
Quality Tools for Research
Software

Practical tools for ensuring code quality in 2026 with a bias on
Python

Press Space for next page

https://everse.software/RSQKit/

Lecture Overview Topics
1. What are Quality Tools ?

2. A few recommended ones

3. Hands-on Exercises

Learning Outcomes:

Apply Python quality tools (linters, type

checkers, security scanners)

Configure tools for your projects

Integrate tools into development workflow

Duration: 60 minutes
Target Audience: Research software developers,
PhD students, postdocs, researchers

Quality Tools ?

Why Quality Tools?
Benefits
🤖 Automate bug detection

📏 Enforce consistency

📖 Improve readability

🔒 Detect security issues

⚡ Accelerate development

🧪 Support testing practices

Categories
1. Linters/Formatters - Style & formatting

2. Type Checkers - Static type analysis

3. Security Scanners - Vulnerability detection

4. Complexity Analyzers - Code complexity metrics

5. Documentation Checkers - Doc quality

💡 Tools should integrate in your workflow to automate quality checks

Static vs Dynamic Analysis
Static Analysis
Analyze code without running it
=> Fast !

How It Works
Read and parse source code

Apply rules and patterns

No execution needed

Fast feedback loop

What It Checks
Code style violations

Type errors

Security vulnerabilities

Potential bugs

Dynamic Analysis
Analyze code while running it
=> Slower but more in depth

How It Works
Execute the program

Monitor behavior at runtime

Test execution paths

Measure performance

What It Checks
Logic errors

Runtime failures

Performance bottlenecks

Memory leaks

Integration issues

Category 1: Linters and Formatters
What are Linters?
Tools that analyze code for:

Style violations (PEP 8)

Potential bugs

Code smells

Best practice violations

Popular Python Linters

Ruff ⭐

Flake8 (classic)

Pylint (comprehensive)

What are Formatters?
Tools that automatically fix formatting:

Consistent style

Readable code

No manual formatting

Popular Python Formatters

Ruff ⭐

Black (opinionated)

autopep8 (PEP 8 focused)

💡 Ruff combines both linting and formatting in one fast tool!

Ruff: Ultra-Fast Python Linter & Formatter
What is Ruff?

Written in Rust (10-100x faster)

Replaces Flake8, Black, isort…

Supports 700+ rules

Auto-fixes many issues

Installation

or
IDE integration (e.g. VScode extension)

Basic Usage

Example configuration
pyproject.toml / ruff.toml (auto-read when running ruff)

pip install ruff / pixi add ruff

Check for issues

ruff check .

Auto-fix issues

ruff check --fix .

Format code

ruff format .

[tool.ruff]

Exclude common directories

exclude = [

 ".pixi",

 "__pycache__",

]

Line length

line-length = 99

Enable specific rule sets

select = [

 "E", # pycodestyle errors

 "W", # pycodestyle warnings

 "F", # pyflakes errors

 "I", # isort

 "B", # flake8-bugbear

 "C4", # flake8-comprehensions

]

[tool.ruff.rules]

D = true # enable pydocstyle-like docstring checks

Per-file ignores: override rules for notebooks

per-file-ignores = {

 "notebooks/*.py" = ["E501"] # ignore line length in notebooks

}

Source: ruff.rs

Exercise : Try Ruff yourself (5’)
1. Go back to pkoffee

2. Add ruff to your pixi environment

3. run ruff check .

see if there are issues

understand them

try and fix them with ruff check . --fix or manually

4. run ruff format .

5. (Optional) Install the ruff extension for your IDE

mess with a file (e.g. remove spaces in a function variables definition)

save

watch instant formatting

💡 Mess with files to see ruff in action (the pkoffee source files were already linted)

Category 2: Type Checkers
What is Type Checking?
Static analysis of type hints:

Benefits
Catch bugs before runtime

Better IDE support

Self-documenting code

Safer refactoring

def add(a: int, b: int) -> int:

 return a + b

Type checker catches this:

result = add("hello", 5) # Error!

ty: Static Type Checker
What is ty?

Fast, Rust-based type checker for Python (much faster than

mypy).

Rule-based configuration: set severity per type of check

(error , warn , ignore).

Inline suppressions: # ty: ignore[...] for fine-grained

control.

CLI and IDE integration (e.g. VSCode extension)

Installation

or
IDE integration (e.g. VScode extension)

Basic Usage

Check a directory:

Example configuration
pyproject.toml / ty.toml (auto-read when running ruff)

pip install ty pixi add ty

ty check src/

[tool.ty]

include = ["your_package/", "src/"]

exclude = ["tests/", "data/", "notebooks/"]

[tool.ty.rules]

treat missing imports as errors

possibly-missing-import = "error"

unused ignore comments are warnings

unused-ignore-comment = "warn"

Source: https://docs.astral.sh/ty

Exercise : try ty

1. Install ty

2. Add config to pyproject.toml

3. Run ty check

In pkoffee

Category 3: Security Scanners
Tools can detect:

Hardcoded secrets (passwords, API keys)

SQL injection vulnerabilities

Insecure functions (eval, pickle)

Weak cryptography

Path traversal issues

Why It Matters
Protect sensitive data

Prevent security breaches

Meet compliance requirements

Build trust

Bandit: Security Scanner
Installation

or
Use with IDE integration.

Usage

Example of issues
B105: Hardcoded password

B301: Use of pickle (unsafe)

B614: Unsafe use of pytorch load

Complete list

pip install bandit pixi add bandit

Scan a directory

bandit -r your_package/

Generate detailed report in JSON format

bandit -r your_package/ -f json -o report.json

Ignore specific tests

bandit -r . -s B101,B601

Pass a confif

bandit -r . -c bandit.toml

Source: PyCQA/bandit

https://bandit.readthedocs.io/en/latest/integrations.html
https://bandit.readthedocs.io/en/latest/plugins/index.html#complete-test-plugin-listing

Dependabot: Automated Dependency Updates
What is Dependabot?

GitHub-native tool (free for all repos)

Automatically monitors dependencies

Creates pull requests for updates

Detects security vulnerabilities

Supports multiple ecosystems (Python, npm, Docker, etc.)

⚠️ pixi.toml not supported yet :(

Key Features
Security alerts for known CVEs

Version updates (major, minor, patch)

Automatic PR creation

Configurable update schedule

Grouping related updates

Configuration
.github/dependabot.yml

💡 Exercise: Enable Dependabot in your pkoffee repository security settings for auto vulnerability fixes!

version: 2

updates:

 # Python dependencies

 - package-ecosystem: "pip"

 directory: "/"

 schedule:

 interval: "weekly"

 day: "monday"

 open-pull-requests-limit: 5

 labels:

 - "dependencies"

 - "python"

 reviewers:

 - "your-team"

 # GitHub Actions

 - package-ecosystem: "github-actions"

 directory: "/"

 schedule:

 interval: "monthly"

https://docs.github.com/en/code-security/tutorials/secure-your-dependencies/dependabot-quickstart-guide

Additional Useful Tools
pip-audit
Check for known vulnerabilities in dependencies.

Works locally or in CI.

Fails builds if vulnerable packages are present.

interrogate
Measure docstring coverage

hadolint: Dockerfile Linting
Linter for Dockerfiles - checks best practices, security, and efficiency.

See their repository for installation instructions (depends on your system).

Usage:

Common checks:

Base image pinning

Layer optimization

Security best practices

COPY vs ADD usage

pip install pip-audit pixi add pip-audit

pip-audit

pip install interrogate pixi add interrogate

interrogate -v your_package/

Lint a Dockerfile

hadolint Dockerfile

Ignore specific rules

hadolint --ignore DL3008 Dockerfile

https://github.com/hadolint/hadolint

Pre-commit Hooks
Run tools automatically before commits

Config example .pre-commit-config.yaml :

pip install pre-commit

pre-commit install

repos:

- repo: https://github.com/pre-commit/pre-commit-hooks

 rev: v6.0.0

 hooks:

 - id: trailing-whitespace

 - id: check-added-large-files

 - id: actionlint

 name: Lint GitHub Actions workflow files

 description: Runs actionlint to lint GitHub Actions workflow files

 language: golang

 types: ["yaml"]

 files: ^\.github/workflows/

 entry: actionlint

 minimum_pre_commit_version: 3.0.0

 - repo: https://github.com/astral-sh/ruff-pre-commit

 rev: v0.1.0

 hooks:

 - id: ruff

 - id: ruff-format

 - repo: https://github.com/gitleaks/gitleaks

 rev: v8.24.2

 hooks:

 - id: gitleaks

Putting It All Together: Quality Workflow

Yes

No

Write Code

Ruff Format/Check ty Bandit

All Pass? Commit Push

Local Development
1. Write code

2. Format with ruff format

3. Lint with ruff check --fix

4. Type check with ty

5. Security scan with bandit

6. Commit if all pass

Automation Options
Pre-commit hooks - Run before each commit

IDE integration - Real-time feedback or fix

CI/CD - Prevents from merging code not following repository

standards or rules

💡 Start manually, then add automation as you get comfortable

Exercise
add ruff check to your CI/CD

add interrogate to your CI/CD

💡 Use GitHub actions marketplace

Exercise: Add badges to your
README
Tasks
1. GitHub Actions Badge:

Go to your repository Actions tab

Select your workflow

Click … -> Create status badge

Copy Markdown and add it to README.md

2. Ruff / Quality Badges:

Use Shields.io to create custom badges

Example: Linted with Ruff

3. Interrogate (Opt):

Use the interrogate badge if you have it in your CI

Examples
GitHub Action status:

Deliver resultsDeliver results failingfailing

Ruff badge:

RuffRuff

Custom badge:

qualityquality AA

⏱️ 15 minutes hands-on exercise

[![Deliver results](https://github.com/s3-school/pkoffee/actions/wo

[![Ruff](https://img.shields.io/endpoint?url=https://raw.githubuser

![Quality](https://img.shields.io/badge/quality-A-brightgreen)

https://shields.io/
https://github.com/s3-school/pkoffee/actions/workflows/deliver.yml
https://github.com/s3-school/pkoffee/actions/workflows/deliver.yml
https://github.com/astral-sh/ruff
https://github.com/astral-sh/ruff

Resources and Further Learning
Documentation

Ruff Documentation

mypy Documentation

Bandit Documentation

pre-commit

EVERSE
EVERSE Project

RSQKit

Quality Dimensions

EVERSE TechRadar

Tools & Guides
Ruff Rules

mypy Type Hints Cheat Sheet

PEP 8 Style Guide

Python Type Hints

Community
EVERSE Network

Research Software Engineers (RSE)

Software Carpentry

Questions?

thomas.vuillaume@lapp.in2p3.fr
Thank you!

https://docs.astral.sh/ruff/
https://mypy.readthedocs.io/
https://bandit.readthedocs.io/
https://pre-commit.com/
https://everse.software/
https://everse.software/RSQKit/
https://everse.software/indicators/website/dimensions.html
https://everse.software/TechRadar/
https://docs.astral.sh/ruff/rules/
https://mypy.readthedocs.io/en/stable/cheat_sheet_py3.html
https://peps.python.org/pep-0008/
https://docs.python.org/3/library/typing.html
https://everse.software/network/
https://society-rse.org/
https://software-carpentry.org/
mailto:thomas.vuillaume@lapp.in2p3.fr

