Practical tools for ensuring code

Pytho

i &

EVE S e b

https://everse.software/RSQKit/

Lecture Overview

Duration: 60 minutes
Target Audience: Research software developers,
PhD students, postdocs, researchers

Topics
1. What are Quality Tools ?
2. A few recommended ones

3. Hands-on Exercises
Learning Outcomes:

= Apply Python quality tools (linters, type

checkers, security scanners)

Configure tools for your projects

Integrate tools into development workflow

Quality Tools ?

Benefits Categories

= & Automate bug detection 1. Linters/Formatters - Style & formatting
=, Enforce consistency 2. Type Checkers - Static type analysis

= [l Improve readability 3. Security Scanners - Vulnerability detection

‘» Detect security issues 4. Complexity Analyzers - Code complexity metrics

Accelerate development 5. Documentation Checkers - Doc quality

Support testing practices

. Tools should integrate in your workflow to automate quality checks

Static Analysis

Analyze code without running it
=> Fast !

How It Works

= Read and parse source code
= Apply rules and patterns

= No execution needed

= Fast feedback loop

What It Checks

= Code style violations

= Type errors

= Security vulnerabilities

= Potential bugs

Dynamic Analysis

Analyze code while running it
=> Slower but more in depth

How It Works

= Execute the program

= Monitor behavior at runtime

= Test execution paths

= Measure performance

What It Checks

= Logic errors
Runtime failures
Performance bottlenecks
Memory leaks

Integration issues

What are Linters? What are Formatters?

Tools that analyze code for: Tools that automatically fix formatting:

Style violations (PEP 8) = Consistent style
Potential bugs = Readable code
Code smells = No manual formatting

Best practice violations
p Popular Python Formatters

Popular Python Linters = Ruff

= Ruff = Black (opinionated)
= Flake8 (classic) = autopep8 (PEP 8 focused)

= Pylint (comprehensive)

. Ruff combines both linting and formatting in one fast tool!

What is Ruff? Example configuration

Written in Rust (10-100x faster)

pyproject.toml / ruff.toml (auto-read when running ruff)
Replaces Flake8, Black, isort...

Supports 700+ rules tool .Tuff

Auto-fixes many issues exclude
.pixi

__pycache__

Installation

pip install ruff / pixi add ruff

line-length 99
or

IDE integration (e.g. VScode extension)

Basic Usage

ruff check .

ruff check --fix .

tool .ruff.rules

D true
ruff format .

per-file-ignores

notebooks/*.py E501 # ignore line length in notebooks

Source: ruff.rs

. Gobackto pkoffee
. Add ruff to your pixi environment
. run ruff check .

see if there are issues

understand them

try and fix them with ruff check . --fix or manually

. run ruff format .

. (Optional) Install the ruff extension for your IDE
= mess with a file (e.g. remove spaces in a function variables definition)
= save

= watch instant formatting

Mess with files to see ruff in action (the pkoffee source files were already linted)

What is Type Checking?

Static analysis of type hints:

def add(a: int, b: int int
return a + b

result add("hello 5

Benefits

Catch bugs before runtime

Better IDE support
Self-documenting code

Safer refactoring

What is ty?

= Fast, Rust-based type checker for Python (much faster than
mypy).
Rule-based configuration: set severity per type of check
(error , warn, ignore).
Inline suppressions: # ty: ignore[...] for fine-grained
control.

CLI and IDE integration (e.g. VSCode extension)

Installation

pip install ty pixi add ty

or

IDE integration (e.g. VScode extension)

Basic Usage
Check a directory:

ty check src/

Example configuration

pyproject.toml / ty.toml (auto-read when running ruff)

tool.ty

include your_package/ src/

exclude tests/ data/ notebooks/
tool.ty.rules

possibly-missing-import error

unused-ignore-comment

Source: https://docs.astral.sh/ty

In pkoffee

1. Install ty

2. Add config to pyproject.toml

3. Run ty check

Tools can detect:

Hardcoded secrets (passwords, API keys)

SQL injection vulnerabilities

Insecure functions (eval, pickle)

Weak cryptography

Path traversal issues

Why It Matters

Protect sensitive data
Prevent security breaches
Meet compliance requirements

Build trust

Bandit: Security Scanner

Installation

pip install bandit

or

Use with IDE integration.

bandit -r

bandit -r

bandit -r .

your_package/

Example of issues

pixi add bandit = B105: Hardcoded password
= B301: Use of pickle (unsafe)
= B614: Unsafe use of pytorch load

Complete list

your_package/ -f json -o report.json

. -s B101,B601

-c bandit.toml

Source: PyCQA/bandit

https://bandit.readthedocs.io/en/latest/integrations.html
https://bandit.readthedocs.io/en/latest/plugins/index.html#complete-test-plugin-listing

What is Dependabot? Configuration

GitHub-native tool (free for all repos) .
.github/dependabot.yml

Automatically monitors dependencies

Creates pull requests for updates version: 2
updates

Detects security vulnerabilities
package-ecosystem pip
Supports multiple ecosystems (Python, npm, Docker, etc.) directory: "/
schedule
interval weekly
! pixi.toml not supported yet :(day: "monday
open-pull-requests-limit: 5
Labels
Key Features dependencies
python

Security alerts for known CVEs reviewers
. . . your-team
Version updates (major, minor, patch)

Automatic PR creation . .
package-ecosystem github-actions

Configurable update schedule directory: "/

schedule

Grouping related updates interval: "monthly

Exercise: Enable Dependabot in your pkoffee repository security settings for auto vulnerability fixes!

https://docs.github.com/en/code-security/tutorials/secure-your-dependencies/dependabot-quickstart-guide

pip-audit hadolint: Dockerfile Linting

Check for known vulnerabilities in dependencies. Linter for Dockerfiles - checks best practices, security, and efficiency.

= Works locally or in CI. See their repository for installation instructions (depends on your system).

= Fails builds if vulnerable packages are present.

pip install pip-audit pixi add pip-audit
pip-audit hadolint Dockerfile

interrogate

hadolint --ignore DL3008 Dockerfile

Measure docstring coverage
Common checks:

ip install interrogate ixi add interrogate . e
pp . P . Base image pinning
. Layer optimization
interrogate -v your_package/

Security best practices

COPY vs ADD usage

https://github.com/hadolint/hadolint

Pre-commit Hooks

Run tools automatically before commits

pip install pre-commit
pre-commit install

Config example .pre-commit-config.yaml :

repos:
- repo: https://github.com/pre-commit/pre-commit-hooks
rev: v6.0.0
hooks:
- id: trailing-whitespace
- id: check-added-large-files
- id: actionlint
name: Lint GitHub Actions workflow files
description: Runs actionlint to lint GitHub Actions workflow files
language: golang
types: ["yaml"]
files: ~\.github/workflows/
entry: actionlint
minimum_pre_commit_version: 3.0.0
repo: https://github.com/astral-sh/ruff-pre-commit
rev: v0.1.0
hooks:
- id: ruff
- id: ruff-format
repo: https://github.com/gitleaks/gitleaks
rev: v8.24.2
hooks:
- id: gitleaks

Putting It All Together: Quality Workflow

Ruff Format/Check

Bandit

Write Code

Local Development
. Write code

. Format with ruff format

. Lint with ruff check --fix
. Type check with ty

. Security scan with bandit

. Commit if all pass

. Start manually, then add automation as you get comfortable

Automation Options

= Pre-commit hooks - Run before each commit
= IDE integration - Real-time feedback or fix
= CI/CD - Prevents from merging code not following repository

standards or rules

= add ruff check toyour CI/CD

= add interrogate to your CI/CD

. Use GitHub actions marketplace

EXQICIS@: Add badges tO your & 15 minutes hands-on exercise
README

Tasks

. GitHub Actions Badge:

Examples
GitHub Action status:

[!'[Deliver results](https://github.com/s3-school /pkoffee/actions/wc

Go to your repository Actions tab

Select your workflow
Ruff badge:
Click ... -> Create status badge

COpY Markdown and add it to README.md [!'[Ruff](https://img.shields.io/endpoint?url=https://raw.githubusex

.‘? u
. Ruff / Quality Badges: o2 Ruff
Custom badge:

= Use Shields.io to create custom badges

= Example: Linted with Ruff I[Quality](https://img.shields.io/badge/quality-A-brightgreen)
. Interrogate (Opt):

= Use the interrogate badge if you have it in your CI

https://shields.io/
https://github.com/s3-school/pkoffee/actions/workflows/deliver.yml
https://github.com/s3-school/pkoffee/actions/workflows/deliver.yml
https://github.com/astral-sh/ruff
https://github.com/astral-sh/ruff

Documentation Tools & Guides

Ruff Documentation Ruff Rules

EVERSE Community

EVERSE Project = EVERSE Network

® Research Software Engineers (RSE)

= Software Carpentry

Questions?

thomas.vuillaume@]lapp.in2p3.fr

Thank you!

https://docs.astral.sh/ruff/
https://mypy.readthedocs.io/
https://bandit.readthedocs.io/
https://pre-commit.com/
https://everse.software/
https://everse.software/RSQKit/
https://everse.software/indicators/website/dimensions.html
https://everse.software/TechRadar/
https://docs.astral.sh/ruff/rules/
https://mypy.readthedocs.io/en/stable/cheat_sheet_py3.html
https://peps.python.org/pep-0008/
https://docs.python.org/3/library/typing.html
https://everse.software/network/
https://society-rse.org/
https://software-carpentry.org/
mailto:thomas.vuillaume@lapp.in2p3.fr

