

Relativistic mean fields within the chiral confining model

Presented by : Mohamad CHAMSEDDINE

10/07/2025

Motivation for studying dense matter

Adam Mann, 2020

The status of QCD dense matter/

- The state of matter at high densities remains a mystery (quark-gluon plasma, hyperons, color superconductivity, ...)
- QCD is perturbative but above ~40n_{sat} !!
- No theory, only models apply in the regime of low-T and large densities.

- Excellent laboratory to study dense matter
 - Their core remains a mystery

NS observables

- We solve the hydrostatic equations in GR for spherical and nonrotating stars (TOV equations).
- One-to-one correspondence between EoS and M-R curve
- We can extract tidal deformabilities from gravitational waves (LIGO/VIRGO) or compactness from X-ray measurements (e.g NICER)

Tolman-Oppenheimer-Volkov equations

$$\frac{dp}{dr} = -\frac{G}{c^4} \frac{(mc^2 + 4\pi pr^3)(\varepsilon + p)}{r(r - 2Gm/c^2)}$$
$$\frac{dm}{dr} = 4\pi \frac{\varepsilon}{c^2} r^2$$

Motivation for relativistic models

Why relativistic models ?

Many models for nuclear matter exist, with **chiral effective theory** being one of them: a perturbative expansion in with a hierarchy of leading orders

Advantages

• A control of the uncertainty as a function of , allowing to set the limitation of the EFT

Limitations

 Breaks down at ~ 1-2n_{sat}, whereas we need to describe nuclear matter at higher densities

Needs a complementary approach to describe higher densities (piecewise polytropes, sound-speed model, meta-model, etc)

At high density, we need a **relativistic approach** since the sound speed in NS cores is expected to be larger than 10% of the light speed, as confirmed by analyses of recent radio as well as X-ray observations from NICER of massive NSs.

Advantages

 Built-in relativistic structure (spin, spin-orbit potential...) + can go beyond 2n_{sat}

Limitations

• No simple way to decide where the model breaks down, or to quantify the uncertainties.

We thus employ Bayesian statistics to explore the relation between observables uncertainties and the one in the model predictions Motivation for relativistic models

Aspects of the Strong Interactions

The meson exchange models

- The nuclear force is short ranged and strongly attractive at nuclear distance (0.5 - 3 fm)
- It should turn repulsive at internucleon distances (hard core)
- It should have a spin dependency : tensor and spin-orbit force

Meson	Mass (MeV)	(J^P,T)	Field	Interaction
σ	500 ??	$(0^+, 0)$	scalar-isoscalar	middle range
ω	783	$(1^-,0)$	vector-isoscalar	short range
π	140	$(0^-,1)$	pseudoscalar-isovector	long range
ho	770	$(1^{-}, 1)$	vector-isovector	isospin part
δ	983	$(0^+, 1)$	scalar-isovector	isospin part

1) Chiral symmetry

- At the limit of zero quark masses (u,d), QCD has a chiral symmetry (non-interacting quarks with opposite parity are indistinguishable and do not couple to each other)
- Had the chiral symmetry been realised in nature, we would have observed for each meson, a partner meson with the SAME mass but opposite parity => the symmetry is broken

The radial component of the chiral field corresponds to the σ meson of Walecka, first identified by *Chanfray*, *Ericson*, *Guichon* (*PRC 63 (2001)*), and the phase component corresponds to the massless Goldstone boson, the pion

But since the quarks have a small mass, the symmetry is also explicitly broken and the pion acquires a small mass!

2) Confinement

- It is well established that in QCD, only colour neutral objects can be observed
- Nucleons, being made of quarks and gluons, are polarised by external fields
- In Guichon's work (*Guichon*, *Phys. Lett. B 200 (1988)*), the quarks wave functions get modified by the scalar field => the nucleon mass depends on the surrounding scalar field:
- We parametrize the nucleon mass as ^[1,2]:

$$M_N(s) = M_N + g_S s + \left(\frac{1}{2}\kappa_{NS}\left(s^2 + \frac{s^3}{3f_\pi}\right)\right)$$
Nucleon polarisation

[1] Chanfray and Ericson, EPJA (2005)[2] Chanfray and Ericson, PRC75 (2007)

The response parameters g_s and K_{NS} might be given by an underlying confining model (for example NJL + confining potential) Motivation for relativistic models

Aspects of the Strong Interactions

The Chiral confining model

- 1. Chamseddine, Margueron, Chanfray, et al. Relativistic Hartree–Fock chiral Lagrangians with confinement, nucleon finite size and short-range effects. EPJA59 (2024)
- 2. Chamseddine, Margueron, Hansen, Chanfray, Hartree-Fock Lagrangians with a Nambu-Jona–Lasino scalar potential. EPJA60 (2024)
- 3. Chanfray, EPJA (2024),
- 4. Chanfray, Ericson, Martini, Universe 9.7 (2023)
- 5. Massot, Chanfray, PRC78 (2008)
- 6. Chanfray and Ericson, PRC75 (2007)
- 7. Chanfray and Ericson, EPJA (2005)

What is the Chiral Confining Model?

- An effective model describing the nuclear interaction as an «exchange» of mesons.
- A lagrangian based on chiral symmetries from QCD and confinement of quarks (anchored to QCD).
- The mesons field will be decomposed as such (**RHF-CC treatment**) :

LQCD and confining models

 K_{NS} , or the dimensionless constant = (K_{NS} 2M_N), is expected by realistic confining potentials to **always be smaller than one** : MIT bag model, Simple models^[1], QCD connected chiral confining model^[2]

• It is possible to link g_s and K_{NS} to LQCD which expresses the nucleon mass as:

$$M_N(m_\pi^2) = a_0 + a_2 m_\pi^2 + a_4 m_\pi^4 + ... + \Sigma_\pi(m_\pi^2, \Lambda)$$

When using the Linear Sigma Model (LσM) for the chiral potential, we get^[3]:

^[1] Chanfray and Ericson, PRC83 (2011)
[2] Chanfray, Ericson, Martini, Universe 9.7 (2023)
[3] Chanfray and Ericson, PRC75 (2007)

Parameterisation

4 free parameters :

Tensor interaction coupling

- = 6.6 suggested by scattering data
- = 3.7 suggested by the Vector Dominance Model (VDM)
- = 0 as a reference case

Constraints	$\operatorname{centroid}$	std. dev.
$a_2 \; ({\rm GeV^{-1}})$	1.553	0.136
$a_4 \; ({\rm GeV^{-3}})$	-0.509	0.054
$E_{\rm sat}$ (MeV)	-15.8	0.3
$n_{\rm sat}~({\rm fm}^{-3})$	0.155	0.005

LoM results

18

Key points

The chiral confining model is a relativistic meson exchange model incorporating the two aspects of QCD: chiral symmetry and confinement

is larger and is smaller than their experimental values Tension between LQCD and realistic confining models Motivation for relativistic models

Aspects of the Strong Interactions

The Chiral Confining model

The NJL chiral potential

Lom vs NJL chiral potential

<u>LσM</u>

Simple and naive implementation of chiral symmetry No links to the fundamental quark level whatsoever

$$V_{\chi,\text{L}\sigma\text{M}}(s) = \frac{1}{2}m_s^2 s^2 + \frac{1}{2}\frac{m_s^2 - m_\pi^2}{F_\pi} s^3 + \frac{1}{8}\frac{m_s^2 - m_\pi^2}{F_\pi^2} s^4$$

NJL chiral potential

NJL model is specifically use to study chiral symmetry at the fundamental quark level

Provides a better description of the low energy realization of chiral symmetry in the hadronic sector

After linearisation:

$$V_{\chi,\text{NJL}}(s) \approx \frac{1}{2}m_s^2 s^2 + \frac{1}{2}\frac{m_s^2 - m_\pi^2}{F_\pi} (1 - C_{\chi,\text{NJL}})s^3 + \dots$$

a2 and a4 now become^[1]:

$$a_2 = \frac{F_{\pi} g_S}{m_s^2} \qquad a_4 = -\frac{F_{\pi} g_S}{2m_s^4} \left(3 - 2\tilde{C}_L\right) \quad \text{with} \quad \tilde{C}_L = \frac{M_N}{g_S F_{\pi}} C + \frac{3}{2} C_{\chi}$$

[1] Chanfray, Hansen, Margueron, EPJA (2023)

Parameterisation

Parameters:

Tensor interaction coupling

- = 6.6 suggested by scattering data
- = 3.7 suggested by the Vector Dominance Model (VDM)

Vector interaction coupling

Absence, i.e. =0

Constraints	$\operatorname{centroid}$	std. dev. (or total width)
$a_2 \; ({\rm GeV^{-1}})$	1.553	0.136★
$a_4 ~({\rm GeV^{-3}})$	-0.509	0.054★
F_{π} (MeV)	92	2
m_{π} (MeV)	139.6	2
M_0 (MeV)	$<400~{\rm MeV}$	
$\Lambda^2 G_1$	5.5	9★
$E_{\rm sat}$ (MeV)	-15.8	0.3
$n_{\rm sat}~({\rm fm}^{-3})$	0.155	0.005
$K_{\rm sat}$ (MeV)	230	20

Bayesian analysis (G2 = 0)

Chamseddine, et al, EPJA60 (2024)

Bayesian analysis (G2 = G1)

Chamseddine, et al. EPJA60 (2024)

Breakdown density

From the set of EoM, the following:

 $V'(\bar{s}) = -g_s^* n_s$

stops having a solution once near the minimum of V'(s)

- The NJL potential being steeper, breaks down earlier than $L\sigma M$ (4-14 times n_{sat})
- The breakdown is purely of mathematical nature, no reason to assume phase transitions
- Limits the domain of applicability of the model in density

Chamseddine, et al EPJA60 (2024)

Key points

We use the NJL model to get a more realistic chiral potential

Tension between LQCD and realistic confining models is resolved These models have a breakdown density of mathematical origin

Indication of a "missing" attractive energy which points towards pion loops corrections Motivation for relativistic models

Aspects of the Strong Interactions

The Chiral Confining model

The NJL chiral potential

Finite nuclei

Spherical nuclei

- DIRHBS code (Computer Physics Communications Volume 185, Issue 6, June 2014, Pages 1808-1821) T. Nikšić et al
- Pairing is included (separable the Gogny force D1S)
- Hartree level only (direct terms)
- We tested the RMFCC model, and an additional similar model Parity Doublet Model (PDM) Eur. Phys. J. A (2023) 59:149 and Phys. Rev. C 109, 045201

Nucleus	Model	E_{tot}	$E_{\text{pairing}}(n/p)$	R_C
rucieus	Model	(MeV)	(MeV)	(fm)
	NL3	-126.83	0.0/0.0	2.726
	DD-ME2	-127.81	0.0/0.0	2.726
¹⁶ O	PDM	-122.75	0.0/0.0	2.762
	RMFCC1	-128.44	0.0/0.0	2.706
	RMFCC2	-134.77	0.0/0.0	2.806
	Exp	-128.00	0.0/0.0	2.699
	NL3	-341.07	0.0/0.0	3.470
^{40}Ca	DD-ME2	-342.78	0.0/0.0	3.464
	PDM	-332.25	0.0/0.0	3.469
	RMFCC1	-344.36	0.0/0.0	3.428
	RMFCC2	-345.88	0.0/0.0	3.572
	Exp	-342.69	0.0/0.0	3.478
	NL3	-414.76	0.0/0.0	3.471
^{48}Ca	DD-ME2	-414.81	0.0/0.0	3.480
	PDM	-396.68	-21.65/0.0	3.531
	RMFCC1	-409.67	-22.05/0.0	3.500
	RMFCC2	-420.31	0.0/0.0	3.614
	Exp	-414.33	0.0/0.0	3.477
	NL3	-613.78	-8.43/0.0	3.895
⁷² Ni	DD-ME2	-612.69	-7.15/0.0	3.914
	PDM	-614.98	-15.43/-20.45	3.945
	RMFCC1	-611.90	-17.18/-22.63	3.934
	RMFCC2	-611.93	-9.01/0.0	4.074
	Exp	-613.173	-9.0/0.0	3.914^{*}
	NL3	-783.17	0.0/-8.40	4.265
$^{90}\mathrm{Zr}$	DD-ME2	-783.19	0.0/-5.55	4.268
	PDM	-778.30	-22.55/-5.35	4.281
	RMFCC1	-775.30	-25.42/-8.57	4.274
	RMFCC2	-776.03	0.0/-7.85	4.274
	Exp	-783.89	0.0/-8.0	4.272
	NL3	-986.86	-14.15/0.0	4.609
^{116}Sn	DD-ME2	-987.17	-9.43/0.0	4.615
	PDM	-990.74	-14.09/-23.76	4.630
	RMFCC1	-986.77	-15.59/-27.09	4.618
	RMFCC2	-975.39	-14.27/0.0	4.798
	Exp	-988.681	-17./0.0	4.626
	NL3	-1049.42	-14.49/0.0	4.661
^{124}Sn	DD-ME2	-1049.10	-11.17/0.0	4.671
	PDM	-1055.69	-19.31/-24.59	4.690

Finite nuclei

	Nucleus	Model	E_{tot} (MeV)	$E_{\text{pairing}}(n/p)$ (MeV)	R _C (fm)		
-		RMFCC1	-1049.68	-22.50/-27.94	4.678		
		RMFCC2	-1043.29	-15.79/0.0	4.854		
		Exp	-1049.96	-15./0.0	4.674		
-		NL3	-1104.32	0.0/0.0	4.710		
	^{132}Sn	DD-ME2	-1103.60	0.0/0.0	4.718		
		PDM	-1107.44	-25.02/-25.22	4.764		
		RMFCC1	-1099.71	-28.94/-28.61	4.750		
		RMFCC2	-1105.70	0.0/0.0	4.907		
		Exp	-1102.860	0.0/0.0	4.718^{*}		
Γ		NL3	-1609.31	-7.17/0.0	5.499		
	^{204}Pb	DD-ME2	-1608.94	-6.59/0.0	5.600		
		PDM	-1619.57	-33.49/-33.07	5.535		
		RMFCC1	-1608.76	-39.13/-37.87	5.518		
		RMFCC2	-1587.67	-6.90/0.0	5.692		
		Exp	-1607.520	-10./0.0	5.486		
		NL3	-1639.28	0.0/0.0	5.516		
	^{208}Pb	DD-ME2	-1640.02	0.0/0.0	5.518		
		PDM	-1651.08	-30.32/-33.64	5.561		
		RMFCC1	-1639.44	-35.72/-38.41	5.544		
		RMFCC2	-1619.85	0.0/0.0	5.708		
		Exp	-1636.446	0.0/0.0	5.505		
-							
Parameters	m_i	, (MeV)	C	g_s		g_{ω}	$g_{ ho}$
FN + NEP	4	455.76	0.59	3 5.97	0	5.614	4.309
FN + SPE	(585.15	0.89	1 13.76	60	13.122	3.781
FN + NEP + NP	(582.13	0.84	1 12.69	00	11.890	3.820

Single Particle Energies

Motivation for relativistic models

Aspects of the Strong Interactions

The Chiral Confining model

The NJL chiral potential

Finite nuclei

Conclusions and outlooks

Conclusion

- We managed to propose a model with properties from QCD anchored at the fundamental level
- We resolved the tension that arose between LQCD and realistic confining models
- The model presents a breakdown density which would represent the maximal density for an EoS for neutron stars
- The model presents good predictions for nuclear structure (binding energies, charge radii,...) at the RMF level, however the spin-orbit potential is too weak which leads to uncorrect predicitons for SPE

Outlooks

- Exploring high densities by connecting the model to a quark phase via some phase transitions
- Including Fock terms, at the local approximation (or the heavy meson limit), and see whether it is capable of solving the single particle energies problem

Publications

- Chamseddine, Margueron, Chanfray, Hansen, Somasundaram, Relativistic Hartree–Fock chiral Lagrangians with confinement, nucleon finite size and short-range effects. *EPJA, vol. 59, no. 8, Aug.* 2024
- 2. Chamseddine, Margueron, Hansen, Chanfray, Hartree-Fock Lagrangians with a Nambu-Jona–Lasino scalar potential. *EPJA*, vol. 60, no. 6, p. 137, 2024

Extra slides

Fitting data + results

Phys. Rev. C 71

Nucleus	BE (MeV)	r_c (fm)	$r_n - r_p \text{ (fm)}$	dE	dr_c	drnp
¹⁶ O	127.801 (127.619)	2.727 (2.730)	-0.03	0.1	-0.1	
⁴⁰ Ca	342.741 (342.052)	3.464 (3.485)	-0.05	0.2	-0.6	
⁴⁸ Ca	414.770 (415.991)	3.481 (3.484)	0.18	-0.3	-0.1	
⁷² Ni	612.655 (613.173)	3.914	0.28	-0.1		
90Zr	783.155 (783.893)	4.275 (4.272)	0.07	-0.1	0.1	
116Sn	986.928 (988.681)	4.615 (4.626)	0.12 (0.12)	-0.2	-0.2	3.8
¹²⁴ Sn	1048.859 (1049.962)	4.671 (4.674)	0.21 (0.19)	-0.1	-0.1	10.7
¹³² Sn	1103.469 (1102.860)	4.718	0.26	0.1		
²⁰⁴ Pb	1608.506 (1607.520)	5.500 (5.486)	0.17	0.1	0.3	
²⁰⁸ Pb	1638.426 (1636.446)	5.518 (5.505)	0.19 (0.20)	0.1	0.2	-4.7
²¹⁴ Pb	1661.182 (1663.298)	5.568 (5.562)	0.24	-0.1	0.1	
²¹⁰ Po	1649.695 (1645.228)	5.552	0.17	0.3		

Parameters	$\operatorname{centroid}$	std. dev.
E_{sat} (MeV)	-16	5%
$n_{sat}~({ m fm}^{-3})$	0.16	10%
E_{sym} (MeV)	31	10%
K_{sat} (MeV)	250	10%

Fitting data + results

Phys. Rev. C 71

Nucleus	BE (MeV)	r_c (fm)	$r_n - r_p$ (fm)	dE	dr_c	dr_{np}
¹⁶ O	127.801 (127.619)	2.727 (2.730)	-0.03	0.1	-0.1	
⁴⁰ Ca	342.741 (342.052)	3.464 (3.485)	-0.05	0.2	-0.6	
⁴⁸ Ca	414.770 (415.991)	3.481 (3.484)	0.18	-0.3	-0.1	
72Ni	612.655 (613.173)	3.914	0.28	-0.1		
⁹⁰ Zr	783.155 (783.893)	4.275 (4.272)	0.07	-0.1	0.1	
116Sn	986.928 (988.681)	4.615 (4.626)	0.12 (0.12)	-0.2	-0.2	3.8
¹²⁴ Sn	1048.859 (1049.962)	4.671 (4.674)	0.21 (0.19)	-0.1	-0.1	10.7
¹³² Sn	1103.469 (1102.860)	4.718	0.26	0.1		
²⁰⁴ Pb	1608.506 (1607.520)	5.500 (5.486)	0.17	0.1	0.3	
²⁰⁸ Pb	1638.426 (1636.446)	5.518 (5.505)	0.19 (0.20)	0.1	0.2	-4.7
²¹⁴ Pb	1661.182 (1663.298)	5.568 (5.562)	0.24	-0.1	0.1	
²¹⁰ Po	1649.695 (1645.228)	5.552	0.17	0.3		

Parameters	$\operatorname{centroid}$	std. dev.
E_{sat} (MeV)	-16	5%
$n_{sat}~({ m fm}^{-3})$	0.16	10%
E_{sym} (MeV)	31	10%
K_{sat} (MeV)	250	10%

Pairing

- Since the calculations involving the finite-range Gogny force in the pairing channel require considerable computational effort, a separable form of the Gogny force has been introduced for RHB calculations in spherical and deformed nuclei
- The force is separable in momentum space, and is completely determined by two parameters that are adjusted to reproduce the pairing gap of the Gogny force in symmetric nuclear matter
- The two parameters G and a have been adjusted to reproduce the density dependence of the gap at the Fermi surface, calculated with a Gogny force (D1S parameterization)

$$\Delta(k) = -\int_0^\infty \frac{k'^2 dk'}{2\pi^2} \langle k | V^{1S_0} | k' \rangle \frac{\Delta(k')}{2E(k')},$$

and the pairing force is separable in momentum space

$$\langle k|V^{S_0}|k'\rangle = -Gp(k)p(k').$$

HVH theorem at Hartree level

- To reduce the inconsistencies, we worked at the Hartree level for the energies and selfenergies (no Fock contributions at all)
- The vertex corrections can be simulated by a fictitious scalar field in such a way as to locally satisfy the HVH theorem: $\Sigma_S(\mathbf{p}) = \Sigma_S^D + \Sigma_S^E(\mathbf{p}) + \Sigma_R + \Sigma_{corr}$

Pion condensation at Hartree level

1.0 RH_{CC}, $\Lambda_{\rho^{T}}=2$ GeV $RH_{CC} + \sigma_{corr}, \Lambda_{\rho^{T}} = 2 GeV$ RH_{CC}, $\Lambda_{\rho^{T}}=1.5$ GeV 0.8 --- RH_{CC}+ σ_{corr} , $\Lambda_{\rho^{T}}$ =1.5 GeV Model **Pion Condensation** 0.6 Breakdown δ 0.4 0.2 **Ordinary Matter** 0.0 0.40 0.15 0.20 0.25 0.30 0.35 41 n (fm⁻³)

No significant change in the onset of pion condensation, it is also triggered slightly earlier in density and isospin asymmetry

$$V_{aL} = \lambda^{2} \left(\frac{g_{A}}{2 f_{\pi}} \right)^{2} \left(q^{2} D_{\pi}(q) F_{\pi}^{2}(\mathbf{q}) - (g_{\pi}' - h_{\pi}') + 3 \frac{q^{2}}{\mathbf{q}^{2}} h_{\pi}' - (g_{\rho}' + 2h_{\rho}') \right),$$

$$V_{aR} = V_{aT} = -\lambda^{2} \left(\frac{g_{A}}{2 f_{\pi}} \right)^{2} \left(g_{\pi}' - h_{\pi}' + g_{\rho}' + 2h_{\rho}' \right),$$

$$V_{\rho L} = V_{\rho R} = V_{\rho T} \equiv V_{\rho} = -\lambda^{2} g_{\rho}^{2} \left(D_{\rho}(q) F_{\rho}^{2}(\mathbf{q}) - \frac{3}{C_{\rho}} \frac{h_{\rho}'}{\mathbf{q}} \right).$$

The 2π exchange

- The π also plays a role in the intermediate range through 2π exchange (pion loop)
- It is usually simulated by a sigma meson, but since in our case this sigma meson is related to chiral symmetry, the pion loop needs to be incorporated explicitly

Approximations

1. The Fock terms introduce non-local effects for the Dirac mass and effective momentum, rendering the loop calculations extremely complicated

$$\mathbf{p}^* = \mathbf{p} + \tilde{\mathbf{p}} \Sigma_V(\mathbf{p}) \qquad \qquad \Sigma_V(\mathbf{p}) = \Sigma_V(\mathbf{p}) \\ M_D^*(\mathbf{p}) = M_N + \Sigma_S(\mathbf{p}) \qquad \text{with} \qquad \Sigma_S(\mathbf{p}) = \Sigma_S^D + \Sigma_V(\mathbf{p}) + \Sigma_R$$

We work in the Hartree basis in loops calculations, but we keep them for the Hartree-Fock energies

2. We have only included loops which contributes to the energy, but we have not added vertex corrections which should modify above equations

Results

Parameters							NEP			Correlation energies				
model	m	Λ	g_ω	G_1	$C_{\rm NS}$	$K_{\rm sat}$	$E_{\rm sym,2}$	M_D^*/M_N	E_{aL}	E_{aR}	$E_{\rho R}$	E_T	E_{total}	
	MeV	MeV		${\rm GeV^{-2}}$		MeV	MeV		MeV	MeV	MeV	MeV	MeV	
$\operatorname{RHF}_{\operatorname{CC}}(G_2 = 0, \operatorname{WRT})$	-	-	-	-	-	-	-	-	-	-	-	-	-	
$\operatorname{RHF}_{\operatorname{CC}}(G_2 = 0, \operatorname{SRT})$	5.62	619.95	7.716	11.466	0.504	194	28.1	0.80	-0.6	-0.0	-2.4	-14.0	-17	
$\operatorname{RHF}_{\operatorname{CC}}(G_2 = G_1, \operatorname{WRT})$	3.47	743.64	8.832	7.763	0.743	251	31.2	0.72	-3.4	-0.0	-0.8	-3.4	-7.6	
$\mathrm{RHF}_{\mathrm{CC}}(G_2 = G_1, \mathrm{SRT})$	3.33	802.35	7.451	6.115	0.634	201	26.7	0.81	-0.6	-0.0	-2.1	-12.5	-15.2	

Pion condensation

- When we encounter a pole in the pion correlation function [] onset of pion condensation
- Highly dependent on the prescription and the cut-off

C1

 Might be related to the inconsistent treatment

HVH theorem

A thermodynamic test of the inconsistent approach

 We have an important violation of the theorem, which requires a more careful treatment in any future work

Key points

Pion loops corrections did solve (in most cases) the "missing" energy problem

Improvement of and in the right direction

Early onset of pion condensation dependent on the cut-off Inconsistent treatment leads to an important violation of the HVH theorem can be reduced by a fictitious scalar field