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* [t works!
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Where you are now:
* You have some code
* [t works!
» has good test coverage

» the output Is what you expect

. ot 8
Co ntext < The problem:
a Y e You want to run the code many times / on larger datasets / using
more complex algorithms...

 Speed or memory use is becoming an issue!

What you will learn in this lecture:
 \What causes performance to be poor?
 How to identify slow parts of your code?
 How to speed up slow code?
 How to identify high memory usage?

 How to fix high memory usage?
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" “Interpreted vs Compiled Code

runs on all code at once
v def myfunc(x):
return 2 + X%x%2
runs per statement

import dis

dis.dis(myfunc)

3 RESUME 0

8 LOAD_CONST
LOAD_FAST
LOAD_CONST
BINARY_OP
BINARY_OP
RETURN_VALUE

(2)
(x)
(2)
(k)

(+)

S0 PO

You can inspect the python byte code!

* actually, some optimization now
happens in python 3.13+, and soon
some just-in-time (JIT) compilation
[See PEP-744].
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""'"'?"'ih’té?preted vs Compiled Code

Compiled: Code — [Compiler/Optimizer] & Machine Code Executable
runs on all code at once

Interpreted: Code — [Interpreter] @ Machine Code Instruction
runs per statement

, def myfunc(x):
return 2 + Xxxkx%2

import dis

Python is Interpreted dis.dis(myfunc)
3 RESUME 7]

* python pre-compiles all code before you run it . LOAD CONST 1 (2)

| | LOAD_FAST 0 (x)

» tumns text into python byte code, not machine code LOAD_CONST 1 (2)

. , , | | BINARY_OP 8 (k)

» Byte code Is machine independent instructions BINARY_OP 0 (+)

RETURN_VALUE

» Each instruction Is executed as machine code by the interpreter .
You can inspect the python byte code!

 (Code — [Compiler] @ Byte Code) — [Interpreter] @ Machine Code Instruction

» Conceptually similar to Java, but executed per-statement.

» Except: No global optimization, no further (JIT) compilation®

* actually, some optimization now
happens in python 3.13+, and soon
some just-in-time (JIT) compilation
[See PEP-744].
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""'"':0'°'I'h’té"'fpreted vs Compiled Code

Compiled: Code — [Compiler/Optimizer] & Machine Code Executable
runs on all code at once

, def myfunc(x):
return 2 + Xxxkx2

Interpreted: Code — [Interpreter] @ Machine Code Instruction
runs per statement

import dis

Python is Interpreted dis.dis(myfunc)
3 RESUME 7]

* python pre-compiles all code before you run it . LOAD CONST 1 (2)

| | LOAD_FAST 0 (x)

» tumns text into python byte code, not machine code LOAD_CONST 1 (2)

. , , | | BINARY_OP 8 (k)

» Byte code Is machine independent instructions BINARY_OP 0 (+)

RETURN_VALUE

» Each instruction Is executed as machine code by the interpreter .
You can inspect the python byte code!

 (Code — [Compiler] @ Byte Code) — [Interpreter] @ Machine Code Instruction

» Conceptually similar to Java, but executed per-statement.

» Except: No global optimization, no further (JIT) compilation®

* actually, some optimization now

happens in python 3.13+, and soon
Interpreted languages can be slow! Particularly loops. some just-in-time (JIT) compilation

[See PEP-744].
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Executing lots of interpreted statements is much slower than
executing many machine-code instructions!



““Intetpreted vs Compiled Code 2

Executing lots of interpreted statements is much slower than
executing many machine-code instructions!

Python is not completely interpreted!

 Many libraries contain fully compiled and optimized functions that can
be executed as a single byte-code instruction!

» numpy/scipy — contains C++, FORTRAN, Cython, ...

* There are special libraries for speeding up python code (see later...)

Karl Kosack - S3 School 2026 5



"""':;""I'h"té"r'preted vs Compiled Code 2

Executing lots of interpreted statements is much slower than
executing many machine-code instructions!

Python is not completely interpreted!

 Many libraries contain fully compiled and optimized functions that can
be executed as a single byte-code instruction!

» numpy/scipy — contains C++, FORTRAN, Cython, ...

* There are special libraries for speeding up python code (see later...)

Don't always blame python on slowness!
* Algorithm design has a big impact!
 Bad design can lead to poor performance whether compiled or
interpreted!
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““Loops in Python

Scientific code is full of loops!

e Explicit:

for item in some_list:
do_some_computation(item)

values = [f(x) for x in some_list]

e Implicit

map (do_some_computation, some_list)

Python loops are 100 - 1000x slower than those In:
o pre-compiled languages like C, C++, FORTRAN, Rust

* just-in-time compiled languages like Julia or Java

Karl Kosack - ESCAPE School 2022 6






"“'What is profiling?

A way to identify where resources are used by a program:
 CPU resources (computation time)

 Memory resources

Identify problems in your code like hangs and memory leaks

Identify "hotspots" in your code that may be useful to
optimize!

» always ask your question: will it make a real difference?
» |f it's good enough, STOP

Karl Kosack - S3 School 2026 8



““'Speed: profiling with PyTest

You already saw this in the lecture on testing:

e Show the 3 slowest tests:

pytest --durations=3
» you can set the threshold In seconds

--durations-min=0.5

 Example, but not so exciting with our current code:

pytest --durations 3 (pkoffee) [2) v ®@3.13.11
collected 39 items

tests/test_data.py ............ [ 30%]
tests/test_fit_model.py .......... [ 56%]
tests/test_fit_model_io.py .... [ 66%]
tests/test_metrics.py ........ [ 87%]
tests/test_parametric_function.py ..... [100% ]

0.01s call tests/test_fit_model_io.py::test_save_models
0.01s setup tests/test_data.py::test_load_csv_valid_file
0.01s call tests/test_fit_model_io.py::test_save_models_toml



" “'Speed profiling: in a notebook

What I often see...

from time import time
start = time.time()

[code ]

stop = time.time()
print(stop - start)

this measures only wall-clock time!

You want CPU time!
(not dependent on other stuff you are running)

You want many trials, for statistics!

10



Speed profiling: in a notebook

What I often see... Better method: Yotimeit

from time import time  interactive %timeit "magic" jupyter/ipython

function
start = time.time() _ _ _
* Automatically runs a function many times and

[code] measures CPU time and standard deviation

stop = time.time()
print(stop - start) * Usage:

%timeit <python statement>

this measures only wall-clock time! Notes:

You want CPU time! > [0 time an entire cell, use % %time

(not dependent on other stuff you are running) > you can also import the timeit° module

_ o | | .
You want many trials, for statistics! > if you really only want one trial, use % %time

Karl Kosack - S3 School 2026 10



DEMO

Profiling in a notebook

an advanced study:

* see using-timeit.ipynb

e pixi run "jupyter lab"



TL M A AL g

ST g a profiler (Notebook version)

A profiler is fancier than %timeit: it measures all function calls

* use the magic %prun function

%prun <python statement>
e (Generates a Comprehensive report

In [27]: $prun create array loop(1000,1000)

3001004 function calls in 0.845 seconds
Ordered by: internal time

ncalls tottime percall cumtime percall filename:lineno(function)

1 0.477 0.477 0.835 0.835 <ipython-input-12-6d84b414c957>:1(create array loop)
1000000 0.136 0.000 0.136 0.000 {built-in method math.cos}
1000000 0.133 0.000 0.133 0.000 {built-in method math.sin}
1001000 0.089 0.000 0.089 0.000 {method 'append' of 'list' objects}

1 0.010 0.010 0.845 0.845 <string>:1(<module>)

1 0.000 0.000 0.845 0.845 {built-in method builtins.exec}

1 0.000 0.000 0.000 0.000 {method 'disable’ of ' lsprof.Profiler' objects}

12



““Line-profiling in a Notebook

Sometimes you need finer grained info: per line,
not per function call!

e unlike %timelt, need to load an extension first:

%load_ext line_profiler

In [51]): %lprun -f create array loop create array loop(1000,1000)

i
r'imer unit: le-ub S

Total time: 1.31799 s

* Then, if you have a function defined, you must | rie: <ierthon-input-12-6dsansrscss

Function: create array loop at line 1

"mark" it tO be prOfiIed by adding "_f <funC>" Line # Hits Time Per Hit $ Time Line Contents

) 1 def create array loop(N,M):
%lprun -f <function name> <python statement that uses 2 1 2 el ol arr = []
. 3 1001 4717 0.5 0.0 for y in range(M):

function> 4 1000 5244 5.2 0.4 row = []
5 1001000 463343 0.5 35.2 for x in range(N):
6 1000000 848316 0.8 64.4 row.append(sin(x)*cos(0.1*y))
7 1000 606 0.6 0.0 arr.append(row)
8 1 1 1.0 0.0 return arr

for example: —

%lprun -f myfunc myfunc(100,100)

Note you can mark more than one function to add to the report!

Karl Kosack - S3 School 2026 13



DEMO

Profiling in a notebook
Part 1

» see profiling-example.ipynb

e pixi run "jupyter lab"



" “'For existing code: cProfile

Python provides several profilers, but the most common is cProfile (note: gprof for c+
+). It's what Jupyter uses by default

Profile an entire script:

* Run your script with the additional options:

python -m cProfile -o output.pstats <script>

v \z’
python -m cProfile -o prof.pstats -m pkoffee.cli -- analyze -d coffee_productivity.csv -o out.pﬁ::" '
have to run the module, not "pkoffee" T T note the double dash: means after this, are the script's (not python's) arguments

\

For a command-line script like pkoffee, it's better to run it as a module from the python interpreter:

* this generates a binary data file (output.pstats) that contains statistics on how often
and for how long each function was called

* There is a built-in pstats module that can read it and print stats, but it's a bit difficult to
use... but there are GUIs! (recommended)

Karl Kosack - S3 School 2026 15



A . -

‘Tip:‘use a gui to view stats output

.
L
-~ -

(Call Stack)

5. image_processor.py:97(__call )
4. process.py:175(start)
image_processor.py:97(__call__) 223 . ;ggiegg : ; ; 1 ; glzl?x:lain)
(Reset Zoom> 8.66 s 1. process.py:1l(<module>)
0. ~:0(<built-in method builtins.exec>)
| | | -
Viewing with SnakeViz
g Style: Icicle v 8.66 s
Depth: 10 v image_processor.py:100(_parameterize_image)
0 ° ° ° N 7.95s
% plxl add snakeviz cutors: | 1 - 100 v
o hillas.py:64(hillas_parameters) timing.py:24(timing_parameters)
o
% shakeviz output.pstats 2925 2115

e |Interactive call statistics viewer

* this is not the only one, but it's I i
nice and simple and runs in your
browser. I H

e Click and zoom to see the results _—

ncalls tottime percall cumtime percall filename:lineno(function)
2226 4.629 0.002079 4.629 0.002079 extractor.py:195(neighbor_average_waveform)
9203931/4273437 4232 9.903e-07 31.68 7.414e-06 ~:0(<built-in method builtins.getattr>)
2701625 2.966 1.098e-06 3.257 1.205e-06 ~:0(<built-in method numpy.array>)
1917670 2.925 1.525e-06 8.082 4.215e-06 quantity.py:289(__new__)
D E M O T I M E 1726186 2.848 1.65e-06 5015 2.905e-06 baseframe.py:850(get_representation_component_names)
2690488/1922760 2.069 1.076e-06 23.99 1.248e-05 attributes.ov:95( get )

16



““ Aside: Line Profiling without Jupyter

What about time spent in each line of code?

The line_profiler module can help:

% conda install line_profiler

 mark code with @profile:

from line_profiler import profile

@profile
def slow_function(a, b, c):

e Then run:

% kernprof -| script_to_profile.py

File: pystone.py

Function:
Total time:

Proc2 at line 149
0.606656 s

Time

Per Hit

% Time

Line Contents

154

IntLoc
155

= IntLoc -

156
Ident1
157

Ident1:

158

* which generates a .lprof file that can be viewed with: '>°

% python -m line_profiler script_to_profile.py.lprof

]

50000
50000

50000

50000

IntGlob

50000

50000

50000
50000

382003

63162
69065

66354

67263

65494

68001

63739
61575

10.9
11.1
10.8
11.2

10.5
10.1

@profile
def Proc2(IntParIO):
IntLoc = IntParlO

while 1:
if Char1Glob

IntLoc =
IntParlIO
EnumLoc =

if EnumLoc ==

break
return IntParlO

17



DEMO

Profiling everything using cProfile

Using the command-line to profile pkoffee

$ pixi shell
$ cd analysis

$ python -m cProfile -o prof.pstats -- pkoffee.cli analyze --data-file coffee_productivity.csv --
output fitted_models.toml --show-rankings

Then try snakeviz to see the results (pixi global install snakeviz)






We should forget about small
efliciencies, say about 97% of the time:

premature optimization is the root

of all evil - Sir Tony Hoare?
or Donald Knuth?



We should forget about small
efliciencies, say about 97% of the time:

premature optimization is the root

of all evil - Sir Tony Hoare?
or Donald Knuth?

From a 1974 article on why GOTO statements are good



Steps to optimization

1) Make sure code works correctly first
DO NOT optimize code you are writing or debugging!
2) ldentify use cases for optimization:
* how often is a function called? Is it useful to optimize it?
 If it is not called often and finishes with reasonable time/memory, stop!
3) Profile the code to identify bottlenecks in a scientific way
* time spent in each function, statement
e memory use per function, statement, time-step
4) Try to re-write as little as possible to achieve improvement
5) Think about overall design, if small changes are not sufficient

 some times the design is what is making the code slow... can it be
improved? (e.q.: flat better than nested')

e Don't be afraid to re-write or refactor!
Karl Kosack - S3 School 2026 21



" 'Scientific Python Universe

| StateMoodlels
Statistics in pyﬂnov\

= ‘ ’ xar raxf;/

/

/ }PE/)t[h)gn il
/5 o pgthon

A “m"paekages of Python's scientific stack. Source: VanderPlas 2017, slide 52.
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(and

many,
many
more)

Fast numerics
(avoid or speed-up loops):

* Numpy: fast N-dimensional arrays
and array operations, vectors,
tensors.

* Numba: compile python functions!

Other options (less recommended):

* Cython: python-like language to
generate C-code

e Write C/C++/Rust and call it from
python

22



G py: fast python numerics

https://numpy.org/
Replace python loops with array operations, slices, linear import numpy as np
algebra import matplotlib.pyplot as plt
, , , X = np.linspace(-10, 10, 51)
* Fully implemented in fast compiled languages Y = np.sin(X)
Y_noisy = Y + np.random.normal(scale=0.5, size=51)
» supports N-dimensional arrays and fast transformations pit.plotiX, ¥, "+)
plt.plot(X, Y_noisy)
* don't call a function on many small pieces of data when [<matplotlib. lines.Line2D at 0x113b28850>]
you can call it on an array all at once 2.0
* Nearly the speed of compiled languages 15 1
1.0 A /«\ _
_ _ 051 | \
Have to think in arrays! \ \ \
0.0 A
—-0.5 - \ /
R VAR
_1.5_

-100 -75 =50 =25 0.0 2.5 5.0 7.5 10.0
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https://numpy.org/

@

- - - B
g = Numpy: fast python numerics
https://numpy.org/
Replace python loops with array operations, slices, linear import numpy as np
E]IS]EEt)rfa import matplotlib.pyplot as plt
, , , X = np.linspace(-10, 10, 51)
* Fully implemented in fast compiled languages Y = np.sin(X)
Y_noisy = Y + np.random.normal(scale=0.5, size=51)
» supports N-dimensional arrays and fast transformations pit.plotiX, ¥, "+)
plt.plot(X, Y_noisy)
* don't call a function on many small pieces of data when [<matplotlib. lines.Line2D at 0x113b28850>]
you can call it on an array all at once 20
* Nearly the speed of compiled languages 15 1
1.0 A
/f“\ /‘*\_ AN
] ] 054 { \ / / \
Have to think in arrays! \ f \ \ /
0.0 | | \
I\ \ [l
~0.5 - \\ f
This requires practice, and feels very strange at first if you are \’/ \ \* /
coming from C programming! —107 | J
_1.5-
Take some time to look through the NumPy and SciPy API
documentation - there are tons of interesting functions to help you! ~100 -7.5 -50 -25 00 25 50 75 10.0

e - 23


https://numpy.org/

Compile python just-in-time”

*JIT: compile code at runtime

https://numba.pydata.org/

Takes python code and directly uses introspection to compile it with LLVM

 automatic, but only works on supported operations

> most pure python functions, some numpy functions, but can't call anything else!
» fails with complex objects like panaas Datalrames! (though there are ways to help)

e Can generate NumPy "ufuncs" directly (function that works on scalars but is run on all
elements of an array), which are too slow to write in python normally.

* Can even compile to GPU code for nVidia CUDA and AMD ROC GPUs!

from numba import jit
from numpy import arange

# jit decorator tells Numba to compile this function.
# The argument types will be inferred by Numba when function 1is called.

Qjit T — just add this decorator,
def sum2d(arr): » :
M, N = arr.shape and it's magic (nearly)
result = 0.0

for i in range(M):
for j in range(N):
result += arrl[i,jl
return result

a = arange(9).reshape(3,3)
print(sum2d(a))

Karl Kosack - ESCAPE School 2021 24
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“'Nuriiba with NumPy

Numba supports a large number of NumPy functions (and even some scipy):
* |t does not actually call NumPy code!

it re-implements it in a way that is compilable with LLVM.

https://numba.pydata.org/numba-doc/dev/reference/numpysupported.html

So what is the point? Isn't NumPy really optimized already?
e Minimize intermediate results!

> NUMpPYy operations often have to allocate memory for data that is not needed in the end:

X = hp. arange(1 ®®®> in C, you might do this all in one loop, with no extra
result = A * x*x*x2 + * X + C memory needed:

for (i=0; i<x.size; i++) {
result[i] = Axx[1i]*x[1] + Bxx[1] + C;

}

Karl Kosack - ESCAPE School 2021 25
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"“'Scientific Python Universe

Fully implemented and well-
(and : _ _
many. designed algorithms built on

many numpy.

more) : - - ' |
* scipy: interpolation, integration,

\‘t‘;_\
=

e
T -
g
T
e
—1’— a
/ ¢;{J‘:‘£ 25
| e
o y - ;-—"'
J g
’ 55
>
’_,_.;‘
-
A‘;)—:-

e:'%.h,

ALF" scikit-image ™\ minimization/optimization/fitting/

e ~—_ signal processing/...
matplotl | b @ L

> you won't implement sometning
Pa ndas FEEN N faster in general

-~ 1 SM | StateModlels

Statistics in 'py‘tlnovx

» \Written by experts, In

” X array 1 3 :\.w\ -
Pytey “ORTRAN. C. efc.

“TPyI: I ;@:-/

4/ i
F 4 _g—
7 _ s
4 IP y thol I ==
;,’; .‘;'-(9’
2. -
Vs P
;4’ f ,(-'-'

:
r 4 ‘ .
//s ¢ -:9’»’?’
y 4 / 4
" 4 V4
V 4

» scikit-learn: machine learning/
model fitting

» Not covered In this lecture, but

e ‘A’
O
WY WN®hackages of Python's scientific stack. Source: VanderPlas 2017, slide 52.
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DEMO

Profiling in a notebook

an advanced study: back to our
Gaussian Blur examples...

» see profiling-example.ipynb

e pixi run "jupyter lab"



“ Scientific Python Universe

(and
many,
o ——— - many
astropy X ‘ﬂ NetworkX ~__ more)
ERl s - T © scikit-image

pandas u,,- A

PyMC

iy “A’

A\ Sdhe packages of Python's scientific stack. Source: VanderPlas 2017, slide 52.
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Parallelization and HPC:

Nearly drop-in replacements for NumPy

e Dask:

» Parallelize large NumPy operations
across multiple machines

> Supports pandas DataFrames
e JAX:

» Nigh-performance numerica

computing and large-scale machine
learmning

» Auto-differentatiation of array
operations

Others... PyTorch, etc

28



'-"-'"':;‘-'|'jc'>""'r'iothing: Python keeps getting faster

Not an inherent problem with the language!

* The reference implementation of python (CPython) is written
in C and is continuously improving!

> Python 3.11: large speedup (>60%) with optimized interpreter
» Python 3.12: faster dicts and sets, fast f-string

> Python 3.13: better adaptive interpreter, experimental JIT
SuUpport

> Python 3.14: support for free-threading + multiple interpreters
(faster parallel code)

* Future version have more more just-in-time compilation and
more optimizers

Python # CPython

* PyPy: alternative interpreter will full JIT compilation (not
always faster if you use Numpy though!)

Karl Kosack - ESCAPE School 2021 29



"‘”""*bdr"riothing: Python keeps getting faster

Not an inherent problem with the language!

* The reference implementation of python (CPython) is written
in C and is continuously improving!

> Python 3.11: large speedup (>60%) with optimized interpreter

> Python 3.12: faster dicts and sets, fast f-string So one option to optimization is:
» Python 3.13: better adaptive interpreter, experimental JIT Do nothing!
SuUpport
| - Wait for a faster implementation, or a
» Python 3.14: support for free-threading + multiple interpreters new version of CPython to be released,
(faster parallel code) or swap in a completely different

. . L. . Implementation!
* Future version have more more just-in-time compilation and

more optimizers

Python # CPython

* PyPy: alternative interpreter will full JIT compilation (not
always faster if you use Numpy though!)

29
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CAVEAT!

* The standard package used for memory profiling memory_profiler is currently not (or poorly)
maintained!

» https://github.com/pythonprofilers/memory profiler

* JupyterLab support broken on Python 3.12+ due to minor dependence on distutils

 there is a unmerged pull request from 2024 to fix this

* For now | have pinned python=3.11 in the examples (and in the exercise repo) to avoid this issue.

* Works with later python versions in the terminal or In scripts, just not in Jupyter Notebooks.

e Alternatives?

* memray:. more modern, but Linux and MacOS only (ho windows)


https://github.com/pythonprofilers/memory_profiler
https://github.com/pythonprofilers/memory_profiler/pull/398

““'How'memory is allocated in Python

Memory allocated implicitly when you create an object:

* type(x); sys.getsizeof(x)

Statement Memory allocated (bytes) Note

x=12 1 integer (28) Note unlike in C, there is overhead in a single variable

x = 10**1000 1 integer (468) Integerg iIn python are not fixed bit! You can store
arbitrarily large ones

x=10.2 1 float (24) Same overhead: 64-bit float with some extra info

x=[] 1 blank list container (56)

x =[1,2,3,4,9] list of 5 integers (104)

X = np.arange(0)

empty numpy array (112)

Again, some overhead from "array"”

X = np.arange(1000)

numpy array + 1000 int64s (8112)

x = "this is a string"

string + 16 characters (49+16=65)

Python uses Unicode (one byte per character usually)
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““'How'memory is allocated in Python

You don't need to de-allocate memory In python, it's done automatically!
Garbage Collection

* Python keeps a count of references to each object in memory

* Periodically, the garbage collector runs in the background

» |t reference_count == 0, memory is de-allocated!

» Even can find dangling circular references

You CAN explicitly delete references however!

del variable_name # remove variable from scope

* if the memory pointed to by that variable is not pointed to elsewhere, it will be
deallocated next time the garbage collector runs.

* Normally, you don't need to do this, however.
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DEMO

Memory Profiling

see notebook :
memory_allocation_example.ipynb




““'Memory Leaks

Definition:

 memory which is no longer needed is not
released.

> |n python this means a reterence to that
data Is still In scope somewnere!

» data stored but cannot be accessed by
the running code

» generally not a problem with a garbage
collector, but careful if you write C/C++

coge!

Ildentification:

 Memory use grows over time during
program execution.

Karl Kosack - S3 School 2026

A memory leak

S%smemray_flamegraph

import numpy as np

SOME_GLOBAL_STATE = []

» def my_leaky_function():

SOME_GLOBAL_STATE.append(np.ones((1000,1000)))

v for ii in range(1000):

my_leaky_function()

/Users/kkosack/Projects/ScientificComputingSchools/Working/2026-S3School/optimize-example/.pixi/envs/default/lib/py
thon3.11/site-packages/rich/live.py:256: UserWarning: install "ipywidgets" for Jupyter support
warnings.warn('install "ipywidgets" for Jupyter support')

Results saved to memray-results/tmp648atpsf/flamegraph.html

Resident set size over time X

-~ = Resident size
Heap size

10:24:59 10:24:59.5 10:25:00 10:25:00.5 10:25:01 10:25:01.5 10:25:02
Jan 13, 2026

Time




““‘Memory Profiling

Use of CPU is not the only thing to worry about... what about
RAM? Let's first check for memory leaks...

% pixi add memory_profiler
% pix1i run "mprof run python <script>"
% pixli run "mprof plot"

python simple pipeline.py /Users/kosack/Data/CTA/Prod3/gamma.simtel.gz
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““'Memiory Profiling in detail

Cumulative is nice, but we want to see

the memory for a particular function or Decorate what we
| want to measure (no
Class... iImport needed)

* decorate the function you want to profile
(line-wise) with memory_profiler.profile

Line # Hits Time Per Hit % Time Line Cogfs®nts
% python -m memory_profiler <script> - Iprotitle
18 def main():
19 1 3.0 3.0 0.0 if len(sys.argv) = 2:
20 filename = sys.argv[1]
21 else:
22 1 485.0 485.0 0.0 filename = get dataset _path("gamma_test large.simte
24 1 3572651.0 3572651.0 9.8 with EventSource(filename, max_events=500) as source:
438843.0 438843.0 1.2 calib = CameraCalibrator(subarray=source.subarray)
249622.0 124811.0 0.7 process_images = ImageProcessor(
2.0 2.0 0.0 subarray=source.subarray, 1s_simulation=source.
)
1363.0 1363.0 0.0 process_shower = ShowerProcessor(subarray=source.su
Output shows the time 276938.0 138469.0 0.8 write = DataWriter(
. . 32 1 0.0 0.0 0.0 event_source=source, output_path="events.DL1.h5
spent in the line or block 23 )
(e_g_ if, for) 35 111  11506526.0 103662.4 31.5 for event in tqdm(source):
36 110 1313386.0 11939.9 3.6 calib(event)
37 110 2353948.0 21399.5 6.4 process_images(event)
38 110 140Q044245.0 127675.0 38.4 process_shower(event)
39 110 2814913.0 25590.1 7.7 write(event)
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“"'Meiﬁory Profiling in a Notebook

Again, you can do memory profiling using magic commands in an iPython
(Jupyter) notebook

* Enable the memory profiling notebook extension:

%load_ext memory_profiler
 Now you have access to several magic functions:

Like %timeit, but for memory usage: In [40]: %memit range(100000)
%memit <python statement>

peak memory: 89.61 MiB, increment: 0.00 MiB

or a more full-featured report: In [41]: %memit np.arange(100000)

%mprun -f <function name> <statement> peak memory: 90.12 MiB, increment: 0.52 MiB

Caveats:

* the peak memory usage shown in the notebook may not relate to the function

you are testing! It is the sum of all memory already allocated that has not yet
been garbage collected. (so look at the "increment” instead).

* % mprun only works if your functions are defined in a file (hot a notebook) and
imported into the notebook
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DEMO TIME
back to "profiling_example.ipynb”



MemOVV Profiling: jump to debugger

Automatic Debugger breakpoints:

* you can automatically start the debugging if the code tries
to go above a memory limit, to see where the allocation is
happening:

% python -m memory_profiler —pdb-mmem=100 <script>

will break and enter debugger after 100 MB is allocated, on the line where the
last allocation occurred

Usefull for when you don't know where to look.

python -m memory_profiler --pdb-mmem=100 pkoffee.cli analyze --data-
file coffee_productivity.csv --output fitted_models.toml --show-rankings

Karl Kosack - S3 School 2026 40



Find the speed and memory bottlenecks using
profiler tools!

* Check out the branch: day_2_solution_slow

Activity:
\S pe,ed amd . git fetch upstream day_2_solution_slow
. | B g git switch day_2_solution_slow

N, .',.. Y ..

. : B
memaery P . |
r oy, 72N * |'ve (not so secretly) modified the code in yesterday's
§ pFOfIHﬂg B solution to add some bottlenecks!

* You might notice running your analysis is a bit slower
than before...

Without looking at the code or git log®, use one or
more profiling tools to find which function is slow and

where some memory is wasted.

* Obviously that would be too easy, but in the
real world it's YOU that added the slowness,

and it was not on purpose!

HINT: you can run pkoffee's CLI directly with python using:
python pkoffee.cli analyze
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