

https://everse.software/RSQKit/

Duration: 90min
Target Audience: Research software developers,
PhD students, postdocs, researchers

Topics

1. FAIR for Research Software (FAIR4RS) principles
2. The FAIR4RS principles in practice

3. Publishing Research Software

Learning Outcomes:

= Understand FAIR4RS principles

Assess software quality and maturity

License software
Create metadata and citation files
Version and release software

Publish and archive software properly

FAIRness of Research Software

Development Practices Advanced Topics

Virtual Environments - Flexibility, Maintainability Profiling/Optimizing - Performance Efficiency

= Isolated dependencies = Identify bottlenecks

= Reproducible setups = Improve resource usage
Unit Testing - Maintainability, Functional Suitability Containerization - Flexibility, Sustainability

= Verify correctness = Reproducible environments

= Enable refactoring = Easy deployment
Debugging - Maintainability Security - Security, Reliability

® Find and fix issues = Protect against vulnerabilities

= Understand code behavior = Secure data handling
Documentation > Maintainability Coding with AI - Interaction Capability, Functional Suitability

= Explain purpose and usage = Accelerate development

= Onboard new contributors = Generate boilerplate code

An important one still missing: FAIRness

What is FAIR? FAIR vs Quality

= FAIR c Quality Soft
4 principles for data objects: ¢ Quality soitware

= FAIR ensures discoverability & reusability

Findable - Easy to discover by humans & = Quality includes correctness, performance,

machines testing

Accessible - Retrievable via standard protocols
Interoperable - Exchange data through standards
Reusable - Usable and modifiable by others

FAIRness is about discoverability and reusability

FAIR Principles for Research Software (FAIR4RS)

Q_ F.indable

Easy for humans and machines to find.

F1. Assigned unique & persistent ID (DOI)
F1.1. IDs for different components

F1.2. IDs for different versions

F2. Described with rich metadata

F3. Metadata explicitly points to ID

F4. Metadata are searchable & indexable

Qe I.nteroperable

Exchange data and interact via APIs.

= I1. Meets community standards for exchange

= 12. Includes qualified references to other objects

¢> A.ccessible

Retrievable via standard protocols.

Al. Retrievable by ID using standard protocols
Al.1. Open, free & universal protocol
A1.2. Auth/Auth procedure where needed

A2. Metadata persists even if software is gone

7% R.eusable

Understandable, modifiable, and buildable.

R1. Rich and accurate attributes
R1.1. Clear and accessible License
R1.2. Detailed provenance & history
R2. References to other software

R3. Meets domain-relevant community standards

Chue Hong, N. P. et al. (2022). FAIR Principles for Research Software (FAIR4RS Principles). DOI: 10.15497/RDA/00068

https://doi.org/10.1038/s41597-022-01710-x

FAIR4RS in Practice

Translating abstract principles into concrete tools and files in your repository.

Q_ F.indable > A.ccessible

= Repository & Identifiers = Software Access

Public Git repo + DOI (Zenodo/Figshare) or SWHID HTTPS/SSH for clones, pip install for users

s Standard Metadata Metadata Longevity

codemeta.json and CITATION.cff files Archiving in Zenodo ensures metadata stays even if repo disappears

= Indexing

Register in PyPI, Conda-forge, or domain registries

Qg I.nteroperable 7% R.eusable

= Standard Formats = Documentation

Use CSV, JSON, HDF5, or community-specific standards Rich README.md ,usage examples, and API docs

Qualified References Legal Terms

Reference other tools/data using their DOIs Include a LICENSE file (MIT, Apache, GPL)

Controlled vocabularies Community & Provenance

Standard terminology/Domain ontologies CONTRIBUTING.md and CHANGELOG.md

Available Tools
= FAIR Software Checklist - Self-assessment

Purpose

= @ Diagnostic, not evaluative

= |l Make quality aspects visible

= Identify strengths & areas for improvement

= ,/ Guide reflection and learning

. Not meant to criticize - but to help improve!

Source: RSQK:it - FAIR Research Software

https://fairsoftwarechecklist.net/
https://www.howfairis.com/

Exercise

Run howfairis on pkoffee and discuss results

pip install howfairis
howfairis https://github.com/<username>/pkoffee

docker run --rm fairsoftware/howfairis https://github.com/s3-school /pkoffee

or go to https://www.howfairis.com/, connect your GitHub account and run on your pkoffee fork.

Example Output

(1/5) repository

v has_open_repository
(2/5) license

x has_license
(3/5) registry

x in_package_registry
(4/5) citation

x has_citation_file
(5/5) checklist

x has_checklist

Let's try to improve that evaluation together -

https://www.howfairis.com/

Software metadata and Essential Files

Why License?

Defines what others can do
Required for legal reuse

Part of FAIR principles (R1.1)

X **No license = No one can legally use your
Code*:}:

Even if it’s on GitHub!

License Categories

1. Public Domain - No restrictions

= CCO, Unlicense

2. Permissive - Minimal restrictions
= MIT, Apache 2.0, BSD

3. Copyleft - Share-alike required
= GPL V3, AGPL, LGPL

4. Creative Commons - For non-code

= CC-BY, CC-BY-SA (not for software!)

Source: RSQK:it - Licensing Software

MIT License Apache 2.0 GPL v3

Most Popular Patent protection Strong copyleft

Commercial use Same as MIT Derivatives must be open
Modification Patent grant Anti-tivoization
Distribution Trademark protection Patent grant

Private use
No liability I. Must state changes !. Can limit adoption

I. Include NOTICE file !. Incompatible with some licenses

I. Derived work must include license ,
Better for large projects Ensures freedom

Short, simple, permissive

~ choosealicense.com

. For research software: MIT or Apache 2.0 are most common. Use GPL if you want to ensure derivatives stay open.

Source: RSQK:it - Licensing Software

https://choosealicense.com/

Exercise: Add a License to Your Project

Steps
1. Choose a license

= Use choosealicense.com
= Consider your goals

= Check funder requirements

2. Add LICENSE file

= (Create LICENSE or LICENSE.txt

= Copy license text

= Fill in year and copyright holder

3. Add to metadata

= Update pyproject.toml
= Addto codemeta.json

= Includein CITATION.cff

4. Add license headers (optional)

= Add to source files

= Use SPDX identifiers

Example: MIT License

Copyright 2026 Thomas Vuillaume

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated document

to deal in the Software without restriction,

including without limitation the rights to use, copy, modify, merge, pub

and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FO
LTABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWA

DEALINGS IN THE SOFTWARE.

In pyproject.toml

[project]
name = "my-package
license = {text = "MIT"}

license = {file = "LICENSE"}

SPDX Header (optional)

Source: RSQK:it - Licensing Software

What is Metadata? Why It Matters

o = Findability - Search engines can discover it
Structured data describing your software: < 4 &

= & Automation - Tools can process it
= Name, version, description

(&) Interoperability - Different platforms

2% Authors, contributors understand it

= License ¥ Archives - Zenodo, Software Heritage can

& Repository URL ingest it

&, Programming language LLI Citation - Automatic citation generation

® Dependencies

» Documentation links Different use cases need different metadata:
= Citation: Authors, DOI

= Replication: Dependencies, versions

. Machine-readable metadata enables discoverability &
automation = Discovery: Keywords, description

Source: RSQKit - Software Metadata

Common Standards Comparison
pyproject.toml Feature CodeMeta CFF

= Package manager metadata

= Language-specific Format JSON-LD YAML

CodeMeta
Purpose General Citation
= JSON-LD format
® Based on Schema.org GitHub Support Via API Native
® codemeta.json

= Widely supported (Zenodo, Software Heritage) Human Readable Medium High

Citation File Format (CFF) Machine Readable y y
YAML format
Academic citation

CITATION.cff

Best Practice

GitHub native support (Shows a button "Cite this repository" automatically)

Zenodo support Use both!

Specifies prefeffed citation
= codemeta.json for comprehensive metadata

® CITATION.cff for citation

= Plus language-specific files
Source: RSQKit - Software Metadata

CodeMeta example

, Tools:
codemeta.json
= CodeMeta Generator - Web

@context": "https://doi.org/10.5063/schema/codemeta-2.0",
@type': "SoftwareSourceCode',
name': "My Research Software',
description”: "A tool for scientific data analysis
version': "1.0.0", . .
author': [{ extraction as web service

@type': "Person',

’

CodeMeta Lookup - Crosswalks

givenName': "Jane'",
familyName'": "Doe",
email": "jane@example.org",
affiliation": {
@type'": "Organization",
name'": "University of Example
by
31,
license": "https://spdx.org/licenses/MIT",
programminglLanguage': "Python'",

codeRepository": "https://github.com/user/repo

Source: https://codemeta.github.io/

https://codemeta.github.io/codemeta-generator/
https://github.com/KnowledgeCaptureAndDiscovery/somef
https://w3id.org/autocodemeta
https://codemeta.github.io/codemeta-lookup/

Citation File Format (CFF) example

citation.cff

cff-version: 1.2.0
message: "If you use this software, please cite it as below.
title: "My Research Software
version: 1.0.0
date-released: 2024-01-15
authors:
- family-names: "Doe
given-names: "Jane
orcid: "https://orcid.org/0000-0000-0000-0000
affiliation: "University of Example
repository-code: "https://github.com/user/repo
license: MIT
keywords:
- research software
- data analysis
preferred-citation:
type: article
title: "Software Paper Title
authors:
- family-names: '"Doe
given-names: "Jane
doi: "10.1234/example.doi
journal: "Journal of Open Source Software
year: 2024

Tools:

cffinit - Web form

Source: RSQK:it - Software Metadata

https://citation-file-format.github.io/cff-initializer-javascript/
https://citation-file-format.github.io/

¢ 15 minutes hands-on

Your Task Bonus

= Try howfairis again - did your score improve?
Create both metadata files for your pkoffee project:

1. COdemeta.jSOH . Use journal preprint as related paper

Use autocodemeta

Fill in your repository URL
L. . These files will be used when archiving to Zenodo!
Add missing information

Download codemeta.json

2. CITATION.cff

Use CFF Initializer

Add your author information
Include repository URL

Download and validate

3. Add to Repository

= Place files in repository root
= Commit and push

= Verify GitHub recognizes them -> Cite button appears

https://w3id.org/autocodemeta
https://citation-file-format.github.io/cff-initializer-javascript/
https://figshare.com/articles/preprint/Coffee_and_Developer_Productivity/31049104?file=60960952

* README.md

Project description
Installation instructions
Usage examples
Dependencies

Citation information

Contact details

My Research Software

Description
Brief description of what it does

Installation
\" " “bash
pip install my-software
o

Usage
\" " “python
import my_software
result = my_software.analyze(data)

o

Citation

If you use this software, please cite:

[DOI or paper reference]

<c LICENSE

Without a license, code cannot be legally reused!

| Metadata & Citation

= codemeta.json (General metadata)

= CITATION.cff (Academic citation)

% CONTRIBUTING.md

= How to contribute
= Code of conduct

= Development setup

2 CHANGELOG.md

= Version history

= What changed between releases

¥ docs/

= Detailed documentation
= API reference

= Tutorials

Source: RSQKit - Publishing Software

Publishing Research Software

Code Hosting (GitHub/GitLab) Full Publication Includes

= Version control = * Documentation - README, guides

= Collaboration = _L License - Legal reuse terms

u Issue tracking = [| Metadata - Findability

" Code review « Citation - Academic credit

. This is a great start, but not enough!

. Publishing is the finale touch to make your software FAIR

Source: RSQK:it - Publishing Software

What is a Release?

A snapshot of your software at a specific point in
time, made available to users.

Components:

Version number/name
~ Changelog
» Release notes

W Artifacts (binaries, packages)

. Releases provide stable reference points for users and
citations

Versioning Schemes
Semantic Versioning (SemVer)

MAJOR.MINOR.PATCH
1 . 2 . 3

MAJOR: Breaking changes
MINOR: New features (backward compatible)
PATCH: Bug fixes

Examples
= 1.0.0 - First stable release

= 1.1.0 - Added new feature
1.1.1 - Fixed bug

2.0.0 - Breaking change

Source: RSQK:it - Releasing Software

Automated Versioning (advanced users)
@ Python Semantic Release

setuptools_scm

Infer version automatically from Git tags. Automates versioning, changelog, and tagging based on commit history.

» See pyproject.toml content Requirement: Uses Conventional Commits
» See pixi.toml content
= feat: ... - Minor

Version format:
= fix: ... - Patch

ion i 3 coo |d j
= Ontagv0.1.0 - version is 0.1.0 " R Major

= Between tags - 0.1.0.dev3+g1234567 (dev version with commit info)
In GitHub Actions:

No manual version bumping needed - just create git tags when you want to
- name: Release

release. The version is computed at build time from your git history.
uses: python-semantic-release/python-semantic-release@v
with:
github_token: ${{ secrets.GITHUB_TOKEN }}

PSR Bum GitHub
Release needed? ‘p
version Release

Commit analyzes commits
in GitHub action

https://setuptools-scm.readthedocs.io/en/latest/
https://python-semantic-release.readthedocs.io/en/stable/
https://www.conventionalcommits.org/

Steps Release Notes Template

What's New in v1.0.0
1. Prepare
o Features
= Update version in code: pyproject.toml , codemeta.json , Added support for new data format (#42)

citation.cff Improved performance by 50% (#38)

= Ensure tests pass Bug Fixes

Fixed crash on empty input (#45)

2. Create release on GitHub Corrected calculation error in module X (#41)
Breaking Changes

Removed deprecated function old_api()

Create a new tag Changed default behavior of process()

Go to Releases = "Draft a new release"

Write release notes
Dependencies

= Note: you can generate them based on past PRs Updated numpy to 1.24+

= [t’s good to add a summary at the beginning Added new requirement: pandas >= 1.5

Attach binaries if needed
Contributors

Thanks to @userl, @user2 for contributions!

3. Publish

= Review everything

= (Click "Publish release”

= Zenodo integration triggers (if enabled, see after)

X Building Your Package

Ensures your code is packaged correctly for distribution.

1. Ensure pyproject.toml is complete
= Metadata, dependencies, build-system

2. Install build tools

pip install build twine

3. Build the package

python -m build

This creates dist/ with .whl and .tar.gz files.

% Publishing to PyPI

Makes your software installable via pip install .
0. Setup Account

= Create account on PyPI and TestPyPI

= Generate an API Token in Account Settings

1. Upload to TestPyPI first (Recommended)
python -m twine upload --repository testpypi dist/*
2. Upload to PyPI

python -m twine upload dist/*

X for pkoffee you won't be able to publish because it already exists on
pypi

Automate with GitHub Actions to publish a new package version at each release

https://pypi.org/
https://test.pypi.org/

The Problem

GitHub/GitLab are NOT archives:

Commercial platforms

Can change policies
Repositories can be deleted
URLSs can break

No guarantee of permanence

!. What happens to your research software in 10 years?

A Solution: Archiving

True archives provide:

Long-term preservation (decades)
Persistent identifiers (DOIs)
_| Metadata preservation
({ Discoverability in academic systems
Trustworthy repositories

@ Integration with citation systems

Source: RSQKit - Archiving Software

Zenodo Software Heritage
General-purpose archive = Universal software archive
CERN-hosted (Europe) = UNESCO-supported
Free and open = Preserves all public source code
DOI for each version Software Heritage identifier (SWHID)
GitHub integration Automatic archiving
Supports all file types link from HAL
Part of OpenAIRE Complete Git history preserved -> better granularity of

GOOd For: identifiers
" Software Good For:

= Datasets = Software

= Supplementary materials = Being able to cite a specific part or commit of a software

Recommendation: Use at least one

Setup Steps

1. Create Zenodo account

= Visit zenodo.org (or sandbox.zenodo.org for the exercise)

= Log in with GitHub
2. Enable repository

= Go to GitHub settings in Zenodo

= Toggle on your repository

3. Create a release

= Tag and release on GitHub
= Zenodo automatically archives

= DOI is minted

4. Update metadata if necessary

= Edit metadata on Zenodo
= Add keywords, description

= Save changes

5. Add DOI badge

= Copy badge markdown
= Add to README

What Gets Archived

= Complete repository snapshot
= Release artifacts

= Metadata from GitHub or codemeta.json or CITATION.cff (if present)

DOI Badge

DOI](https://zenodo.org/badge/D0OI/10.5281/zenodo.17814297.svg https://doi.org/10.5281/zen

Displays as:

DOl 10.5281/zenodo.17814297

. Eachrelease gets a separate DOIL. Zenodo also creates a "concept DOI" for all versions.

Exercise: do it using zenodo sandbox (exact replicate of zenodo but gets empited regularly)

https://zenodo.org/
https://sandbox.zenodo.org/
https://doi.org/10.5281/zenodo.17814297
https://doi.org/10.5281/zenodo.17814297

Save your code

https://archive.softwareheritage.org/save/

An example of saved code: gammapy

https://archive.softwareheritage.org/browse/origin/directory/?

https://archive.softwareheritage.org/save/
https://archive.softwareheritage.org/browse/origin/directory/?origin_url=https://github.com/gammapy/gammapy
https://archive.softwareheritage.org/browse/origin/directory/?origin_url=https://github.com/gammapy/gammapy

Before First Release
» [JLICENSE file added
» [JREADME.md complete
® Description
= Installation
® Usage examples
= Citation
(] codemeta.json created
(] CITATION.cff created
(] Tests written and passing
(] Documentation available
(] Code formatted and linted
(] Security scan passed
(] CHANGELOG.md started

For Each Release

(] Version bumped (following SemVer)
(J CHANGELOG updated

(] Tests passing

(J Documentation updated

(] Git tag created

(] GitHub release created

(] Release notes written

(J Archived (Zenodo/Software Heritage)
(J DOI obtained

(J README updated with DOI

D Announced to users

Add this checklist to your GitHub repository wiki to keep it closeby when doing a release

Try howfairis one more time

Compare before/after scores

What improved?

5 20 minutes hands-on

Summary and Resources

FAIR Principles

Findable through metadata and identifiers

Accessible via standard protocols
Interoperable with standard formats

Reusable with clear licenses

Essential Components

License (MIT, Apache 2.0)

Metadata (codemeta.json, CITATION.cff)
Documentation (README, docs)
Releases (semantic versioning)

Archiving (Zenodo, Software Heritage)

From Code to Published Software

You now have a complete framework for creating high-quality, FAIR research software! &

Resources and Further Learning

EVERSE RSQKit

RSQKit Home

Tools

Guides & Documentation

FAIR4RS Principles

Community

Research Software Engineers (RSE)

Questions?

thomas.vuillaume@lapp.in2p3.fr

Thank you!

https://everse.software/RSQKit/
https://everse.software/RSQKit/pages/research_software/fair_research_software.html
https://everse.software/RSQKit/pages/tasks/publishing_software.html
https://everse.software/RSQKit/pages/tasks/software_metadata.html
https://everse.software/RSQKit/pages/tasks/licensing_software.html
https://everse.software/RSQKit/pages/tasks/archiving_software.html
https://choosealicense.com/
https://codemeta.github.io/codemeta-generator/
https://citation-file-format.github.io/cff-initializer-javascript/
https://github.com/fair-software/howfairis
https://zenodo.org/
https://doi.org/10.15497/RDA00068
https://www.force11.org/software-citation-principles
https://help.zenodo.org/
https://www.softwareheritage.org/
https://semver.org/
https://society-rse.org/
https://everse.software/
https://www.software.ac.uk/
https://us-rse.org/
mailto:thomas.vuillaume@lapp.in2p3.fr

