
Profiling &
Optimization in Python

Karl Kosack  

CEA Paris-Saclay Astrophysics Department

Université de Paris (-Saclay, -Cité)

CTAO

S3 School 2026, Annecy

Karl Kosack - S3 School 2026

Context

2

Karl Kosack - S3 School 2026

Context

Where you are now:

• You have some code

• It works!
➤ has good test coverage
➤ the output is what you expect

2

Karl Kosack - S3 School 2026

Context

Where you are now:

• You have some code

• It works!
➤ has good test coverage
➤ the output is what you expect

The problem:

• You want to run the code many times / on larger datasets / using
more complex algorithms...

• Speed or memory use is becoming an issue! 

2

Karl Kosack - S3 School 2026

Context

Where you are now:

• You have some code

• It works!
➤ has good test coverage
➤ the output is what you expect

The problem:

• You want to run the code many times / on larger datasets / using
more complex algorithms...

• Speed or memory use is becoming an issue! 

What you will learn in this lecture:

• What causes performance to be poor?

• How to identify slow parts of your code?

• How to speed up slow code?

• How to identify high memory usage?

• How to fix high memory usage?

2

Why is my code slow?
And when and why you might optimize it...

Karl Kosack - ESCAPE School 2022 4

Interpreted vs Compiled Code

* actually, some optimization now
happens in python 3.13+, and soon
some just-in-time (JIT) compilation
[See PEP-744].

You can inspect the python byte code!

runs per statement

runs on all code at once

https://peps.python.org/pep-0744/

Karl Kosack - ESCAPE School 2022

Compiled: Code → [Compiler/Optimizer] → Machine Code Executable

4

Interpreted vs Compiled Code

* actually, some optimization now
happens in python 3.13+, and soon
some just-in-time (JIT) compilation
[See PEP-744].

You can inspect the python byte code!

runs per statement

runs on all code at once

https://peps.python.org/pep-0744/

Karl Kosack - ESCAPE School 2022

Compiled: Code → [Compiler/Optimizer] → Machine Code Executable

Interpreted: Code → [Interpreter] → Machine Code Instruction

4

Interpreted vs Compiled Code

* actually, some optimization now
happens in python 3.13+, and soon
some just-in-time (JIT) compilation
[See PEP-744].

You can inspect the python byte code!

runs per statement

runs on all code at once

https://peps.python.org/pep-0744/

Karl Kosack - ESCAPE School 2022

Compiled: Code → [Compiler/Optimizer] → Machine Code Executable

Interpreted: Code → [Interpreter] → Machine Code Instruction

4

Interpreted vs Compiled Code

* actually, some optimization now
happens in python 3.13+, and soon
some just-in-time (JIT) compilation
[See PEP-744].

You can inspect the python byte code!

runs per statement

runs on all code at once

https://peps.python.org/pep-0744/

Karl Kosack - ESCAPE School 2022

Compiled: Code → [Compiler/Optimizer] → Machine Code Executable

Interpreted: Code → [Interpreter] → Machine Code Instruction

Python is Interpreted

• python pre-compiles all code before you run it

➤ turns text into python byte code, not machine code
➤ Byte code is machine independent instructions
➤ Each instruction is executed as machine code by the interpreter

• (Code → [Compiler] → Byte Code) → [Interpreter] → Machine Code Instruction
➤ Conceptually similar to Java, but executed per-statement.
➤ Except: No global optimization, no further (JIT) compilation*

4

Interpreted vs Compiled Code

* actually, some optimization now
happens in python 3.13+, and soon
some just-in-time (JIT) compilation
[See PEP-744].

You can inspect the python byte code!

runs per statement

runs on all code at once

https://peps.python.org/pep-0744/

Karl Kosack - ESCAPE School 2022

Compiled: Code → [Compiler/Optimizer] → Machine Code Executable

Interpreted: Code → [Interpreter] → Machine Code Instruction

Python is Interpreted

• python pre-compiles all code before you run it

➤ turns text into python byte code, not machine code
➤ Byte code is machine independent instructions
➤ Each instruction is executed as machine code by the interpreter

• (Code → [Compiler] → Byte Code) → [Interpreter] → Machine Code Instruction
➤ Conceptually similar to Java, but executed per-statement.
➤ Except: No global optimization, no further (JIT) compilation*

Interpreted languages can be slow! Particularly loops.

4

Interpreted vs Compiled Code

* actually, some optimization now
happens in python 3.13+, and soon
some just-in-time (JIT) compilation
[See PEP-744].

You can inspect the python byte code!

runs per statement

runs on all code at once

https://peps.python.org/pep-0744/

Karl Kosack - S3 School 2026 5

Interpreted vs Compiled Code 2

Karl Kosack - S3 School 2026

Executing lots of interpreted statements is much slower than
executing many machine-code instructions!

5

Interpreted vs Compiled Code 2

Karl Kosack - S3 School 2026

Executing lots of interpreted statements is much slower than
executing many machine-code instructions!

 
Python is not completely interpreted!

• Many libraries contain fully compiled and optimized functions that can
be executed as a single byte-code instruction!

➤ numpy/scipy → contains C++, FORTRAN, Cython, ...

• There are special libraries for speeding up python code (see later...) 

5

Interpreted vs Compiled Code 2

Karl Kosack - S3 School 2026

Executing lots of interpreted statements is much slower than
executing many machine-code instructions!

 
Python is not completely interpreted!

• Many libraries contain fully compiled and optimized functions that can
be executed as a single byte-code instruction!

➤ numpy/scipy → contains C++, FORTRAN, Cython, ...

• There are special libraries for speeding up python code (see later...) 

Don't always blame python on slowness!

• Algorithm design has a big impact!

• Bad design can lead to poor performance whether compiled or
interpreted!

5

Interpreted vs Compiled Code 2

Karl Kosack - ESCAPE School 2022

Scientific code is full of loops!

• Explicit:

| for item in some_list:
| do_some_computation(item)

| values = [f(x) for x in some_list]

• Implicit

| map(do_some_computation, some_list)

Python loops are 100 - 1000x slower than those in:

• pre-compiled languages like C, C++, FORTRAN, Rust

• just-in-time compiled languages like Julia or Java

6

Loops in Python

Identifying Speed Bottlenecks

Karl Kosack - S3 School 2026

A way to identify where resources are used by a program:

• CPU resources (computation time)

• Memory resources

Identify problems in your code like hangs and memory leaks

Identify "hotspots" in your code that may be useful to
optimize!

➤ always ask your question: will it make a real difference?

➤ If it's good enough, STOP

8

What is profiling?

Karl Kosack - S3 School 2026

You already saw this in the lecture on testing:

• Show the 3 slowest tests:

| pytest --durations=3
➤ you can set the threshold in seconds

| --durations-min=0.5

• Example, but not so exciting with our current code:

| pytest --durations 3 (pkoffee)  ✔ 󰌠 3.13.11
| == test session starts ==
| collected 39 items

| tests/test_data.py [30%]
| tests/test_fit_model.py [56%]
| tests/test_fit_model_io.py [66%]
| tests/test_metrics.py [87%]
| tests/test_parametric_function.py [100%]

| == slowest 3 durations ==
| 0.01s call tests/test_fit_model_io.py::test_save_models
| 0.01s setup tests/test_data.py::test_load_csv_valid_file
| 0.01s call tests/test_fit_model_io.py::test_save_models_toml

9

Speed: profiling with PyTest

Karl Kosack - S3 School 2026

What I often see...

from time import time

start = time.time()

[code]

stop = time.time()
print(stop - start)

this measures only wall-clock time!

You want CPU time! 
(not dependent on other stuff you are running)

You want many trials, for statistics!

Better method: %timeit

• interactive %timeit "magic" jupyter/ipython
function

• Automatically runs a function many times and
measures CPU time and standard deviation

• Usage:
| %timeit <python statement>

Notes:

➤ to time an entire cell, use %%time
➤ you can also import the `timeit` module
➤ if you really only want one trial, use %%time

10

Speed profiling: in a notebook

Karl Kosack - S3 School 2026

What I often see...

from time import time

start = time.time()

[code]

stop = time.time()
print(stop - start)

this measures only wall-clock time!

You want CPU time! 
(not dependent on other stuff you are running)

You want many trials, for statistics!

Better method: %timeit

• interactive %timeit "magic" jupyter/ipython
function

• Automatically runs a function many times and
measures CPU time and standard deviation

• Usage:
| %timeit <python statement>

Notes:

➤ to time an entire cell, use %%time
➤ you can also import the `timeit` module
➤ if you really only want one trial, use %%time

10

Speed profiling: in a notebook

DEMO
Profiling in a notebook

an advanced study:

• see using-timeit.ipynb

• pixi run "jupyter lab"

Karl Kosack - S3 School 2026

A profiler is fancier than %timeit: it measures all function calls

• use the magic %prun function

| %prun <python statement>

• Generates a comprehensive report

12

Using a profiler (Notebook version)

Karl Kosack - S3 School 2026

Sometimes you need finer grained info: per line,
not per function call!

• unlike %timeit, need to load an extension first:

| %load_ext line_profiler

• Then, if you have a function defined, you must
"mark" it to be profiled by adding "-f <func>"

| %lprun -f <function name> <python statement that uses

function>

for example:

| %lprun -f myfunc myfunc(100,100)

Note you can mark more than one function to add to the report!

13

Line-profiling in a Notebook

DEMO
Profiling in a notebook

Part 1

• see profiling-example.ipynb

• pixi run "jupyter lab"

Karl Kosack - S3 School 2026

Python provides several profilers, but the most common is cProfile (note: gprof for c+
+). It's what Jupyter uses by default
Profile an entire script:

• Run your script with the additional options: 

| python -m cProfile -o output.pstats <script>

For a command-line script like pkoffee, it's better to run it as a module from the python interpreter:

| python -m cProfile -o prof.pstats -m pkoffee.cli -- analyze -d coffee_productivity.csv -o out.png

• this generates a binary data file (output.pstats) that contains statistics on how often
and for how long each function was called

• There is a built-in pstats module that can read it and print stats, but it's a bit difficult to
use... but there are GUIs! (recommended)

15

For existing code: cProfile

↑ note the double dash: means after this, are the script's (not python's) argumentshave to run the module, not "pkoffee" ↑

Karl Kosack - S3 School 2026 16

Tip: use a gui to view stats output

Viewing with SnakeViz
| % pixi add snakeviz
| % snakeviz output.pstats

• interactive call statistics viewer

• this is not the only one, but it's
nice and simple and runs in your
browser.

• Click and zoom to see the results

DEMO TIME

Karl Kosack - S3 School 2026

What about time spent in each line of code?
The line_profiler module can help:

| % conda install line_profiler

• mark code with @profile:

| from line_profiler import profile

| @profile
| def slow_function(a, b, c):
| ...

• Then run:

➤ % kernprof -l script_to_profile.py

• which generates a .lprof file that can be viewed with:

➤ % python -m line_profiler script_to_profile.py.lprof

17

Aside: Line Profiling without Jupyter

File: pystone.py
Function: Proc2 at line 149
Total time: 0.606656 s

Line # Hits Time Per Hit % Time Line Contents
==
 149 @profile
 150 def Proc2(IntParIO):
 151 50000 82003 1.6 13.5 IntLoc = IntParIO
+ 10
 152 50000 63162 1.3 10.4 while 1:
 153 50000 69065 1.4 11.4 if Char1Glob
== 'A':
 154 50000 66354 1.3 10.9 IntLoc =
IntLoc - 1
 155 50000 67263 1.3 11.1 IntParIO
= IntLoc - IntGlob
 156 50000 65494 1.3 10.8 EnumLoc =
Ident1
 157 50000 68001 1.4 11.2 if EnumLoc ==
Ident1:
 158 50000 63739 1.3 10.5 break
 159 50000 61575 1.2 10.1 return IntParIO

DEMO
Profiling everything using cProfile

Using the command-line to profile pkoffee

$ pixi shell

$ cd analysis

$ python -m cProfile -o prof.pstats -- pkoffee.cli analyze --data-file coffee_productivity.csv --
output fitted_models.toml --show-rankings

Then try snakeviz to see the results (pixi global install snakeviz)

Speeding up Slow Code
(some examples)

“We should forget about small
efficiencies, say about 97% of the time:
premature optimization is the root
of all evil - Sir Tony Hoare?

or Donald Knuth?

“We should forget about small
efficiencies, say about 97% of the time:
premature optimization is the root
of all evil - Sir Tony Hoare?

or Donald Knuth?
From a 1974 article on why GOTO statements are good

Karl Kosack - S3 School 2026

1) Make sure code works correctly first

• DO NOT optimize code you are writing or debugging!

2) Identify use cases for optimization:

• how often is a function called? Is it useful to optimize it?

• If it is not called often and finishes with reasonable time/memory, stop!

3) Profile the code to identify bottlenecks in a scientific way

• time spent in each function, statement

• memory use per function, statement, time-step

4) Try to re-write as little as possible to achieve improvement

5) Think about overall design, if small changes are not sufficient

• some times the design is what is making the code slow... can it be
improved? (e.g.: flat better than nested!)

• Don't be afraid to re-write or refactor!
21

Steps to optimization

Karl Kosack - S3 School 2026

Fast numerics  
(avoid or speed-up loops):

• Numpy: fast N-dimensional arrays
and array operations, vectors,
tensors.

• Numba: compile python functions!

Other options (less recommended):

• Cython: python-like language to
generate C-code

• Write C/C++/Rust and call it from
python

22

Scientific Python Universe

Some packages of Python's scientific stack. Source: VanderPlas 2017, slide 52.

Karl Kosack - S3 School 2026

Replace python loops with array operations, slices, linear
algebra

• Fully implemented in fast compiled languages

• supports N-dimensional arrays and fast transformations

• don't call a function on many small pieces of data when
you can call it on an array all at once

• Nearly the speed of compiled languages

Have to think in arrays!

23

Numpy: fast python numerics
https://numpy.org/

https://numpy.org/

Karl Kosack - S3 School 2026

Replace python loops with array operations, slices, linear
algebra

• Fully implemented in fast compiled languages

• supports N-dimensional arrays and fast transformations

• don't call a function on many small pieces of data when
you can call it on an array all at once

• Nearly the speed of compiled languages

Have to think in arrays!

23

Numpy: fast python numerics

This requires practice, and feels very strange at first if you are
coming from C programming!

Take some time to look through the NumPy and SciPy API
documentation - there are tons of interesting functions to help you!

https://numpy.org/

https://numpy.org/

Karl Kosack - ESCAPE School 2021

Takes python code and directly uses introspection to compile it with LLVM

• automatic, but only works on supported operations
➤ most pure python functions, some numpy functions, but can't call anything else!
➤ fails with complex objects like pandas DataFrames! (though there are ways to help)

• Can generate NumPy "ufuncs" directly (function that works on scalars but is run on all
elements of an array), which are too slow to write in python normally.

• Can even compile to GPU code for nVidia CUDA and AMD ROC GPUs!

from numba import jit
from numpy import arange

jit decorator tells Numba to compile this function.
The argument types will be inferred by Numba when function is called.
@jit
def sum2d(arr):
 M, N = arr.shape
 result = 0.0
 for i in range(M):
 for j in range(N):
 result += arr[i,j]
 return result

a = arange(9).reshape(3,3)
print(sum2d(a))

|

24

Compile python just-in-time*

just add this decorator,
and it's magic (nearly)

*JIT: compile code at runtime

https://numba.pydata.org/

https://numba.pydata.org/

Karl Kosack - ESCAPE School 2021

Numba supports a large number of NumPy functions (and even some scipy):

• It does not actually call NumPy code!

• it re-implements it in a way that is compilable with LLVM.

So what is the point? Isn't NumPy really optimized already?

• Minimize intermediate results!

➤ numpy operations often have to allocate memory for data that is not needed in the end:

x = np.arange(1000)
result = A * x**2 + B * x + C

25

Numba with NumPy

https://numba.pydata.org/numba-doc/dev/reference/numpysupported.html

in C, you might do this all in one loop, with no extra
memory needed:

for (i=0; i<x.size; i++) {
 result[i] = A*x[i]*x[i] + B*x[i] + C;
}

https://numba.pydata.org/numba-doc/dev/reference/numpysupported.html

Karl Kosack - S3 School 2026

Fully implemented and well-
designed algorithms built on
numpy:

• scipy: interpolation, integration,
minimization/optimization/fitting/
signal processing/...

➤ you won't implement something

faster in general!
➤ Written by experts, in

FORTRAN, C, etc.

• scikit-learn: machine learning/
model fitting

➤ not covered in this lecture, but

26

Scientific Python Universe

Some packages of Python's scientific stack. Source: VanderPlas 2017, slide 52.

DEMO
Profiling in a notebook

an advanced study: back to our
Gaussian Blur examples...

• see profiling-example.ipynb

• pixi run "jupyter lab"

Karl Kosack - S3 School 2026

Parallelization and HPC:
Nearly drop-in replacements for NumPy

• Dask:

➤ Parallelize large NumPy operations

across multiple machines
➤ Supports pandas DataFrames

• JAX:

➤ high-performance numerical

computing and large-scale machine
learning

➤ Auto-differentatiation of array
operations

Others... PyTorch, etc

28

Scientific Python Universe

Some packages of Python's scientific stack. Source: VanderPlas 2017, slide 52.

Karl Kosack - ESCAPE School 2021

Not an inherent problem with the language!

• The reference implementation of python (CPython) is written
in C and is continuously improving!

➤ Python 3.11: large speedup (>60%) with optimized interpreter
➤ Python 3.12: faster dicts and sets, fast f-string
➤ Python 3.13: better adaptive interpreter, experimental JIT

support
➤ Python 3.14: support for free-threading + multiple interpreters

(faster parallel code)

• Future version have more more just-in-time compilation and
more optimizers

Python ≠ CPython

• PyPy: alternative interpreter will full JIT compilation (not
always faster if you use Numpy though!) 

29

Do nothing: Python keeps getting faster

Karl Kosack - ESCAPE School 2021

Not an inherent problem with the language!

• The reference implementation of python (CPython) is written
in C and is continuously improving!

➤ Python 3.11: large speedup (>60%) with optimized interpreter
➤ Python 3.12: faster dicts and sets, fast f-string
➤ Python 3.13: better adaptive interpreter, experimental JIT

support
➤ Python 3.14: support for free-threading + multiple interpreters

(faster parallel code)

• Future version have more more just-in-time compilation and
more optimizers

Python ≠ CPython

• PyPy: alternative interpreter will full JIT compilation (not
always faster if you use Numpy though!) 

29

Do nothing: Python keeps getting faster

So one option to optimization is:

Do nothing!

Wait for a faster implementation, or a
new version of CPython to be released,
or swap in a completely different
implementation!

Identifying Memory Bottlenecks

CAVEAT!
• The standard package used for memory profiling memory_profiler is currently not (or poorly)

maintained!

• https://github.com/pythonprofilers/memory_profiler

• JupyterLab support broken on Python 3.12+ due to minor dependence on distutils

• there is a unmerged pull request from 2024 to fix this

• For now I have pinned python=3.11 in the examples (and in the exercise repo) to avoid this issue.

• Works with later python versions in the terminal or in scripts, just not in Jupyter Notebooks.

• Alternatives?

• memray: more modern, but Linux and MacOS only (no windows)

https://github.com/pythonprofilers/memory_profiler
https://github.com/pythonprofilers/memory_profiler/pull/398

Karl Kosack - ESCAPE School 2021

Memory allocated implicitly when you create an object:

• type(x); sys.getsizeof(x)

32

How memory is allocated in Python

Statement Memory allocated (bytes) Note

x = 12 1 integer (28) Note unlike in C, there is overhead in a single variable

x = 10**1000 1 integer (468) Integers in python are not fixed bit! You can store
arbitrarily large ones

x = 10.2 1 float (24) Same overhead: 64-bit float with some extra info

x = [] 1 blank list container (56)

x = [1,2,3,4,5] list of 5 integers (104)

x = np.arange(0) empty numpy array (112) Again, some overhead from "array"

x = np.arange(1000) numpy array + 1000 int64s (8112)

x = "this is a string" string + 16 characters (49+16=65) Python uses Unicode (one byte per character usually)

Karl Kosack - ESCAPE School 2021

You don't need to de-allocate memory in python, it's done automatically!

Garbage Collection

• Python keeps a count of references to each object in memory

• Periodically, the garbage collector runs in the background

➤ If reference_count == 0, memory is de-allocated!
➤ Even can find dangling circular references

You CAN explicitly delete references however!
| del variable_name # remove variable from scope

• if the memory pointed to by that variable is not pointed to elsewhere, it will be
deallocated next time the garbage collector runs.

• Normally, you don't need to do this, however.

33

How memory is allocated in Python

DEMO
Memory Profiling

see notebook :
memory_allocation_example.ipynb

Karl Kosack - S3 School 2026

Definition:

• memory which is no longer needed is not
released.

➤ In python this means a reference to that

data is still in scope somewhere!

• data stored but cannot be accessed by
the running code

➤ generally not a problem with a garbage

collector, but careful if you write C/C++
code!

Identification:

• Memory use grows over time during
program execution.

35

Memory Leaks

Karl Kosack - S3 School 2026

Use of CPU is not the only thing to worry about… what about
RAM? Let's first check for memory leaks…

| % pixi add memory_profiler
| % pixi run "mprof run python <script>"
| % pixi run "mprof plot"

36

Memory Profiling

if not already there

Karl Kosack - S3 School 2026

Line # Hits Time Per Hit % Time Line Contents
==
 17 @profile
 18 def main():
 19 1 3.0 3.0 0.0 if len(sys.argv) >= 2:
 20 filename = sys.argv[1]
 21 else:
 22 1 485.0 485.0 0.0 filename = get_dataset_path("gamma_test_large.simtel.gz")
 24 1 3572651.0 3572651.0 9.8 with EventSource(filename, max_events=500) as source:
 26 1 438843.0 438843.0 1.2 calib = CameraCalibrator(subarray=source.subarray)
 27 2 249622.0 124811.0 0.7 process_images = ImageProcessor(
 28 1 2.0 2.0 0.0 subarray=source.subarray, is_simulation=source.is_simulation
 29)
 30 1 1363.0 1363.0 0.0 process_shower = ShowerProcessor(subarray=source.subarray)
 31 2 276938.0 138469.0 0.8 write = DataWriter(
 32 1 0.0 0.0 0.0 event_source=source, output_path="events.DL1.h5", overwrite=True
 33)
 35 111 11506526.0 103662.4 31.5 for event in tqdm(source):
 36 110 1313386.0 11939.9 3.6 calib(event)
 37 110 2353948.0 21399.5 6.4 process_images(event)
 38 110 14044245.0 127675.0 38.4 process_shower(event)
 39 110 2814913.0 25590.1 7.7 write(event)

Cumulative is nice, but we want to see
the memory for a particular function or
class…

• decorate the function you want to profile
(line-wise) with memory_profiler.profile

| % python -m memory_profiler <script>

37

Memory Profiling in detail

Decorate what we
want to measure (no

import needed)

Output shows the time
spent in the line or block

(e.g. if , for)

Karl Kosack - S3 School 2026

Again, you can do memory profiling using magic commands in an iPython
(Jupyter) notebook

• Enable the memory profiling notebook extension:

| %load_ext memory_profiler

• Now you have access to several magic functions:

Like %timeit, but for memory usage:

| %memit <python statement>

or a more full-featured report:

| %mprun -f <function name> <statement>

Caveats:

• the peak memory usage shown in the notebook may not relate to the function
you are testing! It is the sum of all memory already allocated that has not yet
been garbage collected. (so look at the "increment" instead).

• %mprun only works if your functions are defined in a file (not a notebook) and
imported into the notebook

38

Memory Profiling in a Notebook

DEMO TIME  
back to "profiling_example.ipynb"

Karl Kosack - S3 School 2026

Automatic Debugger breakpoints:

• you can automatically start the debugging if the code tries
to go above a memory limit, to see where the allocation is
happening:

| % python -m memory_profiler ——pdb-mmem=100 <script>

will break and enter debugger after 100 MB is allocated, on the line where the
last allocation occurred

Usefull for when you don't know where to look.

| python -m memory_profiler --pdb-mmem=100 pkoffee.cli analyze --data-
file coffee_productivity.csv --output fitted_models.toml --show-rankings

40

Memory Profiling: jump to debugger

Karl Kosack - S3 School 2026

Activity:
speed and
memory
profiling

Find the speed and memory bottlenecks using
profiler tools!

• Check out the branch: day_2_solution_slow

| git fetch upstream day_2_solution_slow
| git switch day_2_solution_slow

• I've (not so secretly) modified the code in yesterday's
solution to add some bottlenecks!

• You might notice running your analysis is a bit slower
than before...

Without looking at the code or git log*, use one or
more profiling tools to find which function is slow and
where some memory is wasted.

41

* Obviously that would be too easy, but in the
real world it's YOU that added the slowness,
and it was not on purpose!

HINT: you can run pkoffee's CLI directly with python using: 
python pkoffee.cli analyze

