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Context

Where you are now: 

• You have some code


• It works!  
➤ has good test coverage 
➤ the output is what you expect 

The problem: 

• You want to run the code many times / on larger datasets / using 
more complex algorithms...


• Speed or memory use is becoming an issue! 

What you will learn in this lecture: 

• What causes performance to be poor?


• How to identify slow parts of your code?


• How to speed up slow code?


• How to identify high memory usage?


• How to fix high memory usage?
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Why is my code slow?
And when and why you might optimize it...
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Interpreted vs Compiled Code

* actually, some optimization now 
happens in python 3.13+, and soon 
some just-in-time (JIT) compilation 
[See PEP-744].

You can inspect the python byte code!

runs per statement

runs on all code at once

https://peps.python.org/pep-0744/
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Python is Interpreted 

• python pre-compiles all code before you run it

➤ turns text into python byte code, not machine code  
➤ Byte code is machine independent instructions  
➤ Each instruction is executed as machine code by the interpreter  

• (Code → [Compiler] → Byte Code) → [Interpreter] → Machine Code Instruction 
➤ Conceptually similar to Java, but executed per-statement. 
➤ Except: No global optimization, no further (JIT) compilation*  
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Python is Interpreted 

• python pre-compiles all code before you run it

➤ turns text into python byte code, not machine code  
➤ Byte code is machine independent instructions  
➤ Each instruction is executed as machine code by the interpreter  

• (Code → [Compiler] → Byte Code) → [Interpreter] → Machine Code Instruction 
➤ Conceptually similar to Java, but executed per-statement. 
➤ Except: No global optimization, no further (JIT) compilation*  

Interpreted languages can be slow!  Particularly loops.

4

Interpreted vs Compiled Code

* actually, some optimization now 
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Interpreted vs Compiled Code 2
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executing many machine-code instructions!
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executing many machine-code instructions!

 
Python is not completely interpreted! 

• Many libraries contain fully compiled and optimized functions that can 
be executed as a single byte-code instruction!

➤ numpy/scipy → contains C++, FORTRAN, Cython, ... 

• There are special libraries for speeding up python code (see later...) 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Executing lots of interpreted statements is much slower than 
executing many machine-code instructions!

 
Python is not completely interpreted! 

• Many libraries contain fully compiled and optimized functions that can 
be executed as a single byte-code instruction!

➤ numpy/scipy → contains C++, FORTRAN, Cython, ... 

• There are special libraries for speeding up python code (see later...) 

Don't always blame python on slowness! 

• Algorithm design has a big impact!


• Bad design can lead to poor performance whether compiled or 
interpreted!
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Scientific code is full of loops! 

• Explicit: 

| for item in some_list: 
|     do_some_computation(item) 

| values = [f(x) for x in some_list] 

• Implicit

| map(do_some_computation, some_list) 

Python loops are 100 - 1000x slower than those in:


•  pre-compiled languages like C, C++, FORTRAN, Rust 

•  just-in-time compiled languages like Julia or Java

6

Loops in Python



Identifying Speed Bottlenecks
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A way to identify where resources are used by a program: 

• CPU resources (computation time)


• Memory resources 


Identify problems in your code like hangs and  memory leaks 

Identify "hotspots" in your code that may be useful to 
optimize! 

➤ always ask your question: will it make a real difference?

➤ If it's good enough, STOP

8

What is profiling?
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You already saw this in the lecture on testing: 

• Show the 3 slowest tests:

| pytest --durations=3 
➤ you can set the threshold in seconds 

| --durations-min=0.5  

• Example, but not so exciting with our current code:

| pytest --durations 3      (pkoffee)  ✔  󰌠 3.13.11 
| ========================================== test session starts ========================================== 
| collected 39 items 

| tests/test_data.py ............                                                                   [ 30%] 
| tests/test_fit_model.py ..........                                                                [ 56%] 
| tests/test_fit_model_io.py ....                                                                   [ 66%] 
| tests/test_metrics.py ........                                                                    [ 87%] 
| tests/test_parametric_function.py .....                                                           [100%] 

| ========================================== slowest 3 durations ========================================== 
| 0.01s call     tests/test_fit_model_io.py::test_save_models 
| 0.01s setup    tests/test_data.py::test_load_csv_valid_file 
| 0.01s call     tests/test_fit_model_io.py::test_save_models_toml 

9

Speed: profiling with PyTest
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What I often see... 

from time import time 

start = time.time() 

[code] 

stop = time.time() 
print(stop - start) 

this measures only wall-clock time!   

You want CPU time! 
(not dependent on other stuff you are running) 

You want many trials, for statistics! 

Better method: %timeit 

• interactive %timeit  "magic" jupyter/ipython 
function 

• Automatically runs a function many times and 
measures CPU time and standard deviation 

• Usage:  
| %timeit <python statement> 

Notes:  

➤ to time an entire cell, use %%time 
➤  you can also import the `timeit` module  
➤ if you really only want one trial, use %%time

10

Speed profiling: in a notebook
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Speed profiling: in a notebook



DEMO
Profiling in a notebook

an advanced study:


• see using-timeit.ipynb


• pixi run "jupyter lab"
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A profiler is fancier than %timeit: it measures all function calls 

• use the magic %prun function

| %prun <python statement> 

• Generates a comprehensive report

12

Using a profiler (Notebook version)
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Sometimes you need finer grained info: per line, 
not per function call! 

• unlike %timeit, need to load an extension first:

| %load_ext line_profiler 

• Then, if you have a function defined, you must 
"mark" it to be profiled by adding "-f <func>"

| %lprun -f <function name> <python statement that uses 

function> 

for example:


| %lprun -f myfunc myfunc(100,100) 

Note you can mark more than one function to add to the report! 

13

Line-profiling in a Notebook



DEMO
Profiling in a notebook

Part 1


• see profiling-example.ipynb


• pixi run "jupyter lab"
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Python provides several profilers, but the most common is cProfile (note: gprof for c+
+).  It's what Jupyter uses by default 
Profile an entire script: 

• Run your script with the additional options: 

| python -m cProfile -o output.pstats  <script> 

For a command-line script like pkoffee, it's better to run it as a module from the python interpreter:


| python -m cProfile -o prof.pstats -m pkoffee.cli -- analyze -d coffee_productivity.csv -o out.png 
 

• this generates a binary data file (output.pstats) that contains  statistics on how often 
and for how long each function was called


• There is a built-in pstats module that can read it and print stats, but it's a bit difficult to 
use... but there are GUIs! (recommended)


15

For existing code: cProfile

↑ note the double dash: means after this, are the script's (not python's) argumentshave to run the module, not "pkoffee" ↑
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Tip: use a gui to view stats output

Viewing with SnakeViz 
| % pixi add snakeviz 
| % snakeviz output.pstats 

• interactive call statistics viewer


• this is not the only one, but it's 
nice and simple and runs in your 
browser.


• Click and zoom to see the results

DEMO TIME
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What about time spent in each line of code? 
The line_profiler module can help: 

| %  conda install line_profiler 

• mark code with @profile:

| from line_profiler import profile 

| @profile 
| def slow_function(a, b, c): 
|     ... 

• Then run:

➤ % kernprof -l script_to_profile.py 

• which generates a .lprof file that can be viewed with:

➤ % python -m line_profiler script_to_profile.py.lprof

17

Aside: Line Profiling without Jupyter

File: pystone.py 
Function: Proc2 at line 149 
Total time: 0.606656 s 

Line #      Hits         Time  Per Hit   % Time  Line Contents 
======================================================== 
   149                                           @profile 
   150                                           def Proc2(IntParIO): 
   151     50000        82003      1.6     13.5      IntLoc = IntParIO 
+ 10 
   152     50000        63162      1.3     10.4      while 1: 
   153     50000        69065      1.4     11.4          if Char1Glob 
== 'A': 
   154     50000        66354      1.3     10.9              IntLoc = 
IntLoc - 1 
   155     50000        67263      1.3     11.1              IntParIO 
= IntLoc - IntGlob 
   156     50000        65494      1.3     10.8              EnumLoc = 
Ident1 
   157     50000        68001      1.4     11.2          if EnumLoc == 
Ident1: 
   158     50000        63739      1.3     10.5              break 
   159     50000        61575      1.2     10.1      return IntParIO 



DEMO
Profiling everything using cProfile

Using the command-line to profile pkoffee


$ pixi shell 

$ cd analysis 

$ python -m cProfile -o prof.pstats -- pkoffee.cli  analyze --data-file coffee_productivity.csv --
output fitted_models.toml --show-rankings 

Then try snakeviz to see  the results  (pixi global install snakeviz)



Speeding up Slow Code
(some examples)



“We should forget about small 
efficiencies, say about 97% of the time: 
premature optimization is the root 
of all evil - Sir Tony Hoare? 

or Donald Knuth?



“We should forget about small 
efficiencies, say about 97% of the time: 
premature optimization is the root 
of all evil - Sir Tony Hoare? 

or Donald Knuth?
From a 1974 article on why GOTO statements are good
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1) Make sure code works correctly  first 

• DO NOT optimize code you are writing or debugging!


2) Identify use cases for optimization: 

• how often is a function called? Is it useful to optimize it?


• If it is not called often and finishes with reasonable time/memory, stop! 


3) Profile the code to identify bottlenecks in a scientific way 

• time spent in each function, statement


• memory use per function, statement, time-step


4) Try to re-write as little as possible to achieve improvement 

5) Think about overall design, if small changes are not sufficient 

• some times the design is what is making the code slow... can it be 
improved?  (e.g.: flat better than nested!) 


• Don't be afraid to re-write or refactor!
21

Steps to optimization
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Fast numerics  
(avoid or speed-up loops): 

• Numpy: fast N-dimensional arrays 
and array operations, vectors, 
tensors.


• Numba: compile python functions!


Other options (less recommended): 

• Cython: python-like language to 
generate C-code


• Write C/C++/Rust and call it from 
python

22

Scientific Python Universe

Some packages of Python's scientific stack. Source: VanderPlas 2017, slide 52.



Karl Kosack - S3 School 2026

Replace python loops with array operations, slices, linear 
algebra 

• Fully implemented in fast compiled languages


• supports N-dimensional arrays and fast transformations


• don't call a function on many small pieces of data when 
you can call it on an array all at once


• Nearly the speed of compiled languages


Have to think in arrays! 

23

Numpy: fast python numerics
https://numpy.org/

https://numpy.org/
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Numpy: fast python numerics

This requires practice, and feels very strange at first if you are 
coming from C programming! 

Take some time to look through the NumPy and SciPy API 
documentation - there are tons of interesting functions to help you!

https://numpy.org/

https://numpy.org/
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Takes python code and directly uses introspection to compile it with LLVM 

• automatic,  but only works on supported operations 
➤ most pure python functions, some numpy functions, but can't call anything else! 
➤ fails with complex objects like pandas DataFrames! (though there are ways to help) 

• Can generate NumPy "ufuncs" directly (function that works on scalars but is run on all 
elements of an array), which are too slow to write in python normally.


• Can even compile to GPU code for nVidia CUDA and AMD ROC GPUs! 

from numba import jit 
from numpy import arange 

# jit decorator tells Numba to compile this function. 
# The argument types will be inferred by Numba when function is called. 
@jit 
def sum2d(arr): 
    M, N = arr.shape 
    result = 0.0 
    for i in range(M): 
        for j in range(N): 
            result += arr[i,j] 
    return result 

a = arange(9).reshape(3,3) 
print(sum2d(a)) 

|

24

Compile python just-in-time* 

just add this decorator, 
and it's magic (nearly)

*JIT: compile code at runtime

https://numba.pydata.org/

https://numba.pydata.org/
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Numba supports a large number of NumPy functions (and even some scipy): 

• It does not actually call NumPy code!


• it re-implements it in a way that is compilable with LLVM.


So what is the point?  Isn't NumPy really optimized already? 

• Minimize intermediate results!

➤ numpy operations often have to allocate memory for data that is not needed in the end: 

x = np.arange(1000) 
result = A * x**2 + B * x + C 

25

Numba with NumPy

https://numba.pydata.org/numba-doc/dev/reference/numpysupported.html 

in C, you might do this all in one loop, with no extra 
memory needed:


for (i=0; i<x.size; i++) { 
    result[i] = A*x[i]*x[i] + B*x[i] + C; 
}

https://numba.pydata.org/numba-doc/dev/reference/numpysupported.html
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Fully implemented and well-
designed algorithms built on 
numpy: 

• scipy: interpolation, integration, 
minimization/optimization/fitting/
signal processing/...

➤ you won't implement something 

faster in general! 
➤ Written by experts, in 

FORTRAN, C, etc. 

• scikit-learn: machine learning/
model fitting

➤ not covered in this lecture, but

26

Scientific Python Universe

Some packages of Python's scientific stack. Source: VanderPlas 2017, slide 52.



DEMO
Profiling in a notebook

an advanced study: back to our 
Gaussian Blur examples...


• see profiling-example.ipynb


• pixi run "jupyter lab"
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Parallelization and HPC:  
Nearly drop-in replacements for NumPy


• Dask: 

➤ Parallelize large NumPy operations 

across multiple machines  
➤ Supports pandas DataFrames  

• JAX: 

➤ high-performance numerical 

computing and large-scale machine 
learning 

➤ Auto-differentatiation of array 
operations 

Others... PyTorch, etc

28

Scientific Python Universe

Some packages of Python's scientific stack. Source: VanderPlas 2017, slide 52.
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Not an inherent problem with the language! 

• The reference implementation of python (CPython) is written 
in C and is continuously improving!

➤ Python 3.11: large speedup (>60%) with optimized interpreter 
➤ Python 3.12: faster dicts and sets, fast f-string 
➤ Python 3.13: better adaptive interpreter, experimental JIT 

support 
➤ Python 3.14: support for free-threading + multiple interpreters 

(faster parallel code) 

• Future version have more more just-in-time compilation and 
more optimizers


Python ≠ CPython 

• PyPy: alternative interpreter will full JIT compilation (not 
always faster if you use Numpy though!) 

29

Do nothing: Python keeps getting faster
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Do nothing: Python keeps getting faster

So one option to optimization is: 

Do nothing!  

Wait for a faster implementation, or a 
new version of CPython to be released, 
or swap in a completely different 
implementation!



Identifying Memory Bottlenecks



CAVEAT!
• The standard package used for memory profiling memory_profiler is currently not (or poorly) 

maintained!


• https://github.com/pythonprofilers/memory_profiler


• JupyterLab support broken on Python 3.12+ due to minor dependence on distutils


• there is a unmerged pull request from 2024 to fix this


• For now I have pinned python=3.11 in the examples (and in the exercise repo) to avoid this issue.  


• Works with later python versions in the terminal or in scripts, just not in Jupyter Notebooks.


• Alternatives?


• memray: more modern, but Linux and MacOS only (no windows)

https://github.com/pythonprofilers/memory_profiler
https://github.com/pythonprofilers/memory_profiler/pull/398
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Memory allocated implicitly when you create an object: 

• type(x);  sys.getsizeof(x)

32

How memory is allocated in Python

Statement Memory allocated (bytes) Note

x = 12 1 integer (28) Note unlike in C, there is overhead in a single variable

x = 10**1000 1 integer (468) Integers in python are not fixed bit! You can store 
arbitrarily large ones

x = 10.2 1 float (24) Same overhead: 64-bit float with some extra info

x = [ ] 1 blank list container (56)

x = [1,2,3,4,5] list of 5 integers (104)

x = np.arange(0) empty numpy array (112) Again, some overhead from "array"

x = np.arange(1000) numpy array + 1000 int64s (8112)

x = "this is a string" string + 16 characters (49+16=65) Python uses Unicode (one byte per character usually)
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You don't need to de-allocate memory in python, it's done automatically! 

Garbage Collection 

• Python keeps a count of references to each object in memory


• Periodically, the garbage collector runs in the background

➤ If reference_count == 0, memory is de-allocated! 
➤ Even can find dangling circular references 

You CAN explicitly delete references however! 
| del variable_name  # remove variable from scope 

• if the memory pointed to by that variable is not pointed to elsewhere, it will be 
deallocated next time the garbage collector runs.


• Normally, you don't need to do this, however.

33

How memory is allocated in Python



DEMO
Memory Profiling

see notebook : 
memory_allocation_example.ipynb
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Definition:  

• memory which is no longer needed is not 
released.

➤ In python this means a reference to that 

data is still in scope somewhere! 

• data stored but cannot be accessed by 
the running code 

➤ generally not a problem with a garbage 

collector, but careful if you write C/C++ 
code! 

Identification: 

• Memory use grows over time during 
program execution.

35

Memory Leaks
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Use of CPU is not the only thing to worry about… what about 
RAM?  Let's first check for memory leaks… 

| % pixi add memory_profiler 
| % pixi run "mprof run python <script>" 
| % pixi run "mprof plot" 

36

Memory Profiling

if not already there
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Line #      Hits         Time  Per Hit   % Time  Line Contents 
============================================================== 
    17                                           @profile 
    18                                           def main(): 
    19         1          3.0      3.0      0.0      if len(sys.argv) >= 2: 
    20                                                   filename = sys.argv[1] 
    21                                               else: 
    22         1        485.0    485.0      0.0          filename = get_dataset_path("gamma_test_large.simtel.gz") 
    24         1    3572651.0 3572651.0      9.8      with EventSource(filename, max_events=500) as source: 
    26         1     438843.0 438843.0      1.2          calib = CameraCalibrator(subarray=source.subarray) 
    27         2     249622.0 124811.0      0.7          process_images = ImageProcessor( 
    28         1          2.0      2.0      0.0              subarray=source.subarray, is_simulation=source.is_simulation 
    29                                                   ) 
    30         1       1363.0   1363.0      0.0          process_shower = ShowerProcessor(subarray=source.subarray) 
    31         2     276938.0 138469.0      0.8          write = DataWriter( 
    32         1          0.0      0.0      0.0              event_source=source, output_path="events.DL1.h5", overwrite=True 
    33                                                   ) 
    35       111   11506526.0 103662.4     31.5          for event in tqdm(source): 
    36       110    1313386.0  11939.9      3.6              calib(event) 
    37       110    2353948.0  21399.5      6.4              process_images(event) 
    38       110   14044245.0 127675.0     38.4              process_shower(event) 
    39       110    2814913.0  25590.1      7.7              write(event)

Cumulative is nice, but we want to see 
the memory for a particular function or 
class… 

• decorate the function you want to profile 
(line-wise) with memory_profiler.profile

| % python -m memory_profiler <script>

37

Memory Profiling in detail

Decorate what we 
want to measure (no 

import needed)

Output shows the time 
spent in the line or block 

(e.g. if , for)
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Again, you can do memory profiling using magic commands in an iPython 
(Jupyter) notebook 

• Enable the memory profiling notebook extension:

| %load_ext memory_profiler 

• Now you have access to several magic functions:

Like %timeit, but for memory usage:


| %memit <python statement> 

or a more full-featured report:


| %mprun -f <function name> <statement> 

Caveats: 

• the peak memory usage shown in the notebook may not relate to the function 
you are testing! It is the sum of all memory already allocated that has not yet 
been garbage collected. (so look at the "increment" instead).  


• %mprun only works if your functions are defined in a file (not a notebook) and 
imported into the notebook
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Memory Profiling in a Notebook



DEMO TIME   
back to "profiling_example.ipynb"



Karl Kosack - S3 School 2026

Automatic Debugger breakpoints: 

• you can automatically start the debugging if the code tries 
to go above a memory limit, to see where the allocation is 
happening:

| % python -m memory_profiler ——pdb-mmem=100  <script> 

will break and enter debugger after 100 MB is allocated, on the line where the 
last allocation occurred


Usefull for when you don't know where to look.


| python -m memory_profiler --pdb-mmem=100 pkoffee.cli analyze --data-
file coffee_productivity.csv --output fitted_models.toml --show-rankings
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Memory Profiling: jump to debugger



Karl Kosack - S3 School 2026

Activity: 
speed and 
memory 
profiling

Find the speed and memory bottlenecks using 
profiler tools! 

• Check out the branch: day_2_solution_slow

| git fetch upstream day_2_solution_slow 
| git switch day_2_solution_slow 

• I've (not so secretly) modified the code in yesterday's 
solution to add some bottlenecks!


• You might notice running your analysis is a bit slower 
than before...


Without looking at the code or git log*, use one or 
more profiling tools to find which function is slow and 
where some memory is wasted.
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* Obviously that would be too easy, but in the 
real world it's YOU that added the slowness, 
and it was not on purpose!

HINT: you can run pkoffee's CLI directly with python using: 
python pkoffee.cli analyze


