

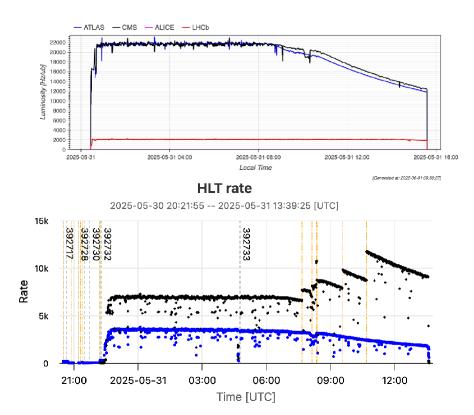
CMS

CMS,

(a checkpoint)

Adriano Di Florio (CC-IN2P3)

ICG France Meeting - 26 June 2025 - CC-IN2P3


Disclaimer

Ils sont me premierées Journées LCG France en tant que CMS contact. Donc je passerais en l'anglais.

But of course for any questions or discussion we can go back to French.

2025 data taking just started

May 31: CMS is entering the "more than 1 fb⁻¹ of data" per fill «era»

First fill with more than 1 fb⁻¹ of data recorded

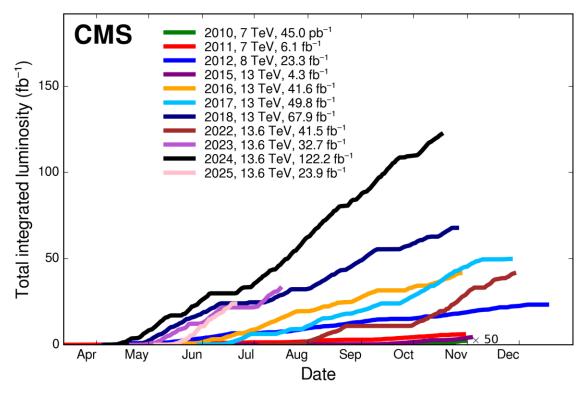
- Fill: 10676
- Date: March 31, 2025
- Duration (Stable Beams): 15.5 hours
- Delivered: 1.06 fb⁻¹
- Recorded: 1.01 fb⁻¹
- Efficiency: 95%
- Levelling at PU63
- L1 rate: 110/105 kHz
- Deadtime: 3-4%
- Levelling: 3.5 kHz (Physics stream) → 7 kHz total

2025 data taking just started

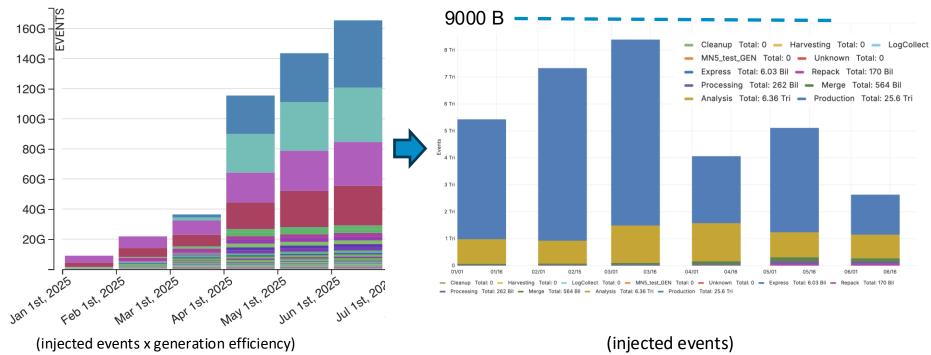
LHC Commissioning activities are on schedule

- 8th Apr: start of LHC beam commissioning
 - 14th April: splashes
 - 22nd April: 900 GeV SB collisions
 - ٠
 - 2nd May: PPS BBA
- 5th May: first stable beams at 13.6 TeV
- 19th May: 1200 bunches in LHC → physics production
- 19th 22nd Jun: MD1 (Machine Development)
- 23th 27th Jun: TS1 (Technical Stop)
- 29th Jun 6th Jul: pO + OO (+NeNe) run
- 8th 9th Jul: VdM pp
- 1st 4th Sep: MD2
- 6th 9th Oct: MD3
- In the second second
- 8th Nov: PbPb commissioning
- 10th 12th Nov: TS2
- 15th Nov 6th Dec: PbPb run

	Jan			Feb Mar			Mar	LHC hand-over to BEOP					
Wk	1	2	3	4	5	6	7	8	9	10	11	12	13
Mo	30		13	æ	2	3	10	17	3	3	10	17	2
Tu													
We	Annal	0.54									1	Hardy	-
Th	Classre						1635		2	1	-	re commis	
Fr											05-0 to at		
Sa													
Su													

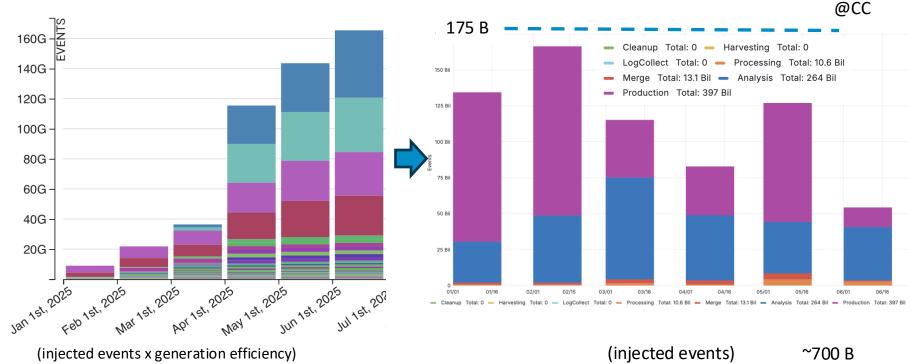


2025 data taking just started


• \sim reached the targe of 25 fb⁻¹ before the first MD

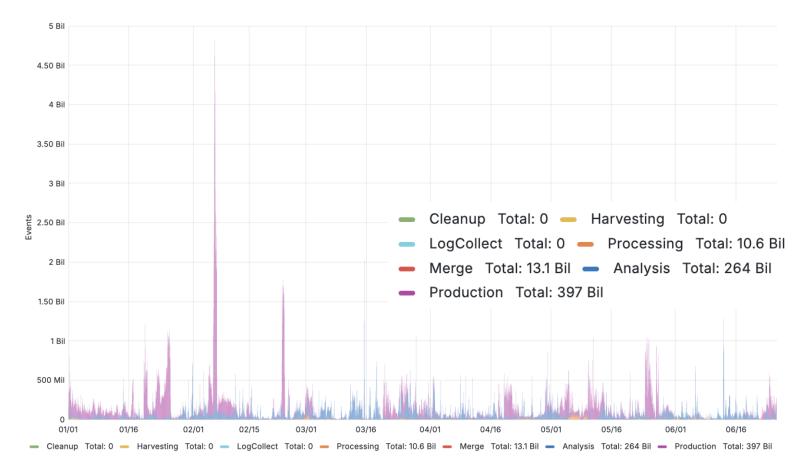
Target integrated luminosity : 120 - 150 fb-1 (at least as 2024)

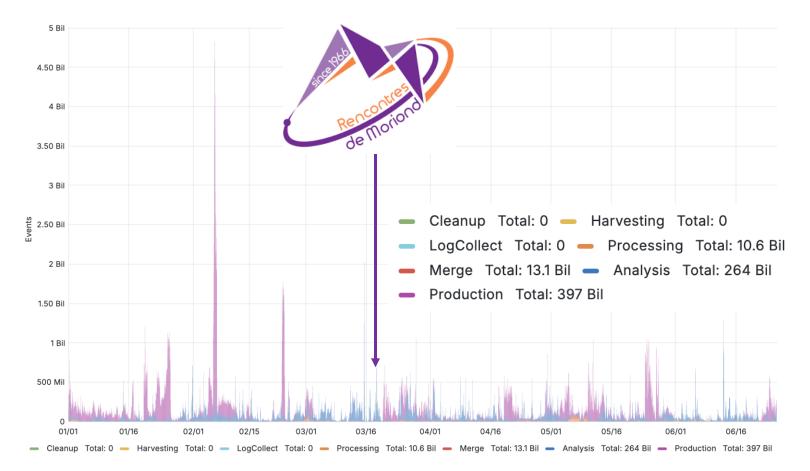
2025 MC production


• Whole CMS MC production ~160B events written since the beginning of the year (~6B per week)

6

2025 MC production

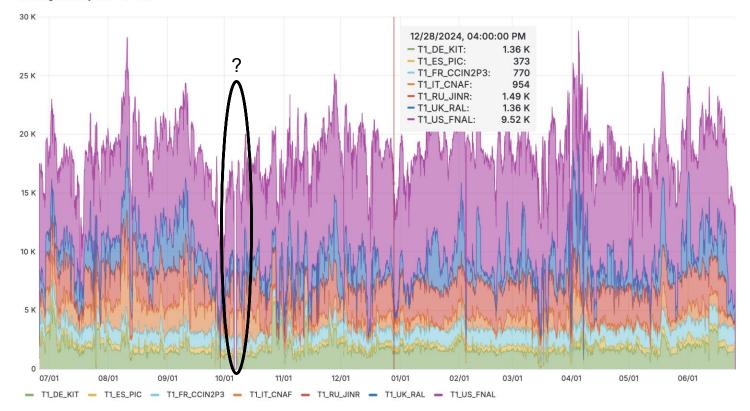

• Whole CMS MC production ~160B events written since the beginning of the year (~6B per week)


2025 MC Production - Peaks @ CC

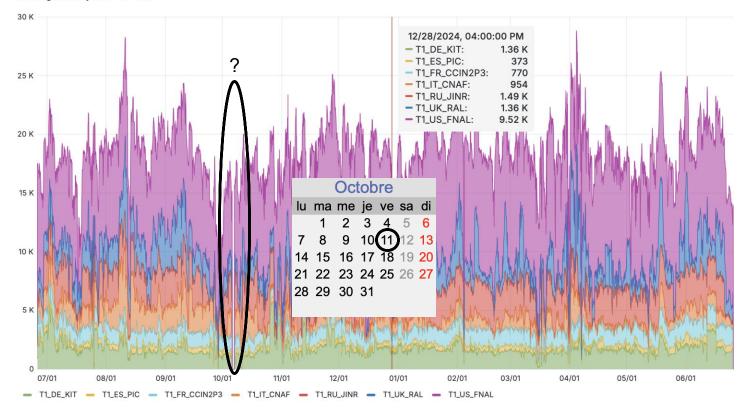
2025 MC Production - Peaks @ CC



Running Cores @ T1s

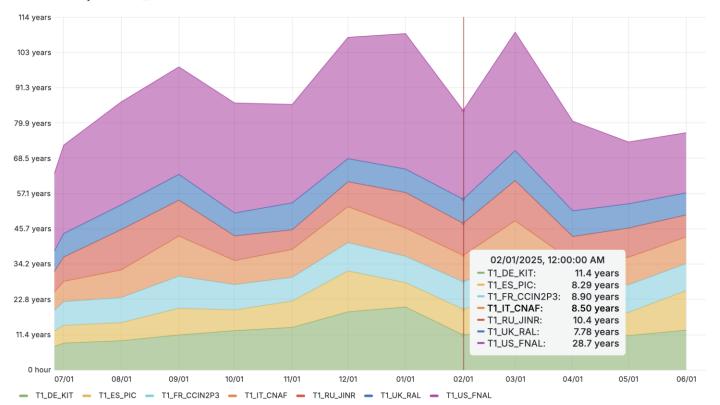

Running cores by Site 🕕 🛆

Running Cores @ T1s


Running cores by Site 🕕 🛆

Running Cores @ T1s

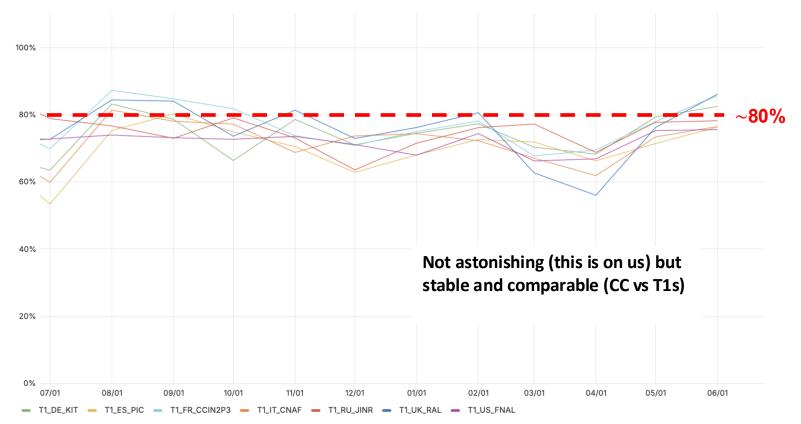
Running cores by Site 🕕 🛆



This is a Friday afternoon (buggy) patch for the HTCondor matchmaking mechanism.

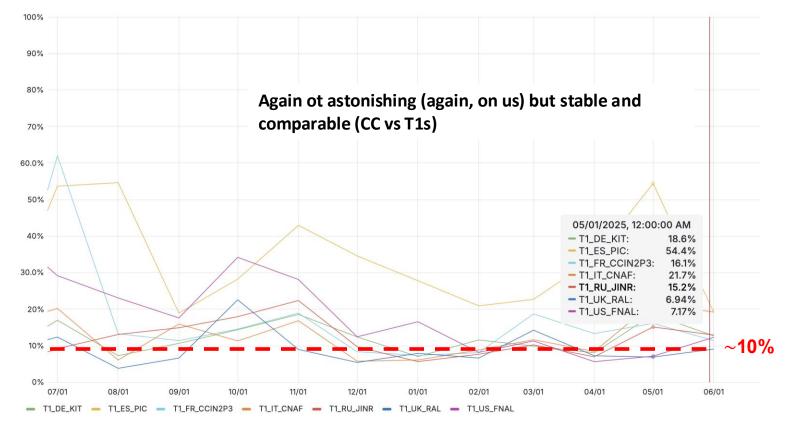
CPU Time @ T1s

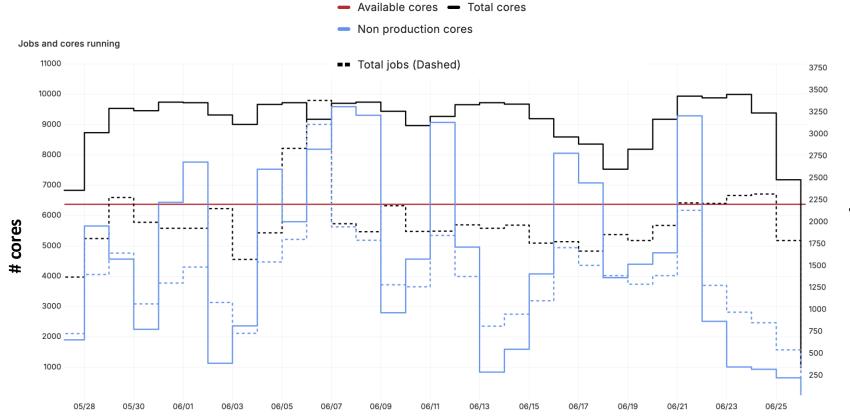
• T1_FR_CCIN2P3 stable in the 10-15% range



Total CPU Time by Site 🔅 🔥

CPU Efficiency (@T1)





Failure Rates

One month of jobs running (@CC)

2025-2026 Planning

- After LHC scenario was updated for Spring 2025 C-RSG report
 - The collaboration asked to increase the trigger rates for both prompt (slightly), and parking (~1kHz) to allow more acceptance in di-Higgs, flavour physics, and new physics searches
 - We finalized 2026 resource request with new trigger rate
 - For 2025, we will manage the resource internally
 - Tier-0 & Tier-1: Tape clean up, mostly on pre-UL Run 2,
 - Tier-1: Reducing amount of AOD SIM; now saved only on demand, i.e. store only MiniAOD, and NanoAOD outputs by default

Fall 2024 C-RSG

Parameter	2025	2026*					
LHC							
LHC Energy pp [TeV]	13.6						
Average (Peak) pileup	62	(65)					
Integrated luminosity / year [fb ⁻¹]	1	20					
Livetime pp / year [s/10 ⁶]	6	.3					
Livetime HI / year [s/10 ⁶]	1.4						
Heavy Ion run type	Pb-Pb,O-O,Pb-O						
CMS-Specific							
Prompt HLT Rate [kHz]	2.6						
Parked HLT Rate [kHz]	4.9						
HLT Scouting Rate [kHz]	30						
L1 Scouting Rate [Orbits/sec]	1100						
Run 3 MC events / year in billions	57						
Phase-2 MC events / year in billions	0.5						

Spring 2025 C-RSG

Parameter	2025	2026			
LHC					
LHC Energy pp [TeV]	13	13.6			
Average (Peak) pileup	65 (67)				
Integrated luminosity / year [fb ⁻¹]	150	80			
Livetime pp / year [s/10 ⁶]	6.5	3.5			
Livetime HI / year [s/10 ⁶]	1.2	1			
Heavy Ion run type	Pb-Pb,O-O,Pb-O				
CMS-Specific					
Prompt HLT Rate [kHz]	2.8	2.8			
Parked HLT Rate [kHz]	6.0	6.0			
HLT Scouting Rate [kHz]	30				
L1 Scouting Rate [Orbits/sec]	1100				
Run 3 MC events / year in billions	69	41			
Phase-2 MC events / year in billions	0	0.5			

- Plan to use both Lustre, and SSD flows
- For resources;
 - Tier-0:
 - +122 PB of Tape
 - +16 PB of disk
 - Request addition of 25 PB of tape and 4 PB of disk to accommodate higher int. luminosity, and pile-up
 - Tier-1:
 - +58 PB of Tape (of +65 PB request),
 - Request additional of 9 PB of tape for higher statistics MC samples

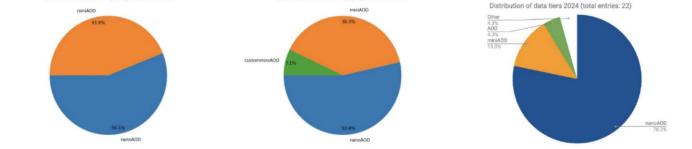
Conceptual Design Report

- *The* document describing CMS plans for Phase2 for offline operations.
- Demonstrate at the conceptual level that the proposed Computing Model (CM) fulfills the requirements from the HL-LHC physics program in the context of the collider and CMS detector scenarios
- Provides new estimations updating the old 2022 ones.
- An LHCC review based on CDR will be held sometime late in 2025 or early 2026

	DRA	FT
	CMS P	aner
The content		MS internal use and distribution only
		June 11, 2025 Archive Hash: none Archive Date: none
CMS Offli	ne Software and (Computing for HL-LHC
	Conceptual De	sign Report
	The CMS Coll	laboration
puting (O&C) ou during Phase-2, d and computing in nother aspects are new architectures and facilities, such machine learning signs, open up th will step through software, grid mid positive impact of	tilines the plan to enable ue to start in 20230. While frastructure are scalable and not and will need to be add and ways of provisioning co a as heterogeneous computin algorithms, interconnecting e possibility of exploiting: the the various areas of O&C, idleware, and computing in success in terms of resource	² hase-2 CMS Offline Software and Com- the physics program of the experiment certain elements of the current software d sustainable for the forescale future, apted for HL-LHC, especially in light of mputing resources. Modern technologies ng, high performance computing centers, networks, novel memory and storage de- new capabilities and functionalities. We outlining our plans to evolve the offline frastructure, estimating in each case the es, the risks of failure, etc. The manage-
coordination and external software jections on the cor- both for a baseline ious R&D activiti- preparation period	collaboration will be require development communities, apputing resource needs of CC e scenario and scenarios that es. A high-level version of a l is presented, and includes	MS O&C Upgrade program is described; red not only within CMS but also with WLCG sites, and others. Updated pro- MS in the 2030-2038 period will be given, at consider the likely outcome of the var- a Technical Roadmap for the 2025-20230 a timeline for milestones associated with s of the CMS Phase-2 computing system.
This box is only	visible in draft mode. Pleas	se make sure the values below make sense
PDFAuthor: PDFTitle:	D. Elvira, F. Ferri, et al. CMS Offline Software and	d Computing for HL-LHC CDR

Computing resource estimates and projections - Disk

Resource: Disk Nominal = baseline scenario (includes 100% prompt reco)


Updated annual resource increase estimates from WLCG: 10±5% (CPU), 5±5% (Disk), 10±5% (Tape)

Wider adoption of nanoAODs

Distribution a

AOD: \approx 500 kb/ev \rightarrow miniAOD \approx 50 kb/ev \rightarrow nanoAOD \approx 1-2 kb/ev

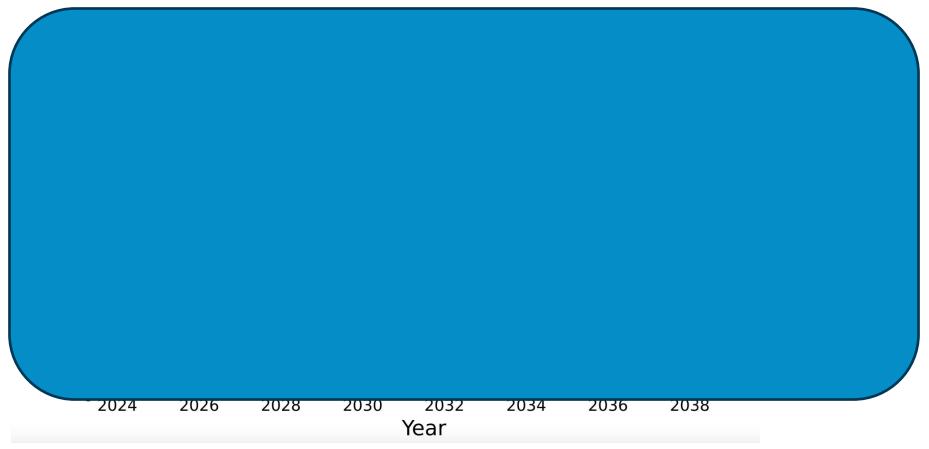
Data Formats Size (kB/evt.)	PU=62	PU=140	PU=200
RAW	1 200	4 300	5900
RECO	4 300	14000	20 000
AOD(SIM)	565 (605)	1400	2000
MiniAOD(SIM)	64 (86)	180	250
NanoAOD(SIM)	1.5 (1.5)	4	4
HLTScout	12	17	25
L1Scout	360		
f used Tiers (2022), Total Entries: 41 Distribution of used	Tiers (2023), Total Entries: 2	8	
MiniAOD	miniAOD		Distribution of da Other
43.9%	39.3%		0ther 4.3% A00 4.3%

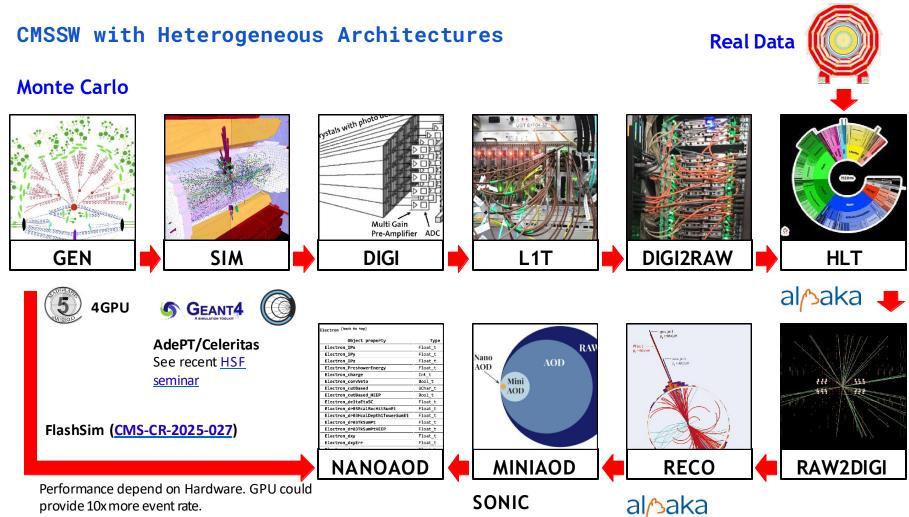
Majority of analyses now using nanoAOD \rightarrow important milestone for Phase-2 preparation

5

Computing resource estimates and projections - Tape

Resource: Tape Nominal ≡ baseline scenario (includes 100% prompt reco)


Updated annual resource increase estimates from WLCG: 10±5% (CPU), 5±5% (Disk), 10±5% (Tape)


Computing resource estimates and projections - CPU

Resource: CPU Nominal ≡ baseline scenario (includes 100% prompt reco)

Evaluate GPU needs under H, M/M', L scenarios & CPU only vs. CPU+GPU cost optimization

Computing resource estimates and projections - CPU

provide 10x more event rate.

CMSSW with Heterogeneous Architectures

CM

Currently, CMSSW is being built for

ARM and x86_64 architectures. Heterogeneous support is at the module level. GPU offloading development is led by TSG, targeting Run-3 HLT, and subsequently expanding to offline reconstruction

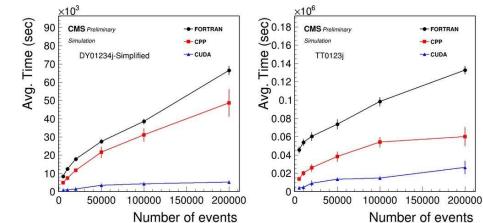
- Vertex reconstruction
- Line Segment Tracking (LST)
- The Iterative CLustering (TICL)
- PF reconstruction
- ECAL/HCAL local reconstructions
- Electron Seeding

Event Generation

Most of CMS MC generators use Matrix Element (ME) with general purpose generators for showering. Major LO backgrounds, O(10) B events, such as DY or TTbar uses MG5 to deal with hard jets up to 4 jets, then use pythia for showering, then MLM matching.

Step 1-Gridpack production

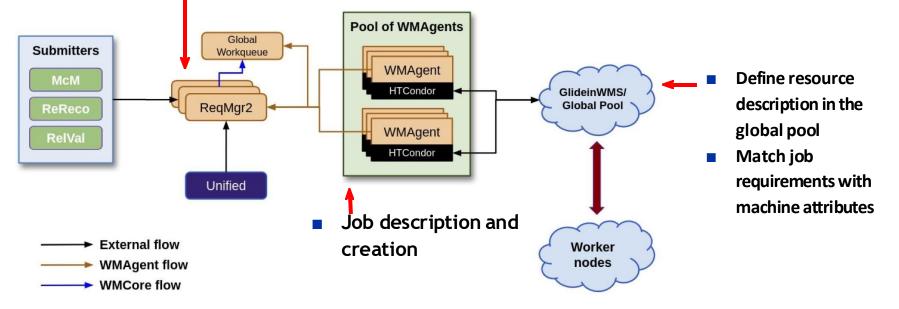
Possible to achieve speed-up using CUDA in subprocess level


Production Time						
Process	FORTRAN	CPP-AVX2	CUDA			
DY+0j	7m	6m	5m			
DY+1j	10m	10m	12m			
DY+2j	1h 12m	1h 10m	51m			
DY+3j	22h 40m	9h 4m	4h 18m			
DY+4j (Simplified)	440h 46m	141h 20m	9h 17m			
DY+01234j (Simplified)	424h 36m	133h 38m	9h 32m			
TT+0j	6m	7m	5m			
TT+1j	11m	11m	7m			
TT+2j	1h 15m	38m	22m			
TT+3j	262h 11m	79h 19m	3h 4m			
TT+0123j	253h 36m	155h 28m	3h 9m			

CMS-DP-2024-086

Step 2 - Production

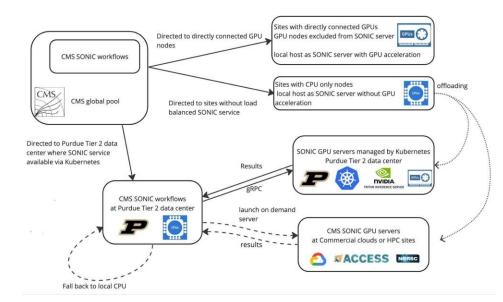
Promising results with GPU


Remaining question

 For GPU: How to organize 2 steps, MG + Pythia, efficiently. Currently, Pythia8 supports multi-thread but not GPU.

Workload Management and Submission Infrastructure

- Workflow description:
 - **RequiresGPU**: forbidden (default), required, optional
 - **GPUParams**: Memory, CUDA runtimes, CUDA capabilities (Link), ... etc. Use of AMD and Intel GPUs not yet commissioned.



Until now, we have only discussed cases where the coprocessor is directly connected to the CPU. But what happens when the coprocessor resources are located on a separate machine?

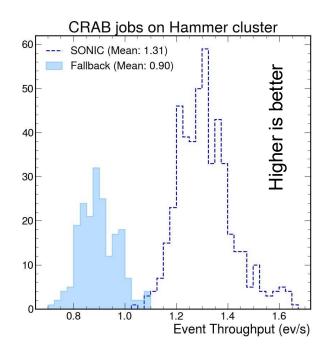
SONIC

The idea of SONIC (Services for Optimized Network Inference on Co-

processors) is that the inference part of the code can be sent to a remote co-processor over the networks and the results obtained (a)synchronously. Not every CPU needs a GPU sitting next to it SONIC employs Triton Servers to manage and serve remote inference requests.

- SONIC separates workflows into "client" and "server" components that communicate via gRPC.
- In CMS, "clients" are CMSSW producers modified to asynchronously off-load inferences to servers and acquire results.
- "Server" can be a simple CPU- or GPU-powered NVIDIA Triton Inference Server, or a more complex system with load balancing over multiple GPUs and other functionalities, such as <u>SuperSONIC</u>.
- Models are loaded from CVMFS
- Server address is configured at site level and can be discovered by CMS production jobs automatically. It can be local or remote (e.g. HPC center).

SONIC


SONIC large scale tests at Purdue Tier-2 (2024):

- Realistic workflow: CMS Run 2 MiniAOD with multiple ML models off-loade to SONIC; 1000 jobs submitted in batches.
- □ Sustained efficient load balancing over 9 GPUs for the duration of the test, ~35% throughput improvement over local CPU.

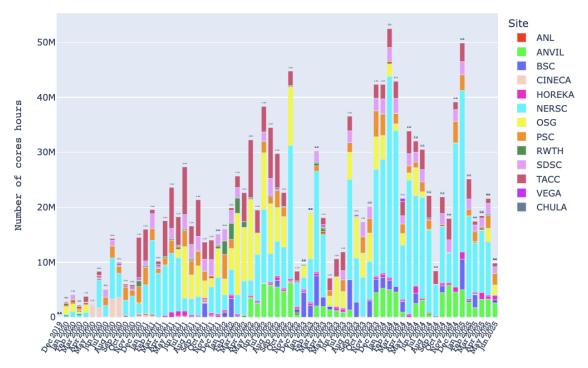
Recent Developments:

- SuperSONIC: server infrastructure packaged for portability to k8s-enabled CMS sites and HPC centers. Includes improved load balancing, autoscaling, rate limiting, monitoring.
- Port more models to Triton Inference Server and keep pace with CMSSW development:
 - Machine learning Particle Flow reconstruction (MLPF).
 - Unified Particle Transformer, a Jet flavor tagging algorithm.

Heterogeneous resources : HPCs

- Several HPC machines providing GPUs have been integrated into CMS system allowing technical validation of the computing system
 - Various US machines, CINECA Italy, HoreKa in Germany.
- Recently Vega, Slovenian EuroHPC, has been successfully exploited in order to contribute to the HLT Software Validation

- Dedicated CMS grant submitted through EuroHPC
- A fruitful synergy between Trigger, Software and Computing areas.
- Future opportunities foreseen in the context of the 1st EuroHPC
 AI_Factories initiative.
 - Our interest is to collaborate with funding agency and EuroHPC to make these resources available to CMS
- In addition to what we might exploit from the future Frontera upgrade in US.

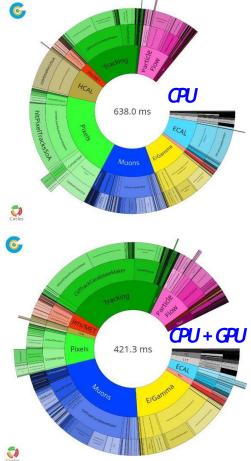


HPC Sites

- Taking into account both opportunistic resources and HPC-like resources at WLCG sites (e.g. HOREKA at KIT).
- Continuously growing. Biggest part comes from US sites (NERSC on top).

HPC Sites

- Taking into account both opportunistic resources and HPC-like resources at WLCG sites (e.g. HOREKA at KIT).
- Continously growing.
 - Comparable to FNAL T1 in scale (but not continuously available/used, utilization fluctuates)

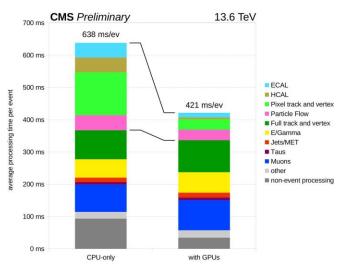


Last 1	2 months	TACC Stamped
10 K		Name
10 K		- T1_US_FNAL
?0 К		- T3_US_Anvil
ок		- T3_US_NERS
ок		- T3_US_PSC
ок		- T3_US_SDSC
		- T3_US_TACC
ю К	NY. III I KIII A III A NIV	- TOTAL
'ок юк юк юк		1 phillippe

HPC Resource	Allocation (core hours)	Allocation Period	%Used*
NERSC Perlmutter (DOE)	337M CPU	Jan 2024 - Jan 2025	74%
TACC Frontera (NSF)	36M	Jun 2024 - May 2025	38%
PSC Bridges-2 (ACCESS)	23M	Oct 2024 - Sep 2025	2%
SDSC Expanse (ACCESS)	23M	Oct 2024 - Sep 2025	8%
Purdue Anvil (ACCESS)	23M	Oct 2024 - Sep 2025	15%
TACC Stamped3 (ACCESS)	1M	Oct 2024 - Sep 2025	0%

Online Heterogeneous Reconstruction

Alpaka (Abstraction Library for Parallel Kernel Acceleration)


 Alpaka reconstruction runs on CPUs and GPUs with near-identical results, validated on x86-64 and NVIDIA GPUs for HLT.

Online Reconstruction (High-Level Trigger): Currently, CMS can offload to GPUs about 35% of the online reconstruction time [Ref]:

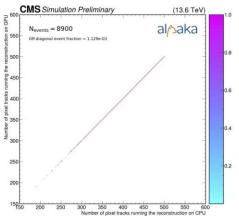
- the ECAL unpacking and local reconstruction
- the HCAL local reconstruction and Particle Flow clustering
- the Pixel unpacking, local reconstruction, track reconstruction, and vertex reconstruction

Example of ongoing development:

 Electron seeding: ~15% of overall reconstruction time @ HLT, and ~90% of the e/gamma reconstruction time spent on electron seeding [<u>Ref</u>]

Alpaka Framework Supported GPUs in CMSSW

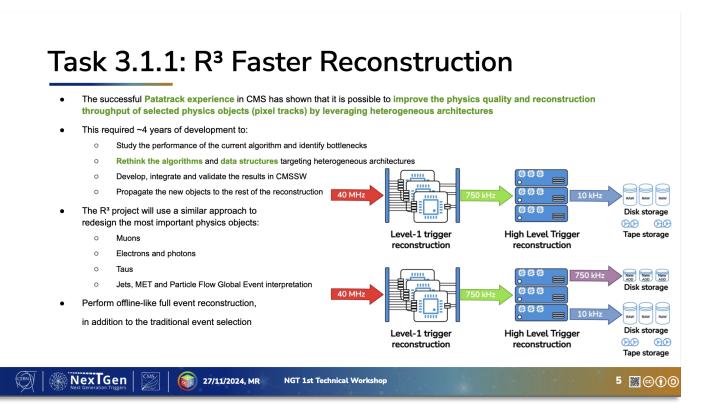
- NVIDIA: Production grade and validated.
- AMD: Production grade, in validation. Running CMSSW CI tests on LUMI.
- Intel: Support is not complete for CMSSW.
 Integration with Intel oneAPI has not been tried yet.


Accelerator Back-end	Lib/API	Devices	Execution strategy grid-blocks	Execution strategy block-threads
Serial	n/a	Host CPU (single core)	sequential	sequential (only 1 thread per block)
OpenMP 2.0+ blocks	OpenMP 2.0+	Host CPU (multi core)	parallel (preemptive multitasking)	sequential (only 1 thread per block)
OpenMP 2.0+ threads	OpenMP 2.0+	Host CPU (multi core)	sequential	parallel (preemptive multitasking)
std::thread	std::thread	Host CPU (multi core)	sequential	parallel (preemptive multitasking)
твв	TBB 2.2+	Host CPU (multi core)	parallel (preemptive multitasking)	sequential (only 1 thread per block)
CUDA	CUDA 12.0+	NVIDIA GPUs	parallel (undefined)	parallel (lock-step within warps)
HIP(clang)	HIP 6.0+	AMD GPUs	parallel (undefined)	parallel (lock-step within warps)
SYCL(oneAPI)	oneAPI 2024.2+	CPUs, Intel GPUs and FPGAs	parallel (undefined)	parallel (lock-step within warps)

Effort to validate results

- Every module requires technical validation, where results should be numerically similar but may differ due to factors such as hardware architecture, the order of floating-point operations (eg., in parallelized algorithms), or whether Fused Multiply-Add (FMA) instructions are used versus separate multiply and add operations.
- Using Alpaka-based modules that share nearly identical code and common data formats significantly simplifies the comparison process.

HEPSpec-like score for GPU is in development

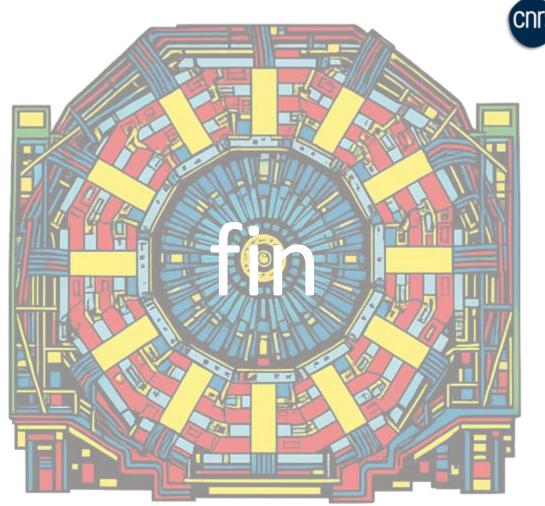

• Currently, using CMS (HLT) workflows

<u>https://nextgentriggers.web.cern.ch</u>

«Heterogeneous» resources : ARM

- Successfully integrated ARM resources available at several sites.
 - In production: CNAF, available through the Global Pool
 - Testing: KIT, CERN, ScotGrid_GLA, Ookami
- Currently, we are working towards the integration of Deucalion, ARM based EuroHPC Supercomputer located in Portugal:
 - Access granted via Openlab at CERN
 - Activity still at early stage, from technical perspectives the system is not ideal (still not providing access to CVMFS CERN repos) but "promising".
 - Integration will be based on existing Submission Infrastructure tools via the Global Pool
- On the US side, the next large NSF HPC, the Frontera upgrade, it's currently in early construction.
 - Although not 100% confirmed, It's likely going to be partitioned into NVIDIA ARM CPU and NVIDIA ARM CPU + GPU

CMSHTPC_T1_DE_KIT_htcondor-ce-1-kit_arm CMSHTPC_T1_DE_KIT_htcondor-ce-2-kit_arm CMSHTPC_T1_DE_KIT_htcondor-ce-3-kit_arm CMSHTPC_T1_DE_KIT_htcondor-ce-4-kit_arm CMSHTPC_T1_IT_CNAF_CINECA_Marconi100_arm CMSHTPC_T1_IT_CNAF_Deuclion_arm CMSHTPC_T1_IT_CNAF_condor_ce02_arm CMSHTPC_T1_IT_CNAF_condor_ce03_arm CMSHTPC_T1_IT_CNAF_condor_ce04_arm CMSHTPC_T1_IT_CNAF_condor_ce05_arm CMSHTPC_T1_IT_CNAF_condor_ce06_arm CMSHTPC_T2_CH_CERN_ce511_arm CMSHTPC_T2_CH_CERN_ce512_arm CMSHTPC_T3_UK_ScotGrid_GLA_ce_arm CMSHTPC_T3_US_Ookami



- Run 3 is now in full swing, surpassing Run 2. Still ~1.5y to go to get past the final goal of doubling Run 2.
- CMS is continuing to utilize computing resources intensively but efficiently (in France and elsewhere).
- Phase-2 preparations continue to ramp up:
 - The CDR is converging later this year. Target is to have it fully public in early 2026.
 - The preliminary numbers show that maybe we were a bit optimistic.
 - **BUT** a plan of action is ready. Its foundations rely on a shift towards heterogeneous architectures.

