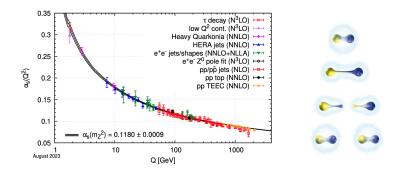
Strong interaction physics at future high-energy e^+e^- colliders

Michael Winn Irfu/CEA, university Paris-Saclay

Ecole de Gif, Strasbourg, 19th of November



Lecture on strong interaction physics

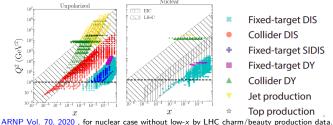
- experimental and theoretical physics of the strong interaction
 - → diverse set of concepts, methods and research directions
- ► frequent criticism
 - ightarrow motivation from outside not as clear as for other disciplines
- Any overview for future collider for particle physics
 - \rightarrow torn between completeness & identification of driving questions & needs for electroweak physics
 - ightarrow limited by the lecturers horizon and knowledge
 - \rightarrow Goal today: give you a taste why QCD research is not only needed, but fascinating at a future collider

favor overview vs. details: a choice with disadvantages focus on FCCee (most material available): some comparisons where deemed needed

Quantum chromodynamics: the theory of strong interaction

Left: QCD review PDG, right: picture from GSI.

- QCD established theory of the strong interaction since the 70ies
- Outstanding properties:
 - → Asymptotic freedom & confinement
- Why QCD at a lepton collider? → part of the answer already in this slide!

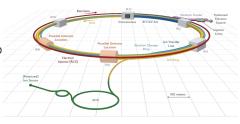

Why lepton colliders and not hadron machines

► ESPPU 2020:

'An electron-positron Higgs factory is the highest-priority next collider. '

- \rightarrow this consensus of the highest priority has not changed.
- ► FCC-hh directly attractive for many 'QCD-people':
 - \rightarrow fear of missing diversity at lepton collider
 - ightarrow fear of missing enthousiasm for lepton collider
- still hard to judge for me (and most of 'us') today being socialised in heavy-ion physics at the LHC
 - ightarrow impressed by motivation & determination when embedded in LHCb group in Orsay for precision tests
- ► FCC-hh in any case unrealistic: technology not ready (magnets, detectors) for leap w.r.t. LHC in lumi/energy cost prohibitive for small time gap after LHC
- brief discussion of lepton-hadron machines
 LHeC relevant since discussed as a possible intermediate step

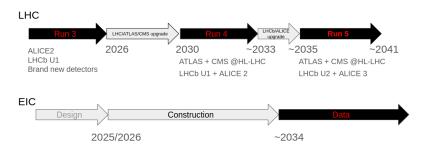
LHeC: genuine QCD motivation



ARNP Vol. 70, 2020, for nuclear case without low-x by LHC charm/beauty production data.

- ▶ ep: electron beam > 50 GeV: $\sqrt{s} = 0.2 1.3$ TeV (× 4 HERA), $L_{inst} = 10^{34}~{\rm cm}^{-2} {\rm s}^{-1}$ (× 10^2 - 10^3 HERA) $\approx 100~{\rm fb}^{-1}$, $\approx 1~{\rm ab}^{-1}$ total
- ▶ ePb: $\sqrt{s_{eN}} = 0.74$ TeV (× 10 EIC): $L_{inst,eN} = 0.7 \cdot 10^{33} \text{ cm}^{-2} \text{s}^{-1}$ (≈ EIC)
- ► LHeC: ultimate machine for saturation physics kinematic reach ≈ LHC but DIS + nuclear targets, French theory active on physic case
- lacktriangle precision collinear PDFs for hadronic collisions, $lpha_s$ determination
- important to lever LHC (+FCC-hh) QCD+BSM, but limited number of experimentalists as first priority
- convert one interaction point from hh to eh focus at LHC

Electron-Ion Collider: the very next collider


- Polarized beams: e. p. d/3He
- e beam 5-10 (18) GeV
- Luminosity L_{ep} ~ 10³³⁻³⁴ cm⁻²sec⁻¹ (100-1000 times HERA)
- 20-100 (140) GeV Variable CoM
- · Nuclei from p to Uranium
- · Two interaction regions
- One detector from day-0, strong wish for a second detector

EIC in a nutshell from F. Bossu at French GT4 workshop

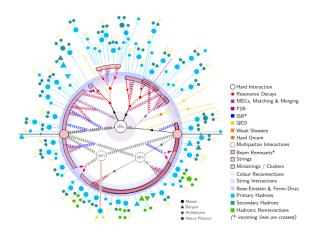
- Electron-Ion Collider: a lepton-hadron machine replacing a hadron-hadron machine (Relativistic heavy-ion collider)
- ▶ only one lepton-hadron collider before: HERA (DESY)
 → nuclear targets not at HERA, no hadron beam polarisation at HERA, lepton beam unpolarised at injection

4) HL-LHC + Electron-Ion Collider timeline

LHC and EIC will be running in parallel for 5-10 years

- ► Strongly beneficial for physics output during this period

 → hadron structure beyond collinear factorisation + saturation
- synergy & dependence of EIC instrumentation from ongoing LHC
 prominent technology example: CMOS pixel detectors for tracking

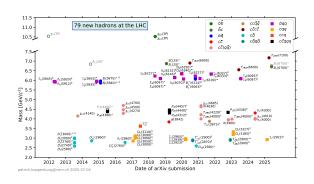

Further reading

- QCD and collider physics: the pink book, Ellis, Stirling, Webber link
- the black book of QCD, Campbell, Huston, Krauss link
- ► Electron-Positron Physics at the Z, Green, Lloyd, Ratoff and Ward

Outline

- Status of QCD before the next lepton collider
- Motivation for QCD at future lepton collider
- QCD precision measurements
- ▶ QCD goes non-perturbative at e^+e^-
- Conclusions

QCD at colliders today



Taken from Pythia 8 arXiv:2203.11601

▶ active research area with major advancements in last 25 years since last high-energy lepton collider LEP2

 \rightarrow a panorama

QCD at colliders: spectroscopy

Compilation by P. Koppenburg for states found at the LHC link

- Spectroscopy renaissance with heavy-quark exotica: c/b-factories, LHC(b)
- many states that don't fit in standard quark model
- strong theory activity
- ► LHCb Upgrade 1 & Belle-2 and HL-LHC with LHCb U2
 → continuation of progress with increasing luminosities

QCD at colliders: spectroscopy frontier

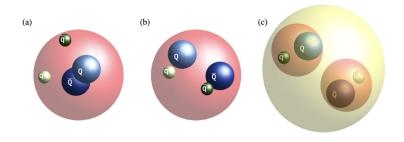
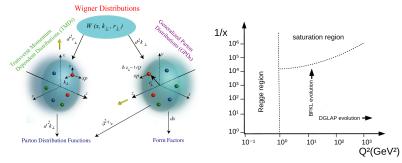



illustration taken from C. Hanhart arXiv:2504.06043

- nature of the discovered states to be clarified case by case
- ▶ example for different inner structures proposed for Tetraquarks discovered in LHCb (e.g. $Tcc^+D^0D^0\pi^+$), states can also mix

QCD at colliders: hadron structure frontier

right: adapted from pink book.

beyond collinear factorisation

- transverse momentum dependent distributions
 - ightarrow input for precision Electroweak physics
- generalised parton distribution functions
 - ightarrow spin/mass decomposition of hadrons in terms of partons
- ▶ non-linear regime of QCD: hadrons at high energy no longer dilute, but system with high-gluon occupation inconclusive in γ /proton + proton/nucleus so far

Michael Winn QCD 12/45

QCD at colliders: strongly interacting matter hadronisation

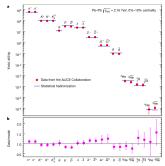
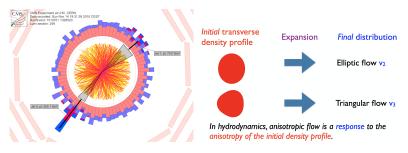


Fig. 1 | Hadron abundances and predictions of the statistical hadronization model: a, dN/dy values for different hadrons and nuclei, measured at mid-rapidity (red circles), including the hypertrition ³_HH, are compared with the statistical hadronization analysis (blue bars). The data are from the ALICE Collaboration for central Pb-Pb collisions at the LHC⁵⁵⁻²⁹, b. The ratio of the data to statistical hadronization predictions (model), with errors bars determined only from the data as the quadratic sum of statistical and systematic uncertainties.

$$\begin{split} \ln Z_{gc} &= \sum_{i} \pm g_{i} \frac{V}{2 \cdot \pi^{2}} \int_{0}^{\infty} dp p^{2} \ln (1 \pm e^{-\beta \cdot (E_{i}(p) - \mu_{i})}) \\ n_{i} &= \frac{g_{i}}{2 \cdot \pi^{2}} \int_{0}^{\infty} \frac{p^{2} dp}{e^{(E_{i}(p) - \mu_{i})/T} \pm 1} \\ \mu_{i} &= \mu_{B} B_{i} + \mu_{S} S_{i} + \mu_{I3} J_{3,i} \\ E_{i} &= \sqrt{p^{2} + m_{I}^{2}}, g_{i} : \text{degeneracy, is species} \end{split}$$

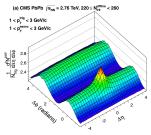

- particle averages from hadronisation
 - → very 'simple' in nucleus-nucleus collisions
 →'Hadron resonance gas'
- extract temperature and chemical potentials
 experimental phase diagram
- more predictive than hadronisation in electron-positron, electron-proton, proton-proton

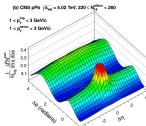
thermal model also even in ee:

however more microcanonical, precise physics interpretation unclear

taken from Andronic et al. Nature 561 (2018)

QCD at colliders: strongly interacting matter signatures

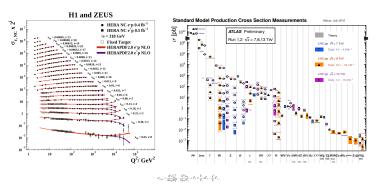



right: taken from J.-Y. Ollitrault

- finite temperature QCD at colliders with heavy-ion collisions: a whole field of its own
- key signatures found at RHIC and confirmed at LHC: energy loss and hydrodynamic flow + signatures of deconfinement and chiral restoration with quarkonia and dileptons
- Strong experimental signatures for hydro in energy loss
 → precision studies of strongly interacting matter
 → last 3 years: constraints on nuclear structure

Michael Winn

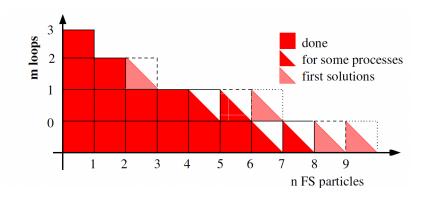
QCD at colliders: strongly interacting matter everywhere?



PLB, Volume 724, Issues 4–5, 23 July 2013, Pages 213-240

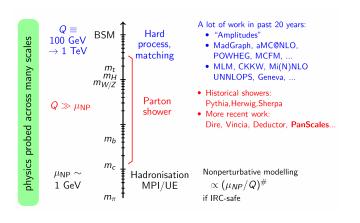
- proton-proton collisions and mainly proton-lead collisions as starting point of a broad investigation of nucleus-nucleus signatures in smaller collision systems
 - \rightarrow 2013 and onwards result explosion
- among others: long range correlations in angular space
 → 'Collectivity' found in small collision systems
- today: features of proton-lead correlation data described by hydrodynamic models
- ► limits of hydrodynamic concepts: still main driver of field
- energy loss discovered in 2025 in Oxygen-Oxygen collisions!

Michael Winn QCD 15/45


QCD at colliders: success of perturbative QCD at large Q^2

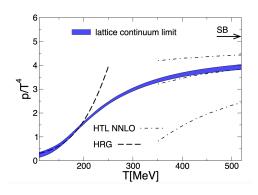
Left: Eur.Phys.J.C 75 (2015) 12, 580, Right: taken from link

- ▶ Legacy of HERA deep-inelastic scattering: precision test of perturbative QCD over several orders of magnitudes → back-bone of proton structure knowledge
- beautiful consistency between experiment and theory based on PDFs and higher order perturbative QCD for production processes at LHC


QCD at colliders: theory at large Q^2 higher order

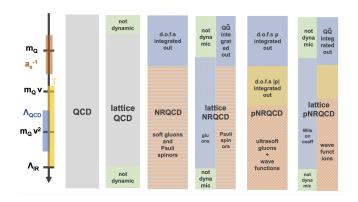
taken from Frank Krauss (2018 Orsay lecture), tree and NLO fully automated.

- Collinear pQCD: NLO revolution → automation of loop calculations of fully differential cross sections
- ► advancements on NNLO and N³LO, see PDG review for references link


QCD@colliders: partons final state→ jets→ parton shower

taken from Gregory Soyez

 ▶ large theory effort to push precision developments of parton showers at next-to-leading logarithm accuracy
 → hadronisation modelling hard wall for precision at some point


QCD at colliders: theory progress from the lattice

PLB 370 (2014) 99 (BW), see also Hot-QCD: PRD 90 (2014) 094503 (Hot-QCD)

- ▶ lattice QCD calculations at physical parameters
- relevant for vacuum and for finite temperature
- example equation of state of strongly interacting matter as function of temperature at vanishing chemical potentials for conserved quantum numbers

QCD at colliders: theory progress effective field theory

A. Rothkopf Phys.Rept. 858 (2020) 1

- ▶ various type of effective field theories to address different regimes of QCD \rightarrow example for heavy quarkonium physics ($c\bar{c} \& b\bar{b}$ bound states)
- ▶ another prominent example: high-energy limit, color glass condensate

QCD-research-intrinsic open quests today

Significant advances on many fronts, but no quantitative/conceptual understanding of:

- emergence of mass and spin of hadrons from partons, in particular role of gluons
- hadronisation
- conditions for & characteristics of thermalisation of strongly interacting matter
- inner structure, i.e. degrees of freedom, phase transitions and transport properties of strongly interacting matter
- high-energy limit of QCD: saturation

Future facilities for QCD research starting in next 10 years HL-LHC: ATLAS/CMS + ALICE3 & LHCb U2: all quests, heavy-ions for thermalisation and inner structure

EIC: 2 precision for emergence + saturation

Facility for Antiproton and ion research (FAIR, Germany): high-luminosity fixed-target nucleus-nucleus collisions, hadronisation, thermalisation, inner structure

Why studying QCD at a future lepton collider?

Twofold motivation

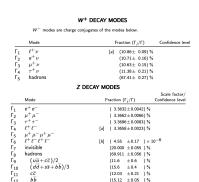
- ▶ precision QCD
 → required for standard model precision test
- study emergent phenomena of QCD intrinsic motivation to progress on hadronisation, thermalisation, saturation

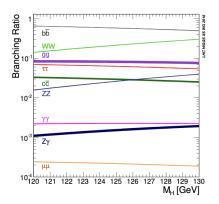
Theory must match experiment precision

a challenge at a completely different scale than the NLO revolution prior to LHC since 'interference' with non-perturbative physics aka hadronisation, see Banfi, CERN 2022

Precision QCD

At LHC: QCD \rightarrow backgrounds for direct searches

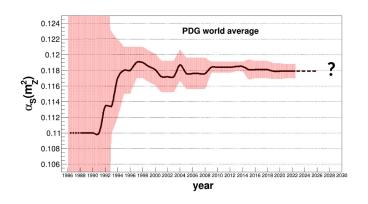

'QCD: The theory of evil'


Quote from Tilman Plehn LHC physics lecture in Heidelberg.

Lepton collider:

- ightarrow possibly a background, but also most of the signal
- \rightarrow cannot afford to see it as the theory of evil

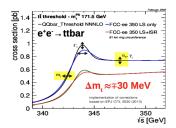
Hadronic final states at electron-positron colliders



PDG experiment

- hadronic final states from gauge bosons and from Higgs boson
 - \rightarrow dominate total rates
 - \rightarrow simplest environment for QCD: color-less initial state, no underlying event
 - \rightarrow dominated by 2-jet events $q\bar{q}$ and gg (new!)
- let's use them to understand more about QCD

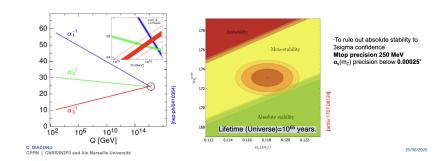
Precision strong coupling constant measurement


taken from α_{S} -review link

- precision 2024 $\alpha_S(m_Z^2) = 0.1180 + 0.0009$ (0.8% uncertainty)
- least precisely known coupling $\delta\alpha\approx 10^{-10} << \delta G_F \approx 10^{-7} << \delta G \approx 10^{-5} << \delta\alpha_S \approx 10^{-2}$

Precision QCD: coupling constant \rightarrow why it matters

Process	$\sigma(\mathbf{pb})$	$\delta \alpha_s(\%)$	$\mathbf{PDF} + \alpha_s(\%)$	Scale(%)
ggH	49.87	± 3.7	-6.2 +7.4	-2.61 + 0.32
ttH	0.611	± 3.0	± 8.9	-9.3 + 5.9


Partial width	intr. QCD	para. m_q	para. α_s
$H o b ar{b}$	$\sim 0.2\%$	1.4%	0.4%
$H \to c\bar{c}$	$\sim 0.2\%$	4.0%	0.4%
$H \to gg$	~ 3%	< 0.2%	3.7%

taken from David d'Enterria

- precision on strong coupling limits precision on theory standard model prediction for a number of channels
- ▶ future e^+e^- colliders can improve significantly over LEP \rightarrow potential of Lattice QCD to be clarified: systematic uncertainties will play a role as well when going to 0.1% precision

Precision QCD: coupling constant \rightarrow why it matters

taken from Cristinel

▶ in the grand scheme of things: decisive parameter of the Standard model

Precision QCD: coupling constant from Z/W hadronic width FCCee

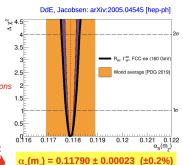
- ♦ Q extracted from N³LO fit of combined Γ_w, R_w W boson pseudo-observ.:
- The W and Z hadronic widths: $\Gamma_{W,Z}^{had}(Q) = \Gamma_{W,Z}^{born} \left(1 + \sum_{i=1}^4 a_i(Q) \left(\frac{\alpha_S(Q)}{\pi}\right)^i + \mathcal{O}(\alpha_S^5) + \delta_{EW} + \delta_{mix} + \delta_{np}\right)$

 $\frac{\Gamma_{\mathrm{W,Z}}^{\mathrm{hol}}(Q)}{\Gamma_{\mathrm{W,Z}}^{\mathrm{lop}}(Q)} = \mathrm{R}_{\mathrm{W,Z}}^{\mathrm{EW}} \left(1 + \sum_{i=1}^{4} a_i(Q) \left(\frac{\alpha_S(Q)}{\pi}\right)^i + \mathcal{O}(\alpha_S^5) + \delta_{\mathrm{mix}} + \delta_{\mathrm{np}}\right)^i$

• The ratio of W, Z hadronic-to-leptonic widths :

- Huge W pole stats. ($\times 10^4$ LEP-2).
- Exquisite syst./parametric precision:

$$\Gamma_{\rm W}^{\rm tot} = 2088.0 \pm 1.2 \ {
m MeV}$$

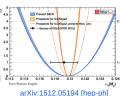

$$R_{\rm W} = 2.08000 \pm 0.00008$$

$$m_W = 80.3800 \pm 0.0005 \,\text{GeV}$$

$$|V_{cs}| = 0.97359 \pm 0.00010 \leftarrow O(10^{12}) D \text{ mesons}$$

- TH uncertainty to be reduced by $\times 10$ by computing missing α_s^5 , α^2 , α^3 , $\alpha\alpha_s^2$, $\alpha\alpha_s^2$, $\alpha^2\alpha_s$ terms
- ◆ 150! times better precision than today:

$$\alpha_{\rm o}(\rm m_{\rm o}) = 0.101 \pm 0.027 \ (\pm 27\%)$$



see details in: arXiv:2005.04545

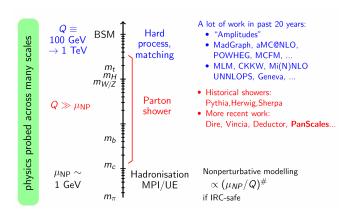
Precision QCD: coupling constant from Z/W hadronic width LC

- lacksquare $lpha_{
 m s}$ measurements at LC (ILC/Giga-Z):
 - $\pm 0.6\%$ from Z pseudoobservables
 - <1% from τ hadronic decays, evt. shapes, jet rates

However, current claim is that α_s will be taken instead from lattice-QCD (see M. Peskin, May 14th): Expected uncertainties under discussion with latt. experts

 \blacksquare α_s measurements at LEP3:

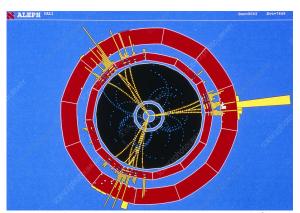
Same physics goals as FCC-ee modulo worse stat. (-4 times less Z) & worse syst. (e.g. beam energy calibration/spread) uncertainties.


- ±0.2% (stat) from Z pseudoobservables ±0.9% (stat) from W hadronic decays
- α measurements at MuColl:
- Determination of $\alpha_{c}(Q)$ running over Q = 1-10TeV e.g. via evt. shapes, EECs
- High-precision $\alpha_c(m_z)$ from measurements of neutrino SFs at a far-forward detector.

Taken from D. d'Enterria.

Precision QCD: comments on coupling constant

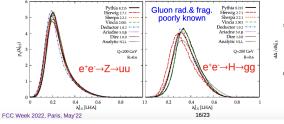
- in principle 2-jet rate, shape variables and others more sensitive to αs \rightarrow stronger sensitivity to non-perturbative physics: goes with 1/Q decreases with centre-of-mass energy
 - → ultimate systematic uncertainty will depend on progress on hadronisation, see e.g. discussion by Peskin link: favouring LQCD

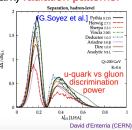

Precision QCD: Jet physics

Taken from G. Soyez.

- Hadronic final state at high energy: jets
- parton shower and hadronisation central objects of study
- ▶ focus on one example where future lepton collider can bring new inputs

Precision QCD with a gluon factory


Aleph LEP mercedes star event like in the gluon discovery at DESY.

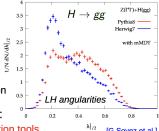

- ightharpoonup previous lepton colliders ightharpoonup hadronic final state at born level qar q
 ightharpoonup gluons only as 'third' jet
- \blacktriangleright hadron collider: despite dominance of gluons over wide region of phase space \rightarrow difficult to isolate
- ► Higgs factory → gluon factory

Precision QCD with a gluon factory

Quark, hadron-level

- State-of-the-art jet $\lambda_{\beta}^{\kappa} = \sum_{i \in \text{jet}} z_i^{\kappa} \theta_i^{\beta},$ substr. studies based on Lund Plane & angularities: (normalized En×0n products)
- "Sudakov"-safe variables of jet constituents: multiplicity, LHA, width/broadening, mass/thrust, C-parameter,...
- κ (larger energy weigth) λ_{β}^{κ} LHA width (larger multiplicity angulai weigth) [Larkoski, Salam, Thaler, 13] [Larkoski, Thaler, Waalewiin, 14]
- k=1: IRC-safe computable (NⁿLO+NⁿLL) via SCET (but uncertainties from non-pQCD effects)
- MC parton showers differ on gluon (less so quark) radiation patterns: Gluon, hadron-level

Precision QCD with a gluon factory


Exploit FCC-ee H(gg) as a "pure gluon" factory:
 H→gg (BR~8% accurately known) provides
 100.000 extra-clean digluon events.

Multiple handles to study gluon radiation & g-jet properties:

◆ Gluon vs. quark via H→gg vs. Z→qq (Profit from excellent g,b separation)

Gluon vs. quark via Z→bbg vs. Z→qq(g) (g in one hemisphere recoiling against 2-b-jets in the other).

- ♦ Vary E_{iet} range via ISR: $e^+e^- \rightarrow Z^*, \gamma^* \rightarrow jj(\gamma)$
- Vary jet radius: small-R down to calo resolution

- Multiple high-precision analyses at hand:
 - <u>Higgs/BSM/flavour</u>: Improve q/g/Q discrimination tools $\lambda_{1/2}$ [G.Soyez et al.]
 - <u>pQCD</u>: Check NⁿLO antenna functions. High-precision QCD coupling.
 - non-pQCD: Gluon fragmentation: Octet neutralization? (zero-charge gluon jet with rap gaps). Colour reconnection? Glueballs? Leading η's,baryons?

FCC Week 2022, Paris, May'22 17/23 David d'Enterria (CERN)

Precision QCD: theory requirements

	Observable	Missing higher-order & power-suppressed corrections
	Hadronic Z width	$\mathscr{O}(\alpha_s^5), \mathscr{O}(\alpha^3), \mathscr{O}(\alpha_s\alpha^3), \mathscr{O}(\alpha_s^2\alpha^2)$
$\alpha_{\rm s}(m_{\rm Z})$	Hadronic W width	$\mathscr{O}(\alpha_s^5), \mathscr{O}(\alpha^2), \mathscr{O}(\alpha^3), \mathscr{O}(\alpha_s\alpha^2), \mathscr{O}(\alpha_s\alpha^3), \mathscr{O}(\alpha_s^2\alpha^2)$
in e⁺e⁻	Hadronic τ width	$\mathscr{O}(lpha_s^5)$
	Hadronic event shapes (Z, W, H decays)	N ³ LO differential, N ^{3,4} LL resummation, power corrections
(\	Inclusive jet rates	3-jet cross sections at N ³ LO, 4-jets at N ² LO, 5-jets at NLO
$\alpha_s(m_z)$	Lattice QCD results	$\mathscr{O}(\alpha_s^6) \beta$ -function; $\mathscr{O}(\alpha_s^5)$ heavy quark decoupling; $\mathscr{O}(\alpha_s^4)$ static potential
in latt.	$(\alpha_s \text{ extractions; quark masses } m_c, m_b)$	$\mathscr{O}(\alpha_s^3)$ lattice perturbation theory matching (lattice coupling to $\alpha_s^{\overline{MS}}$ etc.)
m_W, m_{top}	$\sigma(e^+e^- \to W^+W^-) \text{ vs. } \sqrt{s}$	EW N ² LO: $\mathcal{O}(\alpha^2)$, Mixed EW-QCD: $\mathcal{O}(\alpha_s \alpha^2)$, $\mathcal{O}(\alpha_s^2 \alpha)$
in e⁺e⁻	$\sigma(e^+e^- \to t\bar{t}) \text{ vs. } \sqrt{s}$	NRQCD: $\mathcal{O}(\alpha_s^5)$, Non-resonant: $\mathcal{O}(\alpha_s^5)$,
		$O(\alpha_s^3)$ differential; QED: $\mathcal{O}(\alpha^3)$ at NNLL
QCD	H→ bb̄ width	N ⁴ LO (massive b-quark); N ⁴ LO differential (massless b-quark)
in Higgs	$H \rightarrow gg$ width	N ⁵ LO (heavy-top limit), N ⁴ LO (massive top)
e⁺e⁻,e-p,		N ⁴ LO differential, N ³ LO differential (massive top)
	MC simulations for $e^+e^- \rightarrow X$ processes	N ^{2,3} LO matched to N ^{2,3} LL PS.
p-p PS		Permille control of non-perturbative QCD effects (hadronization, CR,)
$\alpha_s(m_z)$	ep $ ightarrow$ hadrons (PDF and $lpha_{s}$ determination)	N ^{3,4} LO evolution equations and inclusive cross sections
in DIS _ep \rightarrow jets (α_s determination)		N ³ LO cross sections

Taken from David d'Enterria

Emergent phenomena

At hadron collider:

 $\mathsf{QCD} \to \mathsf{Strict}$ reductionism fails to understand strong interaction phenomena in the non-perturbative regime

'More is different'

(Andersen)

This motivation is independent of the presence of beyond the standard model physics.

Electron-positron collisions allow to progress on some of these quests: \rightarrow only a selection, e.g. don't discuss spectroscopy opportunities

QCD with $\gamma\gamma$ collisions

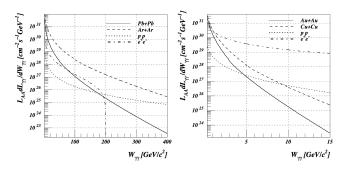


Figure 3. Effective $\gamma\gamma$ luminosity at LHC (left) and RHIC (right) for different ion species and protons as well as at LEP II. In pp and e^+e^- collisions, L_{AA} corresponds to the pp or e^+e^- luminosity. Reprinted from Ref. [3] with permission from Elsevier.

review of UPC at LHC

- analogue to ultra-peripheral collisions (UPC) at the LHC in PbPb \rightarrow LHC: first observation of $\gamma\gamma to\gamma\gamma$, first hadron collider g-2 of τ
 - ightarrow much more to come in Run 3 and at HL-LHC
- ▶ major background source at e⁺e⁻ collider → unique QCD physics

QCD with $\gamma\gamma$ collisions

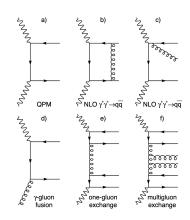
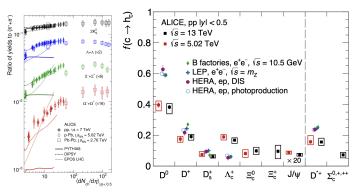
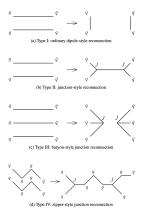



Figure 1: Examples of diagrams contributing to the process $\gamma^*\gamma^* \to hadrons$: a) QPM, b) and c) $\mathcal{O}(\alpha_0)$ QCD corrections to the QPM diagram, d) photon-gluon fusion, e) one-gluon exchange and f) multiplioun ladder exchange.

diagrams for $\gamma^* \gamma^* \rightarrow hadrons$, from L3 publication link

- ✓ discriminate between detection of lepton or not in reaction
 ee → γγee: no tag, single tag, double tag
 → hadronic final state: from soft
 - \rightarrow hadronic final state: from soft to test of photon structure function F_2 analogue to proton structure to perturbative QCD
- ▶ spectroscopy: $\gamma\gamma \to H$ complementary quantum numbers w.r.t. e^+e^- , e.g. heavy speudoscalars $\eta_{c,b}$
- ▶ tests of non-linear QCD in $\gamma^*\gamma^* \rightarrow \textit{hadrons}$: saturation \rightarrow LEP inconclusive on effects of BFKL evolution
- physics program to be developed


Emergent phenomena: hadronisation

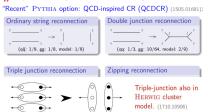
- event generators tuned on LEP data
 - \rightarrow badly fail at the LHC
- scaling as function of final state particle density
- non-universality of charm hadronisation fractions baryons severly underestimated

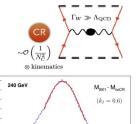
 \rightarrow let's go back to e^+e^-

Emergent phenomena: hadronisation - natural extensions

taken from arXiv:1505.01681

- event generators simplifying
 → confining potential usually only
 between two partons
 → QCD allows for more
 see e.g. in Christiansen, Skands
 arXiv:1505.01681 for implementation in
 String model: 'next-to-leading colour'
- ▶ strong effect in hadronic environment → subtle effect in e⁺e⁻: but there, we can be precise with fixed initial state!

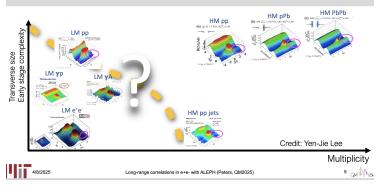

Emergent phenomena: hadronisation - WW as clean test


■ Colour reconnection among partons is source of uncertainty in m_w in multijet final states (also m_{top} inv. mass, aGC extractions):

CR "string drag" impacts e⁺e⁻ → WW(4j) final state (also e⁺e⁻ → ttbar, e⁺e⁻ → ZZ(4j), H → 4j,...):

- Shifted masses & angular correlations (CP studies).
- Combined LEP e⁺e⁻ → WW(4j) data best described with 49% CR, 2.2σ away from no-CR.
- Exploit 10⁸ W stats at FCC-ee to measure

m,, leptonically & hadronically and constrain CR:


0(1)

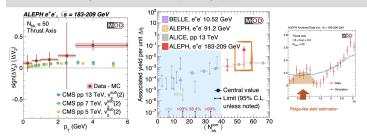
 M_W shift due to CR effect, modelled using the SKI scenario

δ M_w = 23.9 1.1 Me

Emergent phenomena: long-range correlations at e^+e^-

taken from QM talk 2025 LEP2 reanalysis

- LEP goes heavy-ion
 - \rightarrow important input for understanding of long-range correlations whether signal seen in electron-positron collisions
- future lepton collider will provide far larger statistics and higher collision


 Michael Winn

 future lepton collider will provide far larger statistics and higher collision

 42/45

Emergent phenomena: long-range correlations at e^+e^-

Similarity to low-multiplicity pp collisions

Measured coefficients seem to be **somewhat similar to CMS and ALICE measurements** in low-multiplicity pp collisions at a variety of beam energies

taken from QM talk 2025 LEP2 reanalysis

- LEP goes heavy-ion
 - \rightarrow important input for understanding of long-range correlations whether signal seen in electron-positron collisions
- future lepton collider will provide far larger statistics and higher collision energy for larger number of final state particles

Conclusion

- QCD: a very diverse field
- lepton collider unique precision measurements in the perturbative and non-perturbative regime of QCD
 - ightarrow required to reduce uncertainties on standard-model properties
 - → intrinsic motivation to understand emergent phenomena: hadronisation, collectivity & high-energy limit
- hadronisation unsolved problem of particle physics
 - \rightarrow ultimate limitation of any measurement involving jets even at lepton collider
 - \to a breakthrough can't be promised, but a lepton collider with high luminosity is the best chance since it is the cleanest environment at hand
- if saturation not pinned down at the LHC or the EIC: $\gamma^*\gamma^*$ a very clean environment to search for it

A last remark

ightharpoonup QCD: the theory of evil? ightharpoonup No!

► half best friend + half stranger

 \rightarrow we still don't know its most interesting sides.