 - Linear extrapolation of $\Delta \varepsilon$: $\Delta \varepsilon := \varepsilon_{WS} - \varepsilon_{hom} \rightarrow \Delta \varepsilon(n_{cc}) = 0$
 - Approximation checked against: CLDM crust Dynamical spinodal instability

From nuclear experiments to NS properties

Skyrme parametrization M_M_1 **Neutron star EoS Compute NS properties**

¹Margueron et al., Phys. Rev. C **97**, 025805 (2018)

Bayesian setup: prior and constraints

Prior distribution

-
-
-
-
-

Observational constraints

Maximum mass of Neutron Star (\mathscr{L}_{J0348}); Tidal deformability results (\mathscr{L}_{IVC}) ; NICER mission mass-radius measurements (\mathscr{L}_{NICFR}); χ -EFT computations of PNM at low density (\mathscr{L}_{γ}).

$$\mathscr{L}_{tot} = \prod_{i} \mathscr{L}_{i}$$

Prior distribution weighted with \mathscr{L}_{tot} **Posterior distribution**

Marginalized Parameters Posterior Distributions

Marginalized Parameters Posterior Distributions

Corner plots

n_{cc} and P_{cc} : ETF, CLDM and Spinodal instability

Crust composition

Crust radius

13

Crust moment of inertia

14

EoS and symmetry energy

^[39] Dinh Thi et al., Universe **2021**, 7, 373

- Bayesian statistical analysis on nuclear matter parameters with neutron star observations:
 - Prior consistent with nuclear physics experiments, not just a sample of independent nuclear matter parameters
 - NS EoS computed with MM; inner crust with ETF
 - Prediction on different NS properties
 - Effect on structure of the P between n_{sat} and $2n_{sat}$ due to nuclear informed prior

BACKGROUND

Likelihoods

$$\mathcal{L}_{\chi}: \qquad p(e \mid n) = \begin{cases} \exp\left(-\frac{\left(e - e_{-}(n)\right)^{2}}{2\sigma_{n}^{2}}\right) \text{ if } e \in \left(-\frac{1}{2\sigma_{n}^{2}}\right) \\ 1 & \text{ if } e \in \left(e_{-}\right) \\ \exp\left(-\frac{\left(e - e_{+}(n)\right)^{2}}{2\sigma_{n}^{2}}\right) \\ exp\left(-\frac{\left(e - e_{+}(n)\right)^{2}}{2\sigma_{n}^{2}}\right) \\ \sigma_{n} = \frac{e_{+}(n) - e_{-}(n)}{9\sqrt{2\pi}} \end{cases}$$

$$\mathscr{L}_{NICER} : \int dM P_{N19}(M, R(M)) \cdot \int dM P_{N21}(M) \mathcal{L}_{VC} : \int dq P(\tilde{\Lambda}(q, m_c), q) \qquad \mathscr{L}_{J0348} : \frac{1}{\sqrt{2}}$$

Algorithm breaks at $n_R \sim 0.06 \ fm^{-3}$.

Algorithm breaks at $n_R \sim 0.06 fm^{-3}$.

Algorithm breaks at $n_B \sim 0.06 \ fm^{-3}$

ETF checks (1): density profiles

ETF checks (2): crust composition

Mass-Radius plot

Glitch activity & of Vela

¹ Montoli et al., Universe **2021**, 7, 8

