
FAIRness and Software
Publication

Press Space for next page

Making research software findable, accessible, interoperable, and reusable

https://everse.software/RSQKit/

Lecture Overview Topics
1. FAIR for Research Software (FAIR4RS) principles

2. The FAIR4RS principles in practice

3. Publishing Research Software

Learning Outcomes:

Understand FAIR4RS principles

Assess software quality and maturity

License software

Create metadata and citation files

Version and release software

Publish and archive software properly

Duration: 90min
Target Audience: Research software developers,
PhD students, postdocs, researchers

FAIRness of Research Software

Quality Dimensions We’ve Covered This Week
Development Practices

Virtual Environments → Flexibility, Maintainability

Isolated dependencies

Reproducible setups

Unit Testing → Maintainability, Functional Suitability

Verify correctness

Enable refactoring

Debugging → Maintainability

Find and fix issues

Understand code behavior

Documentation → Maintainability

Explain purpose and usage

Onboard new contributors

Advanced Topics
Profiling/Optimizing → Performance Efficiency

Identify bottlenecks

Improve resource usage

Containerization → Flexibility, Sustainability

Reproducible environments

Easy deployment

Security → Security, Reliability

Protect against vulnerabilities

Secure data handling

Coding with AI → Interaction Capability, Functional Suitability

Accelerate development

Generate boilerplate code

💡 An important one still missing: FAIRness

The Missing Dimension: FAIRness
What is FAIR?
4 principles for data objects:

Findable - Easy to discover by humans &

machines

Accessible - Retrievable via standard protocols

Interoperable - Exchange data through standards

Reusable - Usable and modifiable by others

FAIRness is about discoverability and reusability

FAIR vs Quality
FAIR ⊂ Quality Software

FAIR ensures discoverability & reusability

Quality includes correctness, performance,

testing

FAIR Principles for Research Software (FAIR4RS)

F.indable

F1. Assigned unique & persistent ID (DOI)

F2. Described with rich metadata

F3. Metadata explicitly points to ID

F4. Metadata are searchable & indexable

A.ccessible

A1. Retrievable by ID using standard protocols

A2. Metadata persists even if software is gone

I.nteroperable

I1. Meets community standards for exchange

I2. Includes qualified references to other objects

R.eusable

R1. Rich and accurate attributes

R2. References to other software

R3. Meets domain-relevant community standards

Easy for humans and machines to find.

F1.1. IDs for different components

F1.2. IDs for different versions

Retrievable via standard protocols.

A1.1. Open, free & universal protocol

A1.2. Auth/Auth procedure where needed

Exchange data and interact via APIs. Understandable, modifiable, and buildable.

R1.1. Clear and accessible License

R1.2. Detailed provenance & history

Chue Hong, N. P. et al. (2022). FAIR Principles for Research Software (FAIR4RS Principles). DOI: 10.15497/RDA/00068

https://doi.org/10.1038/s41597-022-01710-x

FAIR4RS in Practice

F.indable
Repository & Identifiers

Standard Metadata

Indexing

A.ccessible
Software Access

Metadata Longevity

I.nteroperable
Standard Formats

Qualified References

Controlled vocabularies

R.eusable
Documentation

Legal Terms

Community & Provenance

Translating abstract principles into concrete tools and files in your repository.

Public Git repo + DOI (Zenodo/Figshare) or SWHID

codemeta.json and CITATION.cff files

Register in PyPI, Conda-forge, or domain registries

HTTPS/SSH for clones, pip install for users

Archiving in Zenodo ensures metadata stays even if repo disappears

Use CSV, JSON, HDF5, or community-specific standards

Reference other tools/data using their DOIs

Standard terminology/Domain ontologies

Rich README.md , usage examples, and API docs

Include a LICENSE file (MIT, Apache, GPL)

CONTRIBUTING.md and CHANGELOG.md

FAIRness Assessment Tools
Available Tools

FAIR Software Checklist - Self-assessment

howfairis - Command-line and online tool

Purpose
🎯 Diagnostic, not evaluative

📊 Make quality aspects visible

🔍 Identify strengths & areas for improvement

📈 Guide reflection and learning

⚠️ Not meant to criticize - but to help improve!

Source: RSQKit - FAIR Research Software

https://fairsoftwarechecklist.net/
https://www.howfairis.com/

Exercise
Run howfairis on pkoffee and discuss results

or go to https://www.howfairis.com/, connect your GitHub account and run on your pkoffee fork.

Example Output

Let's try to improve that evaluation together →

pip install howfairis

howfairis https://github.com/<username>/pkoffee

docker run --rm fairsoftware/howfairis https://github.com/s3-school/pkoffee

(1/5) repository

 ✓ has_open_repository
(2/5) license

 × has_license

(3/5) registry

 × in_package_registry

(4/5) citation

 × has_citation_file

(5/5) checklist

 × has_checklist

https://www.howfairis.com/

Software metadata and Essential Files

Software Licensing
Why License?

Defines what others can do

Required for legal reuse

Part of FAIR principles (R1.1)

❌ **No license = No one can legally use your
code**

Even if it’s on GitHub!

License Categories
1. Public Domain - No restrictions

CC0, Unlicense

2. Permissive - Minimal restrictions

MIT, Apache 2.0, BSD

3. Copyleft - Share-alike required

GPL v3, AGPL, LGPL

4. Creative Commons - For non-code

CC-BY, CC-BY-SA (not for software!)

Source: RSQKit - Licensing Software

Popular Licenses for Research
MIT License ⭐

Most Popular

✅ Commercial use
✅ Modification
✅ Distribution
✅ Private use
✅ No liability

⚠️ Derived work must include license

Apache 2.0

Patent protection

✅ Same as MIT
✅ Patent grant
✅ Trademark protection

⚠️ Must state changes
⚠️ Include NOTICE file

GPL v3

Strong copyleft

✅ Derivatives must be open
✅ Anti-tivoization
✅ Patent grant

⚠️ Can limit adoption
⚠️ Incompatible with some licenses

👉 choosealicense.com

💡 For research software: MIT or Apache 2.0 are most common. Use GPL if you want to ensure derivatives stay open.

Short, simple, permissive

Better for large projects Ensures freedom

Source: RSQKit - Licensing Software

https://choosealicense.com/

Exercise: Add a License to Your Project
Steps
1. Choose a license

Use choosealicense.com

Consider your goals

Check funder requirements

2. Add LICENSE file

Create LICENSE or LICENSE.txt

Copy license text

Fill in year and copyright holder

3. Add to metadata

Update pyproject.toml

Add to codemeta.json

Include in CITATION.cff

4. Add license headers (optional)

Add to source files

Use SPDX identifiers

Example: MIT License

In pyproject.toml

SPDX Header (optional)

Copyright 2026 Thomas Vuillaume

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated document

to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, pub

and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE W

FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FO

LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWA

DEALINGS IN THE SOFTWARE.

[project]

name = "my-package"

license = {text = "MIT"}

or

license = {file = "LICENSE"}

SPDX-License-Identifier: MIT

Copyright (c) 2026 Thomas Vuillaume

Source: RSQKit - Licensing Software

Software Metadata
What is Metadata?
Structured data describing your software:

📝 Name, version, description

👥 Authors, contributors

⚖️ License

🔗 Repository URL

🐍 Programming language

📦 Dependencies

📄 Documentation links

💡 Machine-readable metadata enables discoverability &
automation

Why It Matters
🔍 Findability - Search engines can discover it

🤖 Automation - Tools can process it

🔄 Interoperability - Different platforms

understand it

📚 Archives - Zenodo, Software Heritage can

ingest it

📖 Citation - Automatic citation generation

Different use cases need different metadata:

Citation: Authors, DOI

Replication: Dependencies, versions

Discovery: Keywords, description

Source: RSQKit - Software Metadata

Metadata Standards
Common Standards
pyproject.toml

Package manager metadata

Language-specific

CodeMeta
JSON-LD format

Based on Schema.org

codemeta.json

Widely supported (Zenodo, Software Heritage)

Citation File Format (CFF)
YAML format

Academic citation

CITATION.cff

GitHub native support (Shows a button "Cite this repository" automatically)

Zenodo support

Specifies prefeffed citation

Comparison
Feature CodeMeta CFF

Format JSON-LD YAML

Purpose General Citation

GitHub Support Via API Native

Human Readable Medium High

Machine Readable ✔︎ ✔︎

Best Practice
Use both!

codemeta.json for comprehensive metadata

CITATION.cff for citation

Plus language-specific files
Source: RSQKit - Software Metadata

CodeMeta example
codemeta.json Tools:

CodeMeta Generator - Web

form

SOMEF - Automatic extraction

autocodemeta - Automatic

extraction as web service

CodeMeta Lookup - Crosswalks

{

 "@context": "https://doi.org/10.5063/schema/codemeta-2.0",

 "@type": "SoftwareSourceCode",

 "name": "My Research Software",

 "description": "A tool for scientific data analysis",

 "version": "1.0.0",

 "author": [{

 "@type": "Person",

 "givenName": "Jane",

 "familyName": "Doe",

 "email": "jane@example.org",

 "affiliation": {

 "@type": "Organization",

 "name": "University of Example"

 }

 }],

 "license": "https://spdx.org/licenses/MIT",

 "programmingLanguage": "Python",

 "codeRepository": "https://github.com/user/repo"

} Source: https://codemeta.github.io/

https://codemeta.github.io/codemeta-generator/
https://github.com/KnowledgeCaptureAndDiscovery/somef
https://w3id.org/autocodemeta
https://codemeta.github.io/codemeta-lookup/

Citation File Format (CFF) example
citation.cff Tools:

cffinit - Web form

CFF Validator - Check syntaxcff-version: 1.2.0

message: "If you use this software, please cite it as below."

title: "My Research Software"

version: 1.0.0

date-released: 2024-01-15

authors:

 - family-names: "Doe"

 given-names: "Jane"

 orcid: "https://orcid.org/0000-0000-0000-0000"

 affiliation: "University of Example"

repository-code: "https://github.com/user/repo"

license: MIT

keywords:

 - research software

 - data analysis

preferred-citation:

 type: article

 title: "Software Paper Title"

 authors:

 - family-names: "Doe"

 given-names: "Jane"

 doi: "10.1234/example.doi"

 journal: "Journal of Open Source Software"

 year: 2024 Source: RSQKit - Software Metadata

https://citation-file-format.github.io/cff-initializer-javascript/
https://citation-file-format.github.io/

Exercise: Create Metadata Files

Your Task
Create both metadata files for your pkoffee project:

1. codemeta.json
Use autocodemeta

Fill in your repository URL

Add missing information

Download codemeta.json

2. CITATION.cff
Use CFF Initializer

Add your author information

Include repository URL

Download and validate

3. Add to Repository
Place files in repository root

Commit and push

Verify GitHub recognizes them -> Cite button appears

Bonus
Try howfairis again - did your score improve?

💡 Use journal preprint as related paper

💡 These files will be used when archiving to Zenodo!

⏱️ 15 minutes hands-on

https://w3id.org/autocodemeta
https://citation-file-format.github.io/cff-initializer-javascript/
https://figshare.com/articles/preprint/Coffee_and_Developer_Productivity/31049104?file=60960952

Summary: Essential Files for Publication
📄 README.md

Project description

Installation instructions

Usage examples

Dependencies

Citation information

Contact details

⚖️ LICENSE

Without a license, code cannot be legally reused!

📋 Metadata & Citation
codemeta.json (General metadata)

CITATION.cff (Academic citation)

🤝 CONTRIBUTING.md
How to contribute

Code of conduct

Development setup

📝 CHANGELOG.md
Version history

What changed between releases

📚 docs/
Detailed documentation

API reference

Tutorials

My Research Software

Description

Brief description of what it does

Installation

\```bash

pip install my-software

\```

Usage

\```python

import my_software

result = my_software.analyze(data)

\```

Citation

If you use this software, please cite:

[DOI or paper reference]

Source: RSQKit - Publishing Software

Publishing Research Software

Software Publication ≠ Code Hosting
Code Hosting (GitHub/GitLab)
✅ Version control

✅ Collaboration

✅ Issue tracking

✅ Code review

⚠️ This is a great start, but not enough!

Full Publication Includes
📄 Documentation - README, guides

⚖️ License - Legal reuse terms

📋 Metadata - Findability

🏷️ Citation - Academic credit

📦 Packaging - Easy installation

🔖 Releases - Version management

🏛️ Archiving - Long-term preservation

💡 Publishing is the finale touch to make your software FAIR

Source: RSQKit - Publishing Software

Software Releases and Versioning
What is a Release?
A snapshot of your software at a specific point in
time, made available to users.

Components:

🏷️ Version number/name

📝 Changelog

📄 Release notes

📦 Artifacts (binaries, packages)

💡 Releases provide stable reference points for users and
citations

Versioning Schemes
Semantic Versioning (SemVer)

Examples
1.0.0 → First stable release

1.1.0 → Added new feature

1.1.1 → Fixed bug

2.0.0 → Breaking change

MAJOR.MINOR.PATCH

 1 . 2 . 3

MAJOR: Breaking changes

MINOR: New features (backward compatible)

PATCH: Bug fixes

Source: RSQKit - Releasing Software

Automated Versioning (advanced users)
🏷️ setuptools_scm

Infer version automatically from Git tags.

See pyproject.toml content
See pixi.toml content

Version format:

On tag v0.1.0 → version is 0.1.0

Between tags → 0.1.0.dev3+g1234567 (dev version with commit info)

No manual version bumping needed - just create git tags when you want to

release. The version is computed at build time from your git history.

🤖 Python Semantic Release

Automates versioning, changelog, and tagging based on commit history.

Requirement: Uses Conventional Commits

feat: ... → Minor

fix: ... → Patch

BREAKING CHANGE: ... → Major

In GitHub Actions:

YesCommit
P-S-R

analyzes commits
in GitHub action

Release needed?
Bump

version
GitHub
Release

- name: Release

 uses: python-semantic-release/python-semantic-release@v

 with:

 github_token: ${{ secrets.GITHUB_TOKEN }}

https://setuptools-scm.readthedocs.io/en/latest/
https://python-semantic-release.readthedocs.io/en/stable/
https://www.conventionalcommits.org/

Creating a GitHub Release
Steps
1. Prepare

Update version in code: pyproject.toml , codemeta.json ,

citation.cff

Ensure tests pass

2. Create release on GitHub

Go to Releases → "Draft a new release"

Create a new tag

Write release notes

Note: you can generate them based on past PRs

It’s good to add a summary at the beginning

Attach binaries if needed

3. Publish

Review everything

Click "Publish release"

Zenodo integration triggers (if enabled, see after)

Release Notes Template
What's New in v1.0.0

Features

- Added support for new data format (#42)

- Improved performance by 50% (#38)

Bug Fixes

- Fixed crash on empty input (#45)

- Corrected calculation error in module X (#41)

Breaking Changes

- Removed deprecated function old_api()

- Changed default behavior of process()

Dependencies

- Updated numpy to 1.24+

- Added new requirement: pandas >= 1.5

Contributors

Thanks to @user1, @user2 for contributions!

Python Packaging and Distribution (PyPI)
🛠️ Building Your Package
Ensures your code is packaged correctly for distribution.

1. Ensure pyproject.toml is complete

Metadata, dependencies, build-system

2. Install build tools

pip install build twine

3. Build the package

python -m build

This creates dist/ with .whl and .tar.gz files.

🚀 Publishing to PyPI
Makes your software installable via pip install .

0. Setup Account

Create account on PyPI and TestPyPI

Generate an API Token in Account Settings

1. Upload to TestPyPI first (Recommended)

python -m twine upload --repository testpypi dist/*

2. Upload to PyPI

python -m twine upload dist/*

❌ for pkoffee you won't be able to publish because it already exists on
pypi

💡 Automate with GitHub Actions to publish a new package version at each release

https://pypi.org/
https://test.pypi.org/

Why Archive Software?
The Problem
GitHub/GitLab are NOT archives:

Commercial platforms

Can change policies

Repositories can be deleted

URLs can break

No guarantee of permanence

⚠️ What happens to your research software in 10 years?

A Solution: Archiving
True archives provide:

🏛️ Long-term preservation (decades)

🔒 Persistent identifiers (DOIs)

📋 Metadata preservation

🔍 Discoverability in academic systems

✅ Trustworthy repositories

🌐 Integration with citation systems

Source: RSQKit - Archiving Software

Software Archives
Zenodo

General-purpose archive

CERN-hosted (Europe)

Free and open

DOI for each version

GitHub integration

Supports all file types

Part of OpenAIRE

Good For:
Software

Datasets

Supplementary materials

Software Heritage
Universal software archive

UNESCO-supported

Preserves all public source code

Software Heritage identifier (SWHID)

Automatic archiving

link from HAL

Complete Git history preserved -> better granularity of

identifiers

Good For:
Software

Being able to cite a specific part or commit of a software

💡 Recommendation: Use at least one

Zenodo + GitHub Integration
Setup Steps
1. Create Zenodo account

Visit zenodo.org (or sandbox.zenodo.org for the exercise)

Log in with GitHub

2. Enable repository

Go to GitHub settings in Zenodo

Toggle on your repository

3. Create a release

Tag and release on GitHub

Zenodo automatically archives

DOI is minted

4. Update metadata if necessary

Edit metadata on Zenodo

Add keywords, description

Save changes

5. Add DOI badge

Copy badge markdown

Add to README

What Gets Archived
Complete repository snapshot

Release artifacts

Metadata from GitHub or codemeta.json or CITATION.cff (if present)

DOI Badge

Displays as:
DOIDOI 10.5281/zenodo.1781429710.5281/zenodo.17814297

💡 Each release gets a separate DOI. Zenodo also creates a "concept DOI" for all versions.

Exercise: do it using zenodo sandbox (exact replicate of zenodo but gets empited regularly)

[![DOI](https://zenodo.org/badge/DOI/10.5281/zenodo.17814297.svg)](https://doi.org/10.5281/zeno

https://zenodo.org/
https://sandbox.zenodo.org/
https://doi.org/10.5281/zenodo.17814297
https://doi.org/10.5281/zenodo.17814297

Software Heritage Demo
Save your code
https://archive.softwareheritage.org/save/

An example of saved code: gammapy
https://archive.softwareheritage.org/browse/origin/directory/?
origin_url=https://github.com/gammapy/gammapy

https://archive.softwareheritage.org/save/
https://archive.softwareheritage.org/browse/origin/directory/?origin_url=https://github.com/gammapy/gammapy
https://archive.softwareheritage.org/browse/origin/directory/?origin_url=https://github.com/gammapy/gammapy

Publication Checklist
Before First Release

 LICENSE file added

 README.md complete

Description

Installation

Usage examples

Citation

 codemeta.json created

 CITATION.cff created

 Tests written and passing

 Documentation available

 Code formatted and linted

 Security scan passed

 CHANGELOG.md started

For Each Release
 Version bumped (following SemVer)

 CHANGELOG updated

 Tests passing

 Documentation updated

 Git tag created

 GitHub release created

 Release notes written

 Archived (Zenodo/Software Heritage)

 DOI obtained

 README updated with DOI

 Announced to users

💡 Add this checklist to your GitHub repository wiki to keep it closeby when doing a release

Exercise
Try howfairis one more time

Compare before/after scores

What improved?

⏱️ 20 minutes hands-on

Summary and Resources

Key Takeaways
FAIR Principles
Findable through metadata and identifiers

Accessible via standard protocols

Interoperable with standard formats

Reusable with clear licenses

Essential Components
License (MIT, Apache 2.0)

Metadata (codemeta.json, CITATION.cff)

Documentation (README, docs)

Releases (semantic versioning)

Archiving (Zenodo, Software Heritage)

From Code to Published Software
Code on Computer

License Git Repository GitHub/GitLab Quality Tools Tests Documentation

Metadata

Release

Archive Published Software

This Lecture:
FAIRness

You now have a complete framework for creating high-quality, FAIR research software! 🎉

Resources and Further Learning
EVERSE RSQKit

R S Q K i t H o m e

FA I R R e s e a r c h S o f t w a r e

P u b l i s h i n g S o f t w a r e

S o f t w a r e M e t a d a t a

L i c e n s i n g

A r c h i v i n g

Tools
C h o o s e a L i c e n s e

Co d e M e t a G e n e r a t o r

C F F I n i t i a l i z e r

h o w f a i r i s

Ze n o d o

Guides & Documentation
FA I R 4 R S P r i n c i p l e s

S o f t w a r e C i t a t i o n P r i n c i p l e s

Ze n o d o H e l p

S o f t w a r e H e r i t a g e

S e m a n t i c Ve r s i o n i n g

Community
R e s e a r c h S o f t w a r e E n g i n e e r s (R S E)

E V E R S E P r o j e c t

S o f t w a r e S u s t a i n a b i l i t y I n s t i t u t e

U S - R S E

Questions?

thomas.vuil laume@lapp.in2p3.fr

T h a n k y o u !

https://everse.software/RSQKit/
https://everse.software/RSQKit/pages/research_software/fair_research_software.html
https://everse.software/RSQKit/pages/tasks/publishing_software.html
https://everse.software/RSQKit/pages/tasks/software_metadata.html
https://everse.software/RSQKit/pages/tasks/licensing_software.html
https://everse.software/RSQKit/pages/tasks/archiving_software.html
https://choosealicense.com/
https://codemeta.github.io/codemeta-generator/
https://citation-file-format.github.io/cff-initializer-javascript/
https://github.com/fair-software/howfairis
https://zenodo.org/
https://doi.org/10.15497/RDA00068
https://www.force11.org/software-citation-principles
https://help.zenodo.org/
https://www.softwareheritage.org/
https://semver.org/
https://society-rse.org/
https://everse.software/
https://www.software.ac.uk/
https://us-rse.org/
mailto:thomas.vuillaume@lapp.in2p3.fr

