
Unit Testing & Debugging
Maximilian Linhoff

Cherenkov Telescope Array Observatory ERIC

S3 School – 2026-01-15

Overview

Introduction

pytest

Test Coverage

Mocking / Monkeypatching

Test Driven Development

Doctests

Debugging

M. Linhoff – CTAO ERIC Testing & Debugging 2

Warning

BIOHAZARD Copying commands or code from PDF files is
dangerous Radiation

Copy from the example files in the repository or type by hand.

Typing by hand is best for learning.

M. Linhoff – CTAO ERIC Testing & Debugging 3

Introduction

M. Linhoff – CTAO ERIC Testing & Debugging – Introduction 4

Automated Software Testing

→ Verifying that a software works as intended is crucial
→ Doing this manually using whatever method you can think of

→ is very tedious
→ is errorprone
→ will result in the tests not being done most of the time

⇒ We need automated tests that verify our software
→ Tests fall into three categories

1. Unit tests
2. Integration tests
3. Performance tests

M. Linhoff – CTAO ERIC Testing & Debugging – Introduction 5

Unit tests

→ Test single “units” of the code in isolation
→ Require modular design of the code base
→ Are the bedrock of any more complicated tests
→ Must be fast and easy to run⇒ or they would not be run most of the time

M. Linhoff – CTAO ERIC Testing & Debugging – Introduction 6

Properties of good unit tests

Existence SMILE-WINK

Correctness The code under test behaves according to requirements / specifications
Completeness The tests cover all required features / use cases
Readability Writing tests for tests would result in infinite recursion

⇒ tests must readable, so they can be easily verified by inspection
Demonstrability Good tests show how your code is meant to be used

Resilience Tests should only fail if what they test breaks

M. Linhoff – CTAO ERIC Testing & Debugging – Introduction 7

Frameworks

All modern languages have one or more frameworks for tests, a small selection:

Python pytest
C++ Catch2, GoogleTest
Java JUnit
Rust Part of the language
Julia Test module in the standard library

M. Linhoff – CTAO ERIC Testing & Debugging – Introduction 8

Integration tests

→ Test that multiple units are working together
→ E. g. testing a whole command line application
→ Can grow arbitrarily large / complicated

M. Linhoff – CTAO ERIC Testing & Debugging – Introduction 9

Performance tests

→ Unit and integration tests usually only test the correctness of code
→ Performance tests make sure the code fulfills requirements and does not get slower
→ This introduction focuses on unit tests
→ See the profiling lecture for more information on how to actually measure

performance

M. Linhoff – CTAO ERIC Testing & Debugging – Introduction 10

Example python code

We are going to use this simple function as example for our first unit tests:

examples/step1/fibonacci.py
1 def fibonacci(n):
2 if n == 0:
3 return 0
4 if n == 1:
5 return 1
6 return fibonacci(n - 1) + fibonacci(n - 2)

M. Linhoff – CTAO ERIC Testing & Debugging – Introduction 11

pytest

M. Linhoff – CTAO ERIC Testing & Debugging – pytest 12

pytest

→ Standard framework for writing unit tests for Python projects
→ Uses the assert statement for tests
→ Tests fail if an assertion fails or an exception is raised
→ Uses introspection of the assertion to give detailed error messages
→ Automatic test detection using patterns:

→ Modules matching test_*.py or *_test.py
→ Functions called test*
→ Methods named test* of classes named Test*

→ Docs: https://pytest.org

M. Linhoff – CTAO ERIC Testing & Debugging – pytest 13

https://pytest.org

Project Integration (without pixi)

→ Add pytest to the optional dependencies of your project:

pyproject.toml
[project.optional-dependencies]
test = [
"pytest",

]

→ This enables adding an extra “test” to the installation command:

For local development
$ pip install -e ".[test]"
for users installing from PyPI
$ pip install "<your-library>[test]"

M. Linhoff – CTAO ERIC Testing & Debugging – pytest 14

Project integration (with pixi)

→ Add a feature “test” that depends on pytest:

pyproject.toml
[tool.pixi.feature.test.dependencies]
pytest = "9.*"

→ Add an environment using this feature, e.g.:

pyproject.toml
[tool.pixi.environments]
default = { solve-group = "default" }
test = { features = ["test"], solve-group = "default" }

→ You can now run:

$ pixi run --environment test pytest

M. Linhoff – CTAO ERIC Testing & Debugging – pytest 15

Project integration (with pixi)

→ You could also add a task:

pyproject.toml
[tool.pixi.feature.test.tasks]
test = "pytest"

And then:

$ pixi run test

M. Linhoff – CTAO ERIC Testing & Debugging – pytest 16

First Unit Test

examples/step1/test_fibonacci1.py
1 def test_fibonacci():
2 from fibonacci import fibonacci
3
4 assert fibonacci(4) == 3
5 assert fibonacci(7) == 13

pixi run pytest -sv
1 ============================= test session starts ==============================
2 platform linux -- Python 3.14.2, pytest-9.0.2, pluggy-1.6.0 --

/home/maxnoe/s3-school/s3-school-2026-tests/examples/.pixi/envs/default/bin/python3.14↪
3 cachedir: .pytest_cache
4 rootdir: /home/maxnoe/s3-school/s3-school-2026-tests/examples
5 configfile: pyproject.toml
6 plugins: cov-7.0.0
7 collecting ... collected 1 item
8
9 step1/test_fibonacci1.py::test_fibonacci PASSED

10
11 ============================== 1 passed in 0.01s ===============================

M. Linhoff – CTAO ERIC Testing & Debugging – pytest 17

A note on imports

examples/step1/test_fibonacci1.py
1 def test_fibonacci():
2 from fibonacci import fibonacci
3
4 assert fibonacci(4) == 3
5 assert fibonacci(7) == 13

→ Against usual python style, you should import what you test in the test function
→ Like this, the test discovery of pytest will also work when the import would fail and

the failure is reported as part of the test
→ Everything else, like standard library imports or third-party dependencies, is

imported normally at the top

M. Linhoff – CTAO ERIC Testing & Debugging – pytest 18

Testing Exceptions
Make sure the correct exception is thrown, e. g. for invalid input:

examples/step2/fibonacci.py
1 def fibonacci(n):
2 if n < 0:
3 raise ValueError(f'n must be >= 0, got {n}')
4 # rest unchanged

examples/step2/test_exception.py
1 import pytest
2
3 def test_invalid_values():
4 from fibonacci import fibonacci
5
6 with pytest.raises(ValueError):
7 fibonacci(-1)

The same can be done for warnings using pytest.warns

M. Linhoff – CTAO ERIC Testing & Debugging – pytest 19

Careful with floating point numbers

Naive, this fails
3 def test_addition_naive():
4 assert 0.1 + 0.2 == 0.3

Correct approach, using pytest.approx
6 def test_addition_correct():
7 assert 0.1 + 0.2 == pytest.approx(0.3)

See https://0.30000000000000004.com/

M. Linhoff – CTAO ERIC Testing & Debugging – pytest 20

https://0.30000000000000004.com/

Using numpy testing utitlities

Using numpy
1 import numpy as np
2
3 def test_sin():
4 x = np.array([0, np.pi / 2, np.pi])
5 np.testing.assert_array_almost_equal(np.sin(x), [0, 1, 0], decimal=15)
6
7 def test_poly():
8 def f(x):
9 return x**2 + 2 * x + 10

10
11 x = np.array([0.0, 1.0, 2.0])
12 np.testing.assert_allclose(f(x), [10.0, 13.0, 18.0], rtol=1e-5)

See https://numpy.org/doc/stable/reference/routines.testing.html

M. Linhoff – CTAO ERIC Testing & Debugging – pytest 21

https://numpy.org/doc/stable/reference/routines.testing.html

Using astropy quantity support

Using astropy units
1 import astropy.units as u
2
3 def test_time():
4 v = 10 * u.m / u.s
5 d = 1 * u.km
6 assert u.isclose(d / v, 100 * u.s)
7
8
9 def test_many():

10 v = 10 * u.m / u.s
11 d = [0, 1, 5] * u.km
12 assert u.allclose(d / v, [0, 100, 500] * u.s)

M. Linhoff – CTAO ERIC Testing & Debugging – pytest 22

Fixtures

→ Data and resources used by tests can be injected into tests using “fixtures”
→ Fixtures are provided by functions decorated with @fixture
→ Fixtures have a scope⇒ same object used per session, module, class or function
→ Default is scope="function"

1 import pytest
2
3 @pytest.fixture(scope='session')
4 def some_data():
5 return [1, 2, 3]
6
7 def test_using_fixture(some_data):
8 assert len(some_data) == 3
9

10 def test_also_using_fixture(some_data):
11 assert some_data[0] == 1

M. Linhoff – CTAO ERIC Testing & Debugging – pytest 23

Fixtures provided by pytest

pytest provides several builtin fixtures for

→ temporary directories tmp_path / tmp_path_factory
→ Testing output to stdout / stderr capsys
→ Testing logging caplog
→ Monkeypatching monkeypatch

More at https://docs.pytest.org/en/latest/fixture.html

M. Linhoff – CTAO ERIC Testing & Debugging – pytest 24

https://docs.pytest.org/en/latest/fixture.html

capsys – Fixture for testing the standard streams

1 def greet(name):
2 print(f'Hello, {name}!')
3
4 def test_prints(capsys):
5 # call the function
6 greet('Escape School 2022')
7
8 # test that it wrote what we expect to stdout
9 captured = capsys.readouterr()

10 # .err would be the stderr output
11 assert captured.out == 'Hello, Escape School 2022!\n'

M. Linhoff – CTAO ERIC Testing & Debugging – pytest 25

caplog – Fixture for testing logging

1 import logging
2
3 def do_work():
4 log = logging.getLogger('do_work')
5 log.info('Doing work')
6 log.info('Done')
7
8
9 def test_do_work_logs(caplog):

10 with caplog.at_level(logging.INFO):
11 do_work()
12
13 assert len(caplog.records) == 2
14 for record in caplog.records:
15 assert record.levelno == logging.INFO

M. Linhoff – CTAO ERIC Testing & Debugging – pytest 26

Temporary paths

→ For tests that need to create files, use the tmp_path fixture
⇒ Avoids cluttering and conflicts when running tests multiple times / between tests

→ tmp_path has scope function, so each test gets its own temporary directory
→ These directories are not cleaned up after the tests, so you can inspect the results
→ If you need a temporary path with a wider scope, add a new fixture using

tmp_path_factory

M. Linhoff – CTAO ERIC Testing & Debugging – pytest 27

Temporary paths

1 from astropy.table import Table
2 import numpy as np
3
4
5 def test_to_csv(tmp_path):
6
7 t = Table({'a': [1, 2, 3], 'b': [4, 5, 6]})
8 t.write(tmp_path / 'test.csv')
9

10 read = Table.read(tmp_path / 'test.csv')
11 assert np.all(read == t)

Run the test and checkout
/tmp/pytest-of-$USER/pytest-current/test_to_csvcurrent

M. Linhoff – CTAO ERIC Testing & Debugging – pytest 28

Fixtures that need a cleanup step

→ Sometimes, resources or data need to be cleaned up after the test have run
→ This can be implemented using a generator fixture that yields the data and cleans up

after the yield

@pytest.fixture()
def database_connection():

connection = database.connect()
yield connection
close after use
connection.close()

@pytest.fixture()
def database_connection():

even better, with a context manager
with database.connect() as connection:

yield connection

M. Linhoff – CTAO ERIC Testing & Debugging – pytest 29

Parametrized Tests and Fixtures

→ Parametrization allows to run the same test on multiple inputs
→ Very useful to reduce code repetition and get clearer messages

A parametrized test
1 import pytest
2
3 # reference fibonacci numbers, copied from wikipedia
4 fibs = [0, 1, 1, 2, 3, 5, 8, 13, 21]
5
6 @pytest.mark.parametrize(('n', 'expected'), enumerate(fibs))
7 def test_fibonacci(n, expected):
8 from fibonacci import fibonacci
9

10 assert fibonacci(n) == expected

M. Linhoff – CTAO ERIC Testing & Debugging – pytest 30

Conditional tests

Some tests can only be run under specific conditions

→ Tests for features requiring optional dependencies

This test is skipped when numpy is not available
5 def test_using_numpy():
6 np = pytest.importorskip("numpy")
7 assert len(np.zeros(5)) == 5

→ Tests for specific operating systems or versions

This test is only executed on Windows
9 @pytest.mark.skipif(sys.platform != 'win32', reason="windows only")

10 def test_windows():
11 assert os.path.exists('C:\\')

M. Linhoff – CTAO ERIC Testing & Debugging – pytest 31

Expected failures
It sometimes makes sense to implement tests that are expected to fail:

→ Planned but not yet implemented features
→ Known but not yet fixed bugs
→ These tests shouldn’t make your whole test suite fail
→ Setting the strict option will result in failure if a test unexpectedly suceeds

pyproject.toml
[tool.pytest]
xfail_strict = true

This test is expected to fail
1 import pytest
2
3 @pytest.mark.xfail
4 def test_this_fails():
5 import math
6 assert math.pi == 3

M. Linhoff – CTAO ERIC Testing & Debugging – pytest 32

Choosing which tests to run

pytest offers fine-grained control over which tests to run

→ Select a specific test:

$ pytest test_module.py::test_name

→ Run only tests that failed the last time pytest was run

$ pytest --last-failed

→ Stop after N failures $ pytest --maxfail=2

→ Using matching expressions $ pytest -k "fib"

→ Run tests for an installed package $ pytest --pyargs fibonacci

M. Linhoff – CTAO ERIC Testing & Debugging – pytest 33

Choosing which tests to run – Using markers

→ Define markers in pyproject.toml

[tool.pytest]
markers = ["slow"]

→ Add the marker to a test

4 @pytest.mark.slow
5 def test_slow():
6 time.sleep(2)
7 assert 1 + 1 == 2

→ Run tests using marker expressions

$ pytest -m "not slow"
$ pytest -m "slow"

M. Linhoff – CTAO ERIC Testing & Debugging – pytest 34

Test Coverage

M. Linhoff – CTAO ERIC Testing & Debugging – Test Coverage 35

Test Coverage

→ Test coverage is a metric measuring how much of the code is tested:

coverage =
Lines of code executed during tests

Total lines of code

→ Can be helpful to find parts of code that are not tested (enough).
→ Especially useful in CI system to check that new / changed code is tested

→ One more badgeSMILE-WINK! codecovcodecov 90%90%

M. Linhoff – CTAO ERIC Testing & Debugging – Test Coverage 36

Create a coverage report

→ Needs the pytest-cov plugin, add to your test dependencies next to pytest
→ Print coverage after test suite

$ pytest --cov=fibonacci

→ Create a detailed report in html format

$ pytest --cov=fibonacci --cov-report=html

→ Serve the report using python’s built-in http server and explore in the browser:

$ python -m http.server -d htmlcov

M. Linhoff – CTAO ERIC Testing & Debugging – Test Coverage 37

Limitations of line coverage

Executed number of lines of code are not a perfect measure.

if some_condition is True:
do_stuff()

do_other_stuff()

When during the tests some_condition is True, this code will have 100% coverage.
But what about some_condition is not True?

result = scipy.optimize.minimize(likelihood, ...)

Calling functions from other packages can have arbitrarily many branches

Run pytest with branch coverage
$ pytest --cov=fibonacci --cov-report=html --cov-branch

M. Linhoff – CTAO ERIC Testing & Debugging – Test Coverage 38

Limitations of line coverage

Executed number of lines of code are not a perfect measure.

if some_condition is True:
do_stuff()

do_other_stuff()

When during the tests some_condition is True, this code will have 100% coverage.
But what about some_condition is not True?

result = scipy.optimize.minimize(likelihood, ...)

Calling functions from other packages can have arbitrarily many branches

Run pytest with branch coverage
$ pytest --cov=fibonacci --cov-report=html --cov-branch

M. Linhoff – CTAO ERIC Testing & Debugging – Test Coverage 38

Limitations of line coverage

Executed number of lines of code are not a perfect measure.

if some_condition is True:
do_stuff()

do_other_stuff()

When during the tests some_condition is True, this code will have 100% coverage.
But what about some_condition is not True?

result = scipy.optimize.minimize(likelihood, ...)

Calling functions from other packages can have arbitrarily many branches

Run pytest with branch coverage
$ pytest --cov=fibonacci --cov-report=html --cov-branch

M. Linhoff – CTAO ERIC Testing & Debugging – Test Coverage 38

Limitations of line coverage

Executed number of lines of code are not a perfect measure.

if some_condition is True:
do_stuff()

do_other_stuff()

When during the tests some_condition is True, this code will have 100% coverage.
But what about some_condition is not True?

result = scipy.optimize.minimize(likelihood, ...)

Calling functions from other packages can have arbitrarily many branches

Run pytest with branch coverage
$ pytest --cov=fibonacci --cov-report=html --cov-branch

M. Linhoff – CTAO ERIC Testing & Debugging – Test Coverage 38

Mocking / Monkeypatching

M. Linhoff – CTAO ERIC Testing & Debugging – Mocking / Monkeypatching 39

Mocking / Monkeypatching

→ Sometimes, classes or functions have behaviour that prevents unit testing
→ E. g. code that speaks to specific hardware, makes web requests, relies on system

time ...
→ This is usually a sign of insufficient modularization / separation of concerns
→ A solution can be mocking or monkeypatching, if it is not possible to improve the

actual code

M. Linhoff – CTAO ERIC Testing & Debugging – Mocking / Monkeypatching 40

Mocking / Monkeypatching

1 import requests
2 import json
3
4 def is_server_healthy():
5 ret = requests.get('https://example.org/healthcheck')
6 ret.raise_for_status()
7 return ret.json()['healthy']
8
9 def simulate_healthy_response():

10 resp = requests.Response()
11 resp.url = 'https://example.org/healthcheck'
12 resp.status_code = 200
13 resp._content = json.dumps({'healthy': True}).encode('utf-8')
14 return resp
15
16 def test_healthy(monkeypatch):
17 with monkeypatch.context() as m:
18 m.setattr(requests, 'get', simulate_healthy_response())
19 assert is_server_healthy()

M. Linhoff – CTAO ERIC Testing & Debugging – Mocking / Monkeypatching 41

Test Driven Development

M. Linhoff – CTAO ERIC Testing & Debugging – Test Driven Development 42

Test Driven Development (TDD)

→ Test Driven Development is a powerful paradigm
→ Essentially, to implement a new feature

1. Write the tests before any implementation code
2. Run the tests → they should all fail
3. Write the minimal implementation that makes the test pass
4. All tests should now pass
5. Cleanup, refactor, tests must keep passing

M. Linhoff – CTAO ERIC Testing & Debugging – Test Driven Development 43

Test Drive Development

→ TDD forces you to think about requirements and API before writing the actual code
→ Especially usefull when

→ you have clear specifications
→ investigating / trying to fix a bug
→ working on a new greenfield project

→ Not so easy to use when
→ working in a large, historic codebase without good test coverage
→ doing explorative work

M. Linhoff – CTAO ERIC Testing & Debugging – Test Driven Development 44

Doctests

M. Linhoff – CTAO ERIC Testing & Debugging – Doctests 45

Doctests

→ Examples are an important part of every documentations

1 def fibonacci(n):
2 '''Calculate the nth fibonacci number using recursion
3
4 Examples
5 --------
6 >>> fibonacci(7)
7 13
8 '''

→ Important to verify that the examples stay up to date and are correct
→ Solution: run all the examples and check the expected output

$ pytest --doctest-glob="*.rst" --doctest-modules

→ This will find and execute code blocks in docstrings and documentation rst-files
→ Checks the output is what is expected

M. Linhoff – CTAO ERIC Testing & Debugging – Doctests 46

Debugging

M. Linhoff – CTAO ERIC Testing & Debugging – Debugging 47

Debugging approaches: print

Most common for beginners and even later: a generous seasoning of prints

+ Simple
− You need to modify the code
− Hard to track which output comes from which part of the code

We’ve all written something like this at some point:

print("THE FUNCTION: inputs are:", a, b, c)
print("BEFORE foo")
print("AFTER foo")

− You need to remove all prints again when you are done

M. Linhoff – CTAO ERIC Testing & Debugging – Debugging 48

Debugging approaches: logging
The logging module is part of the standard library

+ Simple
+ Useful also in production
+ Decide on the level of different messages
+ Configurable, what level you want to see from which logger
+ Includes information about file, function, line of code that created the message
− Code must be modified, messages pre-defined

import logging

log = logging.getLogger(__name__)

def model(a, b, c):
log.debug("Received values a=%.3f, b=%.3f, c=%.3f", a, b, c)
result = a * b + c
log.info("model predicted: %.3f", result)
return result

M. Linhoff – CTAO ERIC Testing & Debugging – Debugging 49

Debugging approaches: running the debugger

$ python -m pdb script.py

→ You will enter the debugger and can execute code statement by statement
→ You can also just run the code until it reaches a breakpoint() or an exception is

raised
→ You can inspect code, local variables, etc.

M. Linhoff – CTAO ERIC Testing & Debugging – Debugging 50

Debugging as part of tests

→ Unit tests can be very useful for debugging
→ E. g. Write a new test that fails because of the bug → investigate → make it pass
→ pytest allows you to jump into pdb when a test fails:

$ pytest --pdb

→ You can also insert manual breakpoints

data = get_data()
breakpoint() # will jump into the debugger here so we can inspect data
some_function(data)

→ There are fancier debuggers than pdb, e. g. ipython’s:

$ pytest --pdb --pdbcls=IPython.terminal.debugger:TerminalPdb

M. Linhoff – CTAO ERIC Testing & Debugging – Debugging 51

	Introduction
	pytest
	Test Coverage
	Mocking / Monkeypatching
	Test Driven Development
	Doctests
	Debugging

