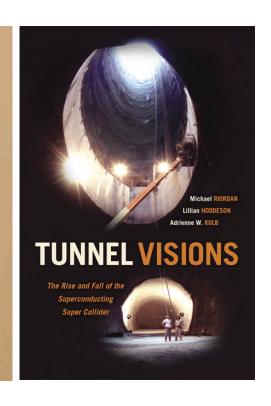
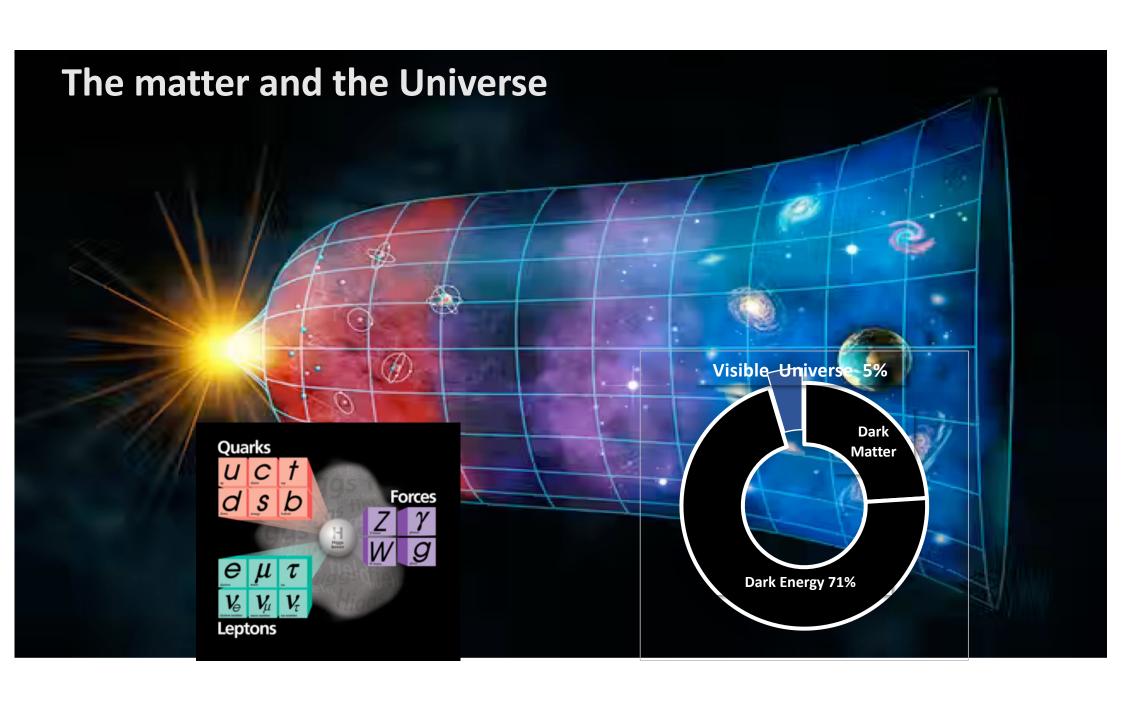
La stratégie européenne pour la physique des particules une perspective sur les grands projets en HEP

Cristinel Diaconu

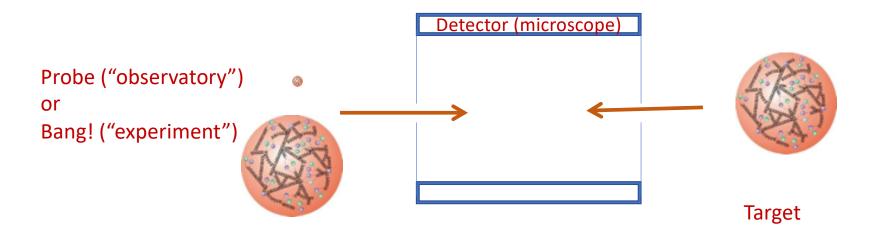
Centre de Physique des Particules de Marseille



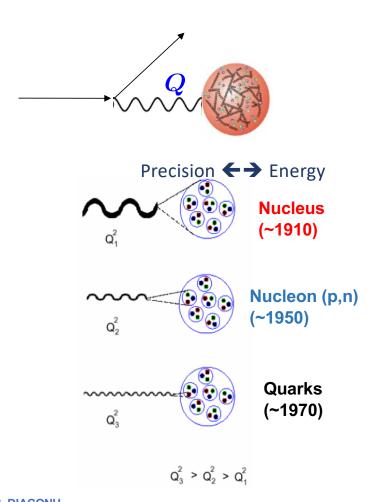
Preamble

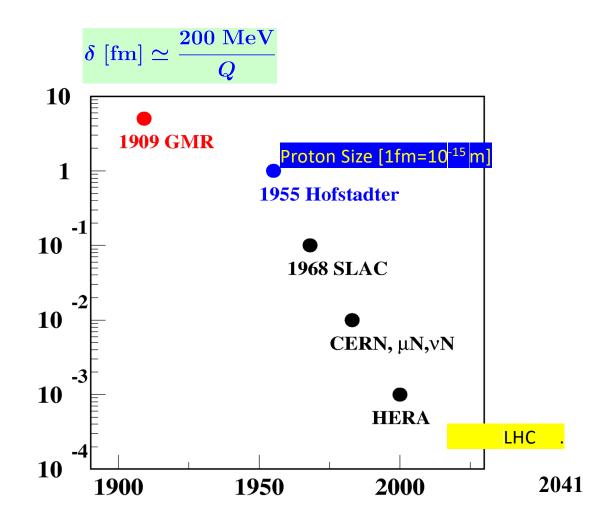

In October 1993 the US Congress terminated the Superconducting Super Collider—at the time the largest basic-science project ever attempted, with a total cost then estimated to exceed \$10 billion. It was a stunning blow, a terrible loss for the nation's high-energy physics community, which until that moment had perched for decades at the pinnacle of American science. Since that fateful vote, this once-dominant scientific community has been in steady decline. With the 2010 startup of research on the CERN Large Hadron Collider and the 2011 shutdown of the Fermilab Tevatron, world leadership in high-energy physics crossed the Atlantic and returned to Europe. The 2012 discovery of the Higgs boson at CERN only underscored this epochal transition.

Content

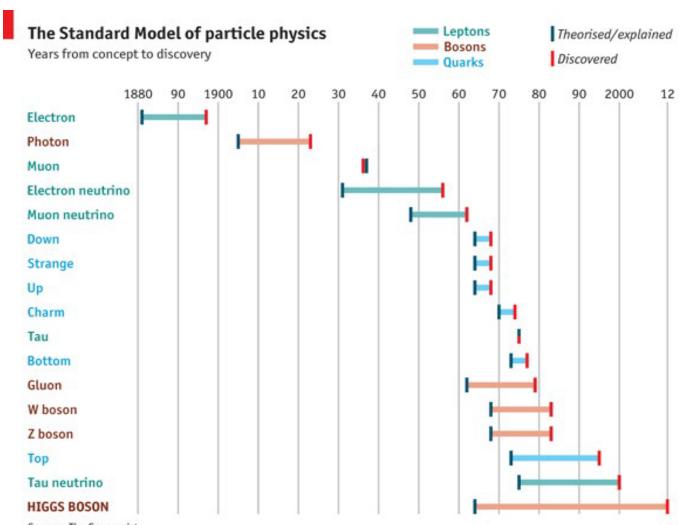


- Building large projects in Particle Physics
- European Strategy in Particle Physics ESPP 2026 (and FR)
- Flagship projects feasibility
- Physics standpoint and projections
- Stairway to decision on future projects


The "test tube" and the "microscope"



Deep into the matter.....



30 years of discoveries.....

C. DIACONU Source: The Economist
CPPM | CNRS/IN2P3 and Aix Marseille Universite

Le modèle Standard

Quarks

 $\delta\alpha\approx 10^{\text{--}10}\ll\,\delta G_{_{\text{F}}}\approx 10^{\text{--}7}\ll\,\delta G\approx 10^{\text{--}5}\ll\,\delta\alpha_{_{\text{S}}}\approx 10^{\text{--}3}$

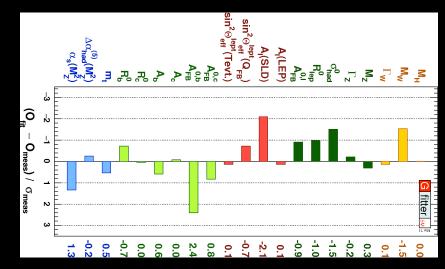
Forces

Higgs boson

M(W)= 80.3692±0.0133 GeV M(H)= 125.20±0.11 GeV M(photon)<1×10⁻¹⁸ eV M(g)=0

M(Z)= 91.1880±0.0020 GeV

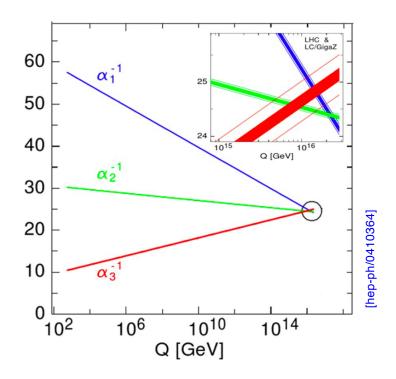
Leptons

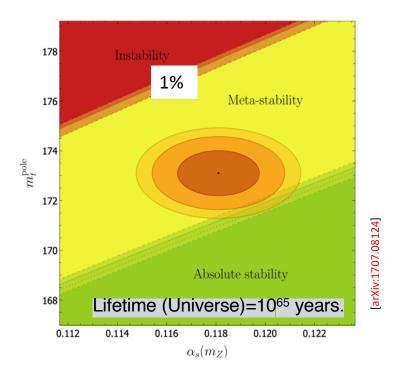

forte

Electro-

magnetique

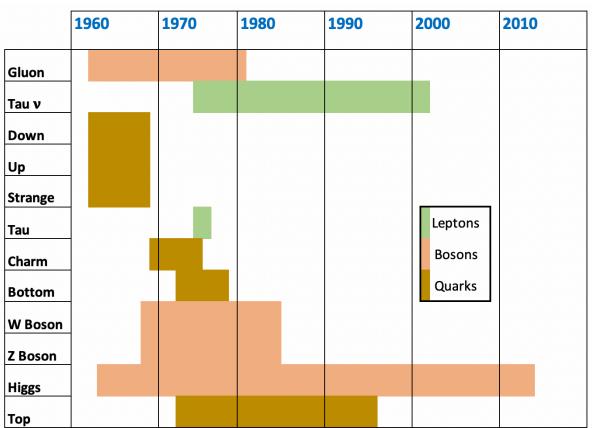
gravitation

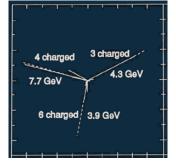

Precision 10⁻³-10⁻⁵

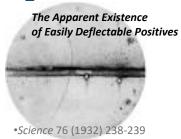


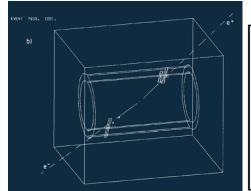
The implications

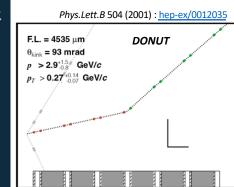
• Particle physics is at the forefront of the most fundamental questions in science



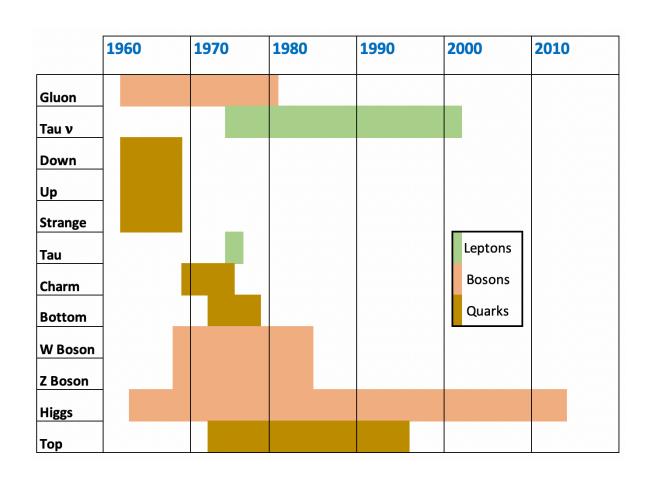

"To rule out absolute stability to 3sigma confidence Mtop precision 250 MeV $\alpha_s(m_Z)$ precision below 0.00025"

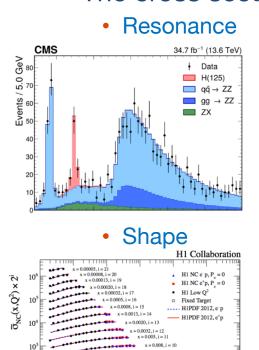

How to make a discovery: observe/confront

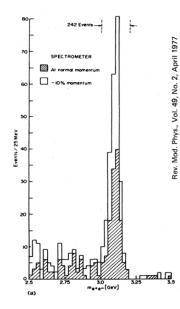




The event signature

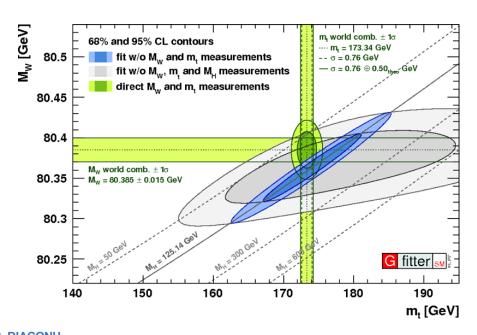


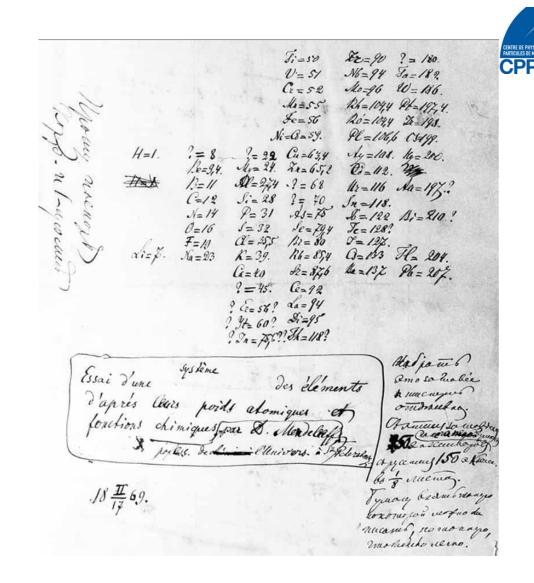

How to make a discovery: observe/confront



The cross section

 Q^2 [GeV²]

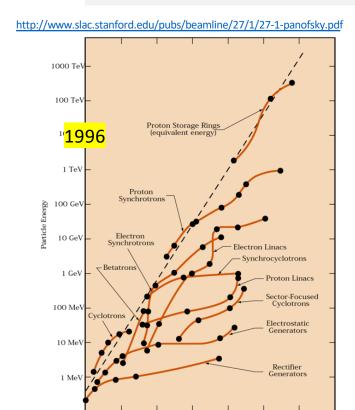


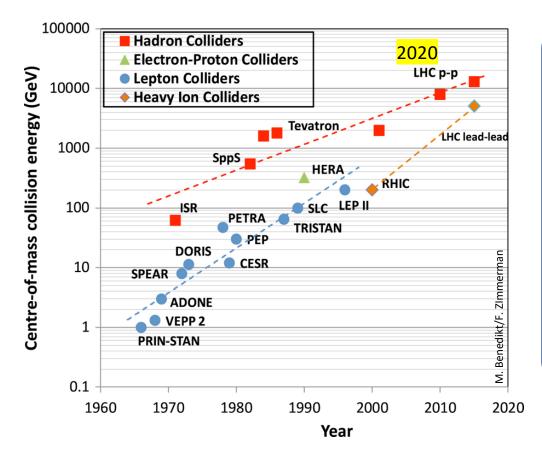


11

Precision leads to discovery

- Discrepancies and domain "mappings" are place holders for future discoveries
- Crosssing borders in precision and energy are equivalent





Highest energy

Stanley Livingston first noted that advances in accelerator technology increase the energy records achieved by new machines by a factor of 10 every six years. (Panofsky, 1996)

C. DIACONU
CPPM | CNRS/IN2P3 and Aix Marseille Université

1930

1950

1970

Year of Commissioning

1990

The future?

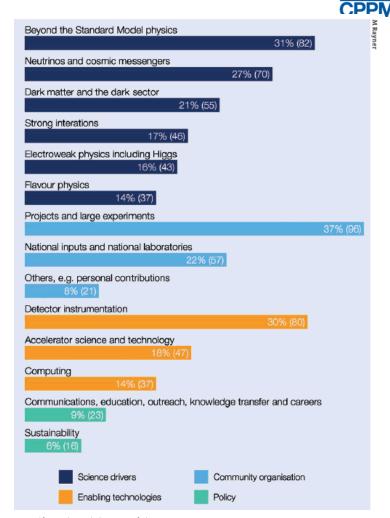
European Strategy for Particle Physics 2026

- The aim of the Strategy Update should be to develop a visionary and concrete plan that greatly advances human knowledge in fundamental physics through the realisation of the next flagship project at CERN. This plan should attract and value international collaboration and should allow Europe to continue to play a leading role in the field."
 - The Strategy update should include the **preferred option for the next collider at CERN** (Plan A) and **prioritised alternative options** (Plan B) to be pursued if the chosen preferred plan turns out not to be feasible or competitive.
 - The Strategy update should also indicate areas of priority for exploration complementary to colliders and for other experiments to be considered at CERN and at other laboratories in Europe, as well as for participation in projects outside Europe.

The European Strategy for Particle Physics is not a project approval process. Projects are approved by the CERN Council through a separate decision process, taking the Strategy recommendations into account.

- Original Strategy (2006):
 - LHC, mooting of luminosity upgrade of LHC, R&D in accelerator technologies, coordination with a potential ILC project
- 1st Update (2013):
 - High Luminosity LHC, need for a post-LHC programme
- 2nd Update (2020):
 - FCC feasibility study
- 3rd Update (2026) →
 recommendation for the next
 large-scale accelerator project
 at CERN (reach consensus on
 the preferred option and
 possible alternatives)

Timeline for the update of the European Strategy for Particle Physics



More details on ESPP web page: https://europeanstrategyupdate.web.cern.ch/

The community input

- 266 contributions received
 - https://indico.cern.ch/event/1439855/contributions/
- These submissions are analysed by the
 - Physics Preparatory Group (PPG) and
 - European Strategy Group (ESG)
- Open Symposium Venice <u>https://agenda.infn.it/event/44943/</u>

Self-attributed themes of the 263 community inputs

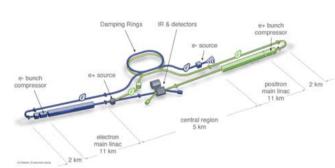
The future accelerator/collider projects submitted

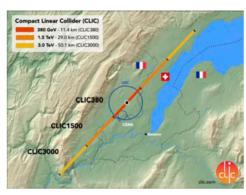
- Important scientific ingredients
 - Initial state
 - Energy
 - Intensity/luminosity
 - Experimental precision
 - Theoretical precision/understanding
 -
- Other ingredients
 - Community
 - Funding
 - Societal and envioronmental impact
 -
- The "lab" is well equiped!
 - E_{process} ~ GeV → 50 TeV
 - ~6 orders of magnitude

						CPPI
		е				
	е	Belle II, FCCee, CEPC, STCF, LCF,LEP3	mu		"Probo"	
١.	mu	MUonE	mu-coll	nu		
ומוצבו	nu			Mu-coll	р	
	р	EIC, LHeC			LHC,FCChh	A
	A	EIC, LHeC	FPF	FPF	LHC,FCChh	LHC, SPS,FCChh, FAIR

The future is new ideas:

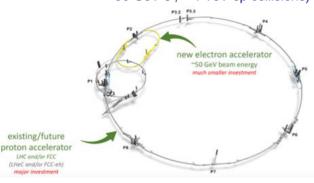
Precision and energy frontier explorers


Remember Livingstone: LEP 2: 209 GeV in year 2000.


e⁺e⁻ colliders ("Higgs factories")

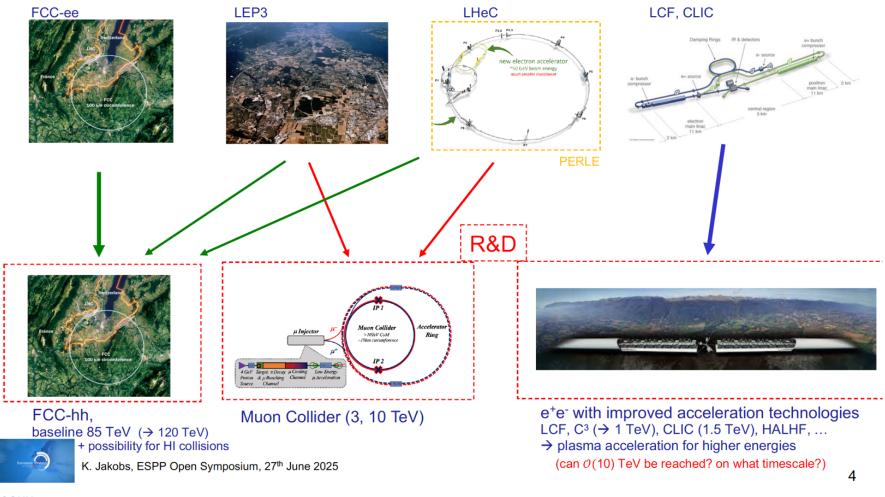
LCF (e⁺e⁻, linear, 91 – 240, 550 GeV)

CLIC (e⁺e⁻, linear, 380 GeV, 1.5 TeV)

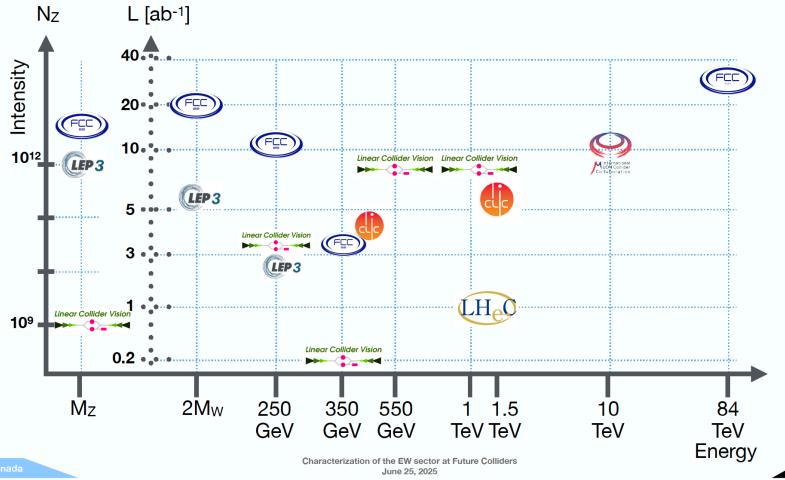

Intermediate projects

(Leave room (time, budget, resources) for further development of THE machine that can probe directly the energy frontier at the 10 TeV parton scale)

LHeC (ep, circular, electron ERL, 50 GeV e⁻, > 1 TeV ep collisions)

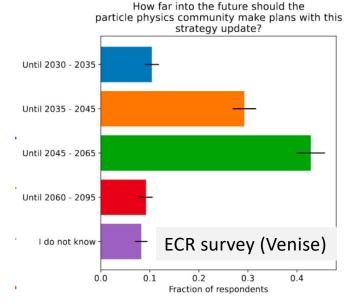


18



Potential for development: future 10 TeV parton-scale collider options

Comparing future collider capabilities


Very different design to address the search for new physics

Jorge de Blas - U. of Granada

 Our community (you!) plans multiple projects for the next 40 years

Z peak
WW
ZH
tt
550 GeV

	2045	2046	2047	2048	2049	2050	2051	2052	2053	2054	2055	2056	2057	2058	2059	2060	2061	2062
FCC-ee				0,5	0,5	1	1	1	1	1	1	1		0,5	1	1	1	1
CLIC-380-550	0,1	0,3	0,6	1	1	1	1	1	1	1			1	1	1	1	1	1
LCF-250	0,1	0,3	0,6	1	1		1	1	1	1								
LCF-250-550	0,1	0,3	0,6	1	1		1	1	1	1			1	1	1	1	1	1
LEP3	1	1	1	1	1	1		1	1	1	1		1	1	1	1	1	1
LHeC	1	1	1	1	1													

The future

Assessment of large-scale accelerator projects at CERN Report of ESG WG2a

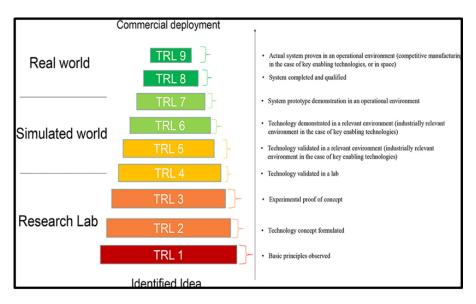
31 October 2025

G. Arduini^{1,a} (convener), F. Bordry¹ (co-opted accelerator expert), R. Brinkmann² (co-opted accelerator expert), P. Burrows^{3,b} (convener), K. Desch⁴, S. Farrington^{5,6}, F. Gianotti¹, K. Hanagaki⁷, N. Holtkamp^{8,9} (co-opted accelerator expert), J. Keintzel^{1,c} (scientific secretary), B. Kilminster¹⁰, T. Lesiak¹¹, L. Rivkin^{12,13} (co-opted accelerator expert), F. Sabatié^{1,4}, M. Tuts¹⁵, A. Zoccoli¹⁶.

	CLIC		FCC-ee			FCC-hh	LCF			LEP3			LHeC	ı	ис			
									LP		FP							
Particles colliding [-]	e*/e- e*/e-			p/p	e+/e-			e+/e-			e ⁻ /p	μ+/μ-						
C.o.m. energy [GeV]	380	550	1500	91.2	160	240	365	84600	250	91.2	250	550	91.2	160	230	1180	3200	7600
Length [km]	12.1	15	29.6		90.7			90.7		33.5			27.6			9.2/27.6	11/4.8	11/8.7
#IPs [-]	2	2	1		4			4		2			2			1		2
Peak inst. lumi/IP [10 ³⁴ cm ⁻² s ⁻¹]	2.2	3.2	3.7	140	20	7.5	1.4	30	1.35	0.28	2.7	3.85	40	6.2	1.6	2.3	0.9/2	7.9/10.1
Peak power consumption [MW]	166	210	287	251	276	297	381	355	143	123	182	322	200	226	250	220	117	182
Cost [BCHF] ^a	7.2	+30%b	+7.1		15			+19°	8.3	+0).8	+5.5		3.9		2	12	17

^a Total installation and construction cost quoted by the proponents of the projects in 2024 prices. The cost includes the technical components, materials, contracts, services, civil construction and conventional systems and associated implicit labour such as that provided by a company to produce components. It does not include labour provided by the host institution and the collaborating laboratories, contingency, any potential future inflation, the costs prior to project approval (construction and R&D), off-line computing, spares, maintenance, beam commissioning. The cost of the experiments is not included. The cost of land acquisition, site activation (e.g. external roads, water supplies, power lines) and spoil removal are not included for CLIC and LCF though they are expected to represent a minor contribution to the total cost (at the percent level). The additional cost of each individual upgrade is indicated.

Table 1: Overview of the main parameters submitted to the ESPP2026 and considered for this assessment. Data compiled from Refs. [ID40, ID78, ID188, ID207, ID214, ID233, ID247,1,2,3,4]. LP=Low Power, FP=Full Power.


^b Cost of the upgrade from 380 GeV.

[°] Cost estimated if FCC-hh follows FCC-ee. The cost for standalone FCC-hh is given as 28.4 BCHF.

Examples of criteria for accelerator readiness

23

Cost class	Level of definition	Typical estimating technique	Typical purpose of estimate	Expected accuracy ranges, low (L) and high (H)
Class 5	0/2%	Capacity factored, stochastic, most parametric models, judgement or analogy	Concept screening	L: -20/-50%; H: +30/+100%
Class 4	1/15%	Equipment factored, more parametric models	Study or feasibility	L: -15/-30%; H: +20/+50%
Class 3	10/40%	Semi-detailed unit costs with assembly level line items. Combination of various techniques (detailed, unit-cost, or activity-based; parametric; specific analogy; expert opinion; trend analysis).	Preliminary, budget authorization	L: -10/-20%; H: +10/+30%
Class 2	30/70%	Detailed unit costs. Combination of various techniques (detailed, unit-cost, or activity-based; expert opinion; learning curve).	Control or bid/tender	L: -5/-15%; H: +5/+20%
Class 1	50/100%	Deterministic, most definitive cost estimation.	Check estimate or bid/tender	L: -3/-10%; H: +3/+15%

- Projects' assessment based on:
- Scope level-of-definition
- Technical Readiness Level of major subsystems
- R&D
- Test facilities/demonstrators
- Performance uncertainty
- Site preparation status
- Schedule uncertainty
- Cost uncertainty
- Risk level-of-definition

(

https://web.aacei.org/

Summary schematic assessment

Project	Scope	TRL	R&D	Test facilities	Performance	Site preparation	Schedule	Cost	Risk
CLIC 380GeV, 1.5TeV		4 - 6 / 5.2							
FCC-ee 91-365GeV		4 - 7 / 6.0							
500 hb 057-V		4 - 7 (Nb ₃ Sn) / 4.3							
CLIC 380GeV, 1.5TeV									
FCC-hh - SA 85TeV		4 - 7 (Nb ₃ Sn) / 5					Nb₃Sn		
LCF 250-550GeV		5 - 7 / 5.5							
LEP3 91-230GeV		3 - 6 / 4.0							
LHeC: HL-LHC+50GeV ERL		3 - 6 / 4.5							
MC 3.2TeV, 7.6TeV									

Table 16: Summary table schematically representing the key findings of the WG according to the assessment criteria and based on the present status of the large-scale collider project proposals as submitted to the ESPP2026. Scope=Scope level-of-definition; TDR=Technical Readiness Level score - the range of values and the cost-weighted average for the baseline scenarios are listed; the colour code is selected based on on the cost-weighted average TRL score (TRL≥ 6 - green, 4≤TRL<6 - yellow, TRL<4 - red); R&D=R&D requirements, R&D plan level-of-definition, R&D funding status; Test facilities=need of test facilities or demonstrators and (if needed) level-of-definition of their scope; Performance=Performance uncertainty; Site preparation=Site preparation status; Schedule=Schedule uncertainty; Cost=Cost uncertainty; Risk=Risk level-of-definition. The cost-weighted average TRL score could not be estimated for the MC project as there is no detailed cost breakdown by sub-system.

Physics Briefing Book:

e-Print: <u>2511.03883</u> [hep-ex]

Input for the 2026 update of the European Strategy for Particle Physics

CERN-ESU-2025-001 4 November 2025

Physics Briefing Book

Input for the 2026 update of the European Strategy for Particle Physics

Electroweak Physics: Jorge de Blas¹, Monica Dunford² (Conveners), Emanuele Bagnaschi³ (Scientific Secretary), Ayres Freitas⁴, Pier Paolo Giardino⁵, Christian Grefe⁶, Michele Selvaggi⁷, Angela Taliercio⁸, Falk Bartels² (Contributors)

Strong Interaction Physics: Andrea Dainese⁹, Cristinel Diaconu¹⁰ (Conveners), Chiara Signorile-Signorile¹¹ (Scientific Secretary), Néstor Armesto¹², Roberta Arnaldi¹³, Andy Buckley¹⁴, David d'Enterria⁷, Antoine Gérardin¹⁵, Valentina Mantovani Sarti¹⁶ Sven-Olaf Moch¹⁷, Marco Pappagallo¹⁸, Raimond Snellings^{19,83}, Urs Achim Wiedemann⁷ (Contributors)

Flavour Physics: Gino Isidori²⁰, Marie-Hélène Schune²¹ (Conveners), Maria Laura Piscopo⁸³ (Scientific Secretary), Marta Calvi⁸⁴, Yuval Grossman²³, Thibaud Humair²⁴, Andreas Jüttner^{7,25}, Jernei F. Kamenik^{26,65}, Matthew Kenzie²⁷, Patrick Koppenbure⁸³ Radoslav Marchevski²⁸, Angela Papa²⁹, Guillaume Pignol³⁰, Justine Serrano¹⁰ (Contributors)

Neutrino Physics & Cosmic Messengers: Pilar Hernandez³⁹, Sara Bolognesi⁴⁰ (Conveners), Ivan Esteban⁴¹ (*Scientific Secretary*), Stephen Dolan⁷, Valerie Domcke⁷, Joseph Formaggio⁴², M. C. Gonzalez-Garcia^{80,81,82}, Aart Heijboer¹⁹, Aldo Ianni⁴⁴, Joachim Kopp^{7,79}, Elisa Resconi⁴⁵, Mark Scott³³, Viola Sordini⁸⁷ (Contributors)

Beyond the Standard Model Physics: Fabio Maltoni^{8,31}, Rebeca Gonzalez Suarez³² (Conveners), Benedikt Maier³³ (Scientific Secretary), Timothy Cohen^{7,28,78,*}, Annapaola de Cosa^{34,*}, Nathaniel Craig³⁵, Roberto Franceschini³⁶, Loukas Gouskos³⁷, Aurelio Juste³⁸, Sophie Renner¹⁴ Lesva Shchutska²⁸ (Contributors)

Dark Matter and Dark Sector: Jocelyn Monroe 54,46, Matthew McCullough (Conveners), Yohei Ema^{7,†} (Scientific Secretary), Paolo Agnes⁴⁷, Francesca Calore⁴⁸, Emanuele Castorina Aaron Chou¹⁹, Monica D'Onofrio³⁰, Maksym Ovchynnikov^{7,†}, Tina Pollmann¹⁹, Josef Pradler^{99,86}, Yotam Soreq⁵², Julia Katharina Vogef ⁵³ (Contributors)

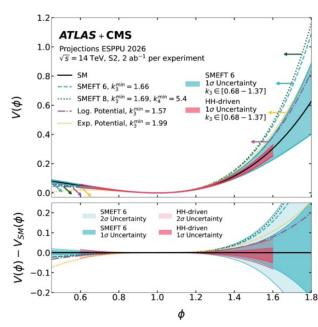
Accelerator Science and Technology: Gianluigi Arduini⁷, Philip Burrows⁵¹ (Conveners), Jacqueline Keintzel⁷ (Scientific Secretary), Deepa Angal-Kalinin⁵⁵, Bernhard Auchmann⁷⁶ Massimo Ferrario³, Angeles Faus Golfe²¹, Roberto Losito⁷, Anke-Susanne Mueller⁵ Tor Raubenheimer⁵⁷, Marlene Turner⁷, Pierre Vedrine⁴⁰, Hans Weise²⁴, Walter Wuensch⁷, Chenghui Yu58 (Contributors)

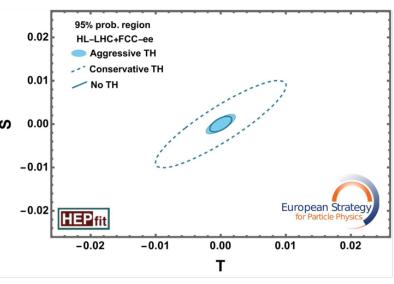
Detector Instrumentation: Thomas Bergauer⁵⁹, Ulrich Husemann⁵⁶ (Conveners), Dorothea vom Bruch 10 (Scientific Secretary), Thea Aarrestad 34, Daniela Bortoletto 5 Shikma Bressler 60, Marcel Demarteau 61, Michael Doser 7, Gabriella Gaudio 62, Inés Gil-Botella 63, Andrea Giuliani²¹, Fabrizio Palla⁶⁴, Rok Pestotnik⁶⁵, Felix Sefkow²⁴, Frank Simon⁵⁶, Maksym Titov⁴⁰(Contributors)

Computing: Tommaso Boccali⁶⁴, Borut Kersevan^{26,65} (Conveners), Daniel Murnane 66 (Scientific Secretary), Gonzalo Merino Arevalo 63, John Derek Chapman 27 Frank-Dieter Gaede 24, Stefano Giagu 67, Maria Girone 7, Heather M. Gray 66, Giovanni Iadarola 7 Stephane Jezequel⁶⁸, Gregor Kasieczka¹⁵, David Lange⁶⁹, Sinéad M. Ryan⁷⁰, Nicole Skidmore⁷¹ Sofia Vallecorsa (Contributors)

Theoretical Overview: _Eric Laenen 19,83,85

Reviewers: Anadi Canepa⁴⁹, Xinchou Lou⁵⁸, Rogerio Rosenfeld⁷², Yuji Yamazaki⁷³ Editors: Roger Forty⁷, Karl Jakobs⁷⁴, Hugh Montgomery⁷⁵, Mike Seidel^{28,76}, Paris Sphicas^{7,77}

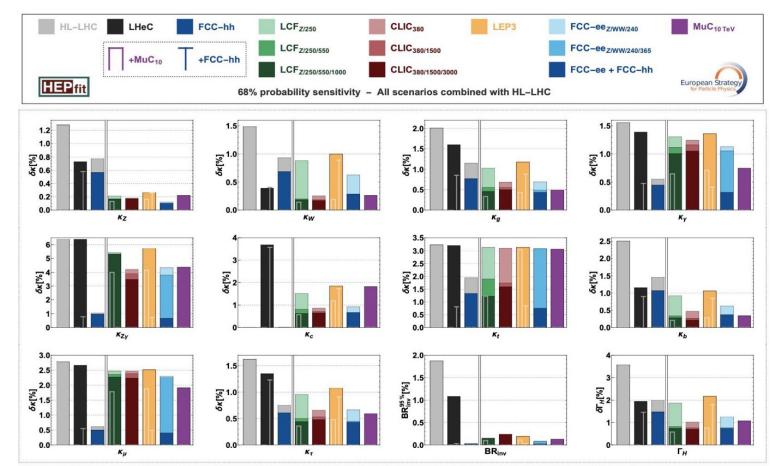

3	Electroweak Physics	13	7	Cosmic Messengers	105
3.1	Higgs Physics	13	7.1	High-energy gamma rays	106
3.2	Top-quark physics	19	7.2	Neutrinos	106
3.3	Electroweak precision observables	20	7.3	Cosmic rays	109
3.4	Theory requirements and uncertainties	23	7.4	Gravitational waves	110
3.5	Comparisons in the Standard Model Effective Field Theory interpretation	29	7.5	Multimessenger astronomy	112
3.6	Conclusions	36	7.6	Cosmic relics	
	C. T. d. W. I	20	7.7	Synergies with high-energy particle physics	114
4	Strong Interaction Physics	38	7.8	Summary	115
4.1	Precision QCD			•	
4.2	Internal structure of protons and nuclei		8	Beyond the Standard Model Physics	116
4.3	Hot and dense QCD	49	8.1	Introduction	116
4.4	QCD connections with astro(particle) and hadron physics	53	8.2	Origins of the weak scale	117
4.5	Resources for theoretical developments	58	8.3	Scalar sector	125
4.6	Conclusions and main messages	58	8.4	New forces	130
5	Flavour Physics	60	8.5	Portals	134
5.1	The big questions	60	8.6	Conclusions	141
5.2	Addressing the big questions				
5.3	Small and mid-size experiments		9	Dark Matter and Dark Sector	144
	Large-scale facilities		9.1	Introduction	144
5.4			9.2	Ultralight Dark Sectors	145
5.5	Impact of future programmes		9.3	Light Dark Sectors	150
5.6	Conclusion	82	9.4	Heavy Dark Sectors	155
6	Neutrinos	84	9.5	Superheavy Dark Sectors	164
6.1	Introduction: Open questions in neutrino physics	84	9.6	Conclusions	165
6.2	Neutrino oscillations: mixing, masses and Charge-Parity violation	87			
6.3	Neutrino cross-section across energy scales	93			
6.4	Neutrino mass scale in the lab	96			
6.5	Neutrino-less double beta decay	98			
6.6	On BSM searches in neutrino experiments				
6.7	Conclusions	104			


C. DIACONU

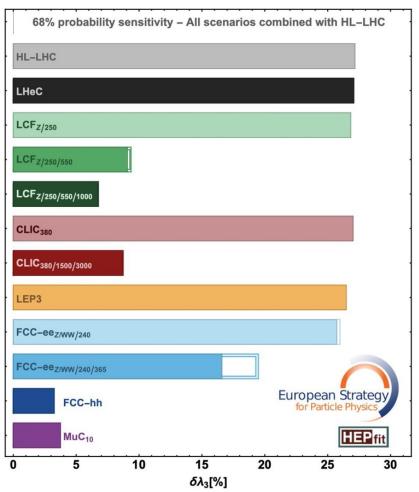
Next slides: a few examples With a subliminal question: how do you choose? 25

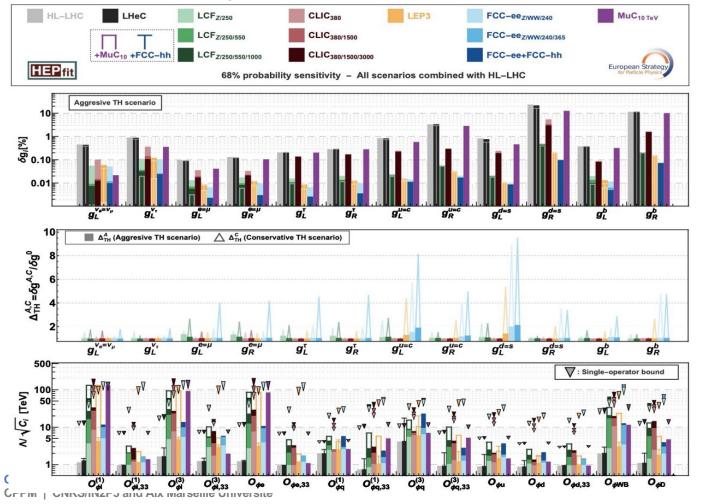
Key points - all areas

- The full run of the HL-LHC is vital as the foundation to any future project
- Theory plays an indispensable role and we can not achieve our physics goals without significant investment and advancement in theory
- Scientific diversity across many areas from BSM, QCD, Flavor, neutrinos, DM searches, etc, is critical given the richness of new physics possibilities to also achieve our physics goals



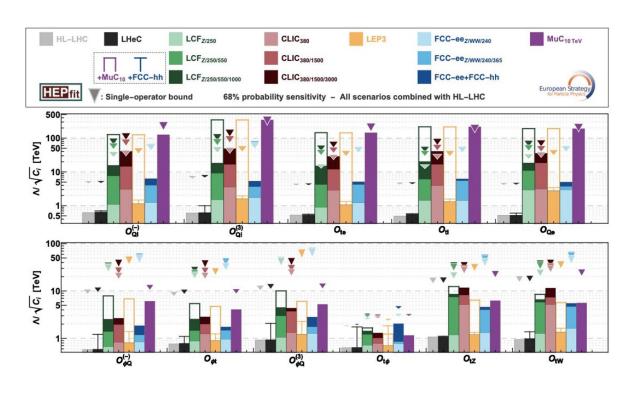
Higgs: Key points


- All e+emachines provide precision results in the Higgs sector
- Key exceptions are top Yukawa and rare decays where FCChh or to a lesser extent a muon collider are needed


- All e+e- machines provide precision results in the Higgs sector
- The full potential of e+e- machines require at least one energy point above 250 GeV
- FCCee has high luminosities, its precise measurements of Higgs and EWPO are very constraining for the SM
- LC benefits from higher energies such as in HH production and top physics

Electroweak

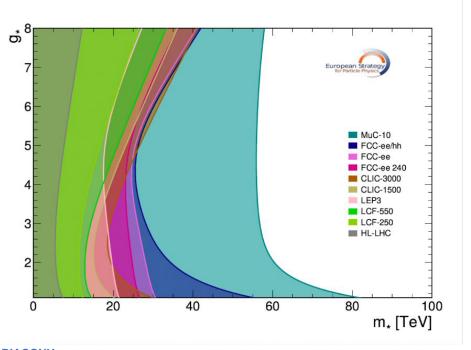
EW Operators

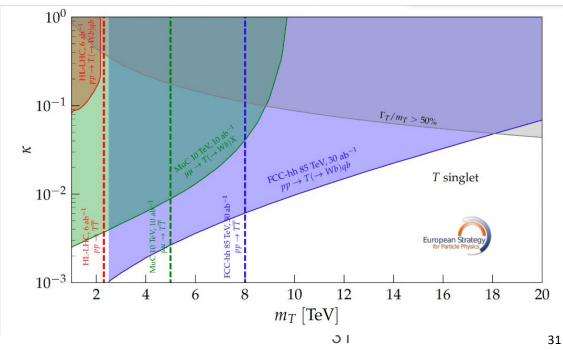

- The Tera-Z run provides a large energy reach to many EW operators
- High-energy di-boson
 measurements high-energy LC or
 the MuC (and FCChh) provide
 complementary information and
 in some cases comparable
 energy reach

29 29

Top physics

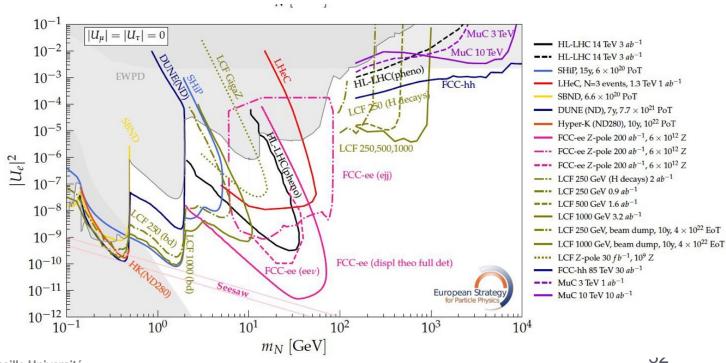
Top Sector Operators




- Top benefits from a lever arm in energy
- Precision machines when coupled with a high energy machine (FCChh or to a lesser extent muon collider) yield overall the best results
- Top Yukawa is best measured at FCChh
- (not shown): muon vs hadron colliders are complementary probes at high energy (i.e. lepton couplings vs. QCD currents)

BSM Key points

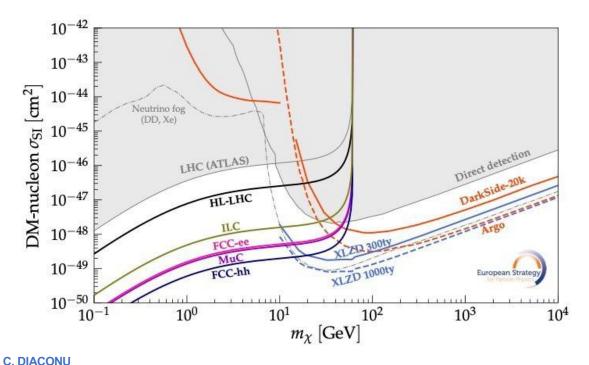
. The search for composite structure of the Higgs (and W,Z,top) can give very high-scale limits and a very nice complementarity between precision and direct searches for associated new states (like vector-like tops)

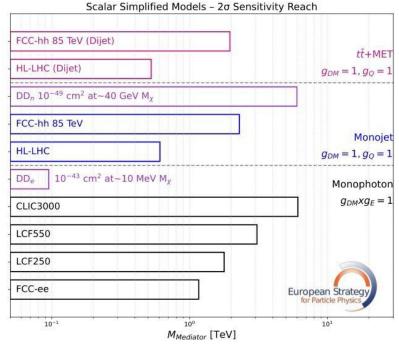


C. DIACONU CPPM | CNRS/IN2P3 and Aix Marseille Université

BSM Key points

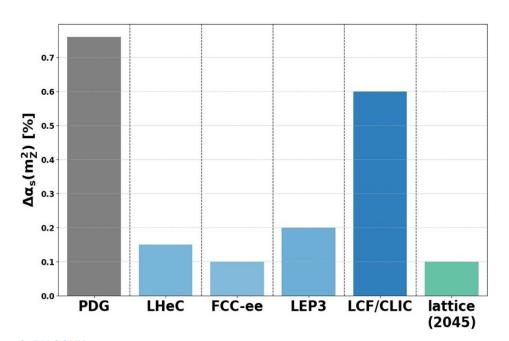
 Direct discovery potential from high-intensity runs at lepton colliders for Portal interactions (ALPs, dark scalars, HNLs) connect visible and hidden sectors; FCC-ee Tera-Z run offers exceptional sensitivity.



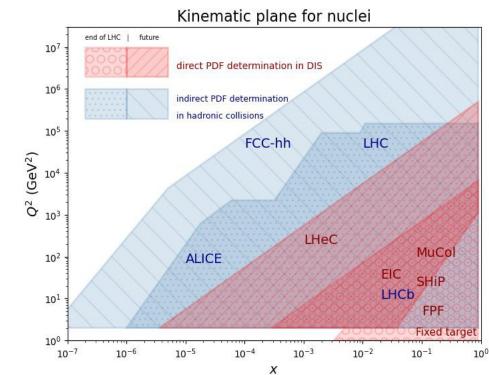

C. DIACONU
CPPM | CNRS/IN2P3 and Aix Marseille Université

Dark Matter: Key points

• The most comprehensive possible coverage of dark matter requires diversity of experimental approaches. Non-accelerator searches offer complementary reach and should be supported in any scenario.

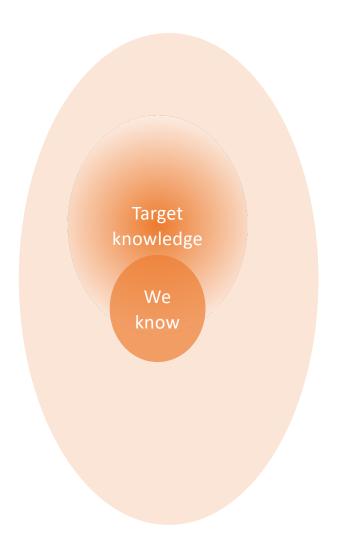

CPPM | CNRS/IN2P3 and Aix Marseille Université

33

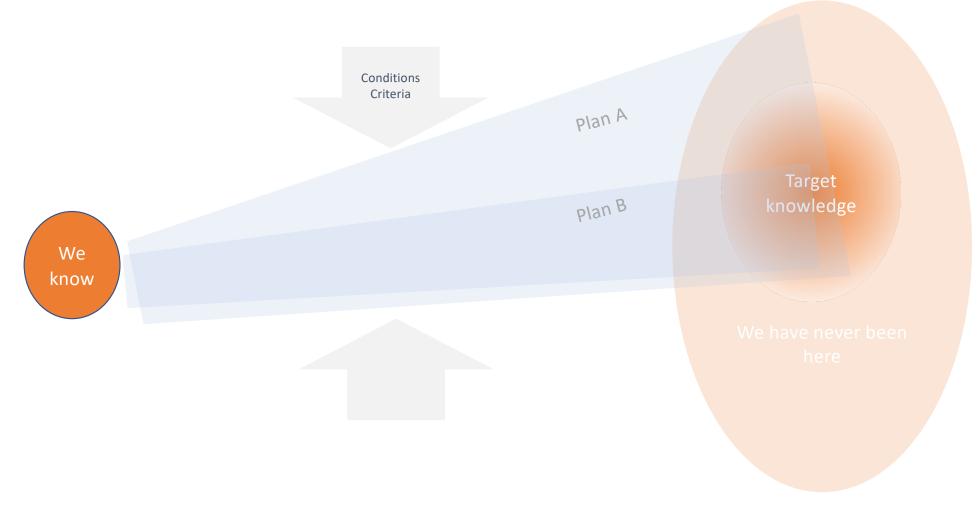

QCD: Key points

CENTRE DE PHYSIQUE DES PARTICULES DE MARSEILLE

- The strong coupling/interaction is the least known, significant progress is a must for future projects.
- Precise QCD (experiment and theory) is necessary for all sectors and all future projects


 The proton/nucleus structure understanding is key to all hadron machines and instrumental for ultimate precision in the EWK sector. Also plays a key role to other sectors/programs (astrophysics, neutrino physics, etc)

C. DIACONU
CPPM | CNRS/IN2P3 and Aix Marseille Université


Making plans to further knowledge: what's the plan?

Build a future: scenarios



36

Question: can we rank the physics case? An attempt.

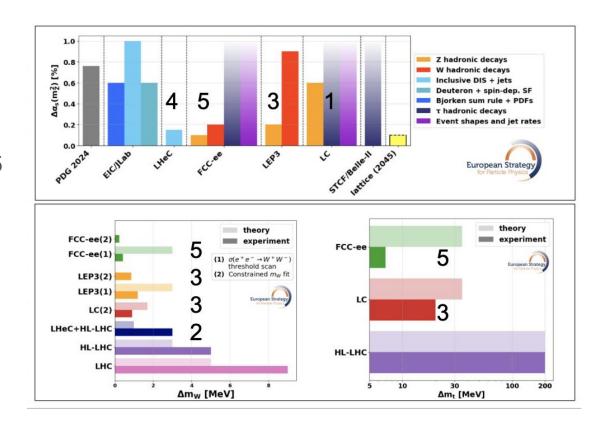
- Physics sector k
 - Importance (Energy) I(k)
 - Perfection (Precision) P(k)
 - •
- Metrics possible:
 - Isophysical $\sum_{k:1,N_{fields}} P(k)$
 - Surface $\sum_{k=1}^{N} P(k) * I(k)$
 - $k:1,N_{fields}$
- But:
 - "We're Not Laying Pipe. We're Talking About Physics"

A practical example

CENTIRE DE PHYSIQUE DES PARTICULES DE MARSEILLE CPPM

Proton/nucleon structure

Table 4.3: Schematic comparison of the impact and complementarities between facilities in accessing selected physics benchmarks. Dark/light/white shading indicates highest/significant/negligible contributions of the experiment to the quantities. Comments in each cell provide simplified explanations of the assessment (see the text and Fig. 4.4).


Quantity of interest	LHC: fixed target mode D, B, quarkonium, light hadrons	(HL-)LHC: collider mode D, B, quarkonium, light hadrons, UPCs, DY	ALICE FoCal Photons, pions, quarkonium, jets, UPCs	SHiP DIS of v from c decays on fixed target	NC, CC and jets in DIS, light and heavy flavour ID, excl. diffraction
PDFs	Most info. avail.	Most info. avail.	Simultaneous fit of proton and nuclei	Simultaneous fit of proton and nuclei; F_4 , F_5	Covered by HERA
nPDFs	Most info. avail.	Most info. avail.	Complementary e.m. probes; region overlapping with current pPb	Simultaneous fit of proton and nuclei; F_4 , F_5	Cleanliness
TMDs	DY, jets	DY, jets	Limited PID		Particle ID
GPDs	Currently UPCs	Currently UPCs			Particle ID
Small-x dynamics	Indirect, from pre- cision at large-x	Large kinematic extent	Large kinematic extent	Indirect, from precision at large-x	Kinematic reach

Small-x dynamics	Kinematic reach	Kinematic reach in ep and eA	γ–γ processes	Indirect, from precision at large-x	Kinematic reach in pp and pA
GPDs		Kinematic reach	γ–γ (transition GPDs)		Currently UPCs
TMDs		Limited PID in detector design	FFs needed for PDFs, and TMDs in jets		DY, jets
nPDFs	Simultaneous fit of proton and nuclei; F_4 , F_5	Cleanliness; precision		Simultaneous fit of proton and nuclei	Kinematic reach
PDFs	Simultaneous fit of proton and nuclei; F_4 , F_5	Cleanliness; precision		Simultaneous fit of proton and nuclei	Kinematic reach
Quantity of interest	FPF v DIS of v from c decays on fixed target	LHeC NC, CC and jets in DIS, heavy flavour ID, excl. diffraction	FCC-ee/LEP3/LC FFs of light and heavy quarks, jets, γ - γ	MuCol DIS of ν from μ decays on fixed target	FCC-hh D, B, quarkonium, light hadrons, UPCs, DY

Criteria - QCD

- Precision QCD (α_S , m_{top} , m_W benchmarks)
 - 5: Best precision
 - 4: Reduce precision compared to level 5
 - 3: Precision x2 worse compared to level 5
 - 1: No major improvements w.r.t HL-LHC

C. DIACONU
CPPM | CNRS/IN2P3 and Aix Marseille Université

Gedanken ranking

• These rankings are fictious, just to illustrate the point

Build the future / a future : the decision process

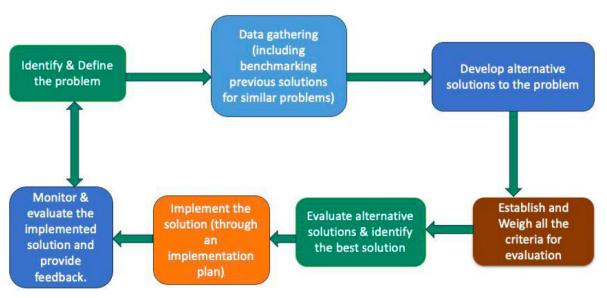
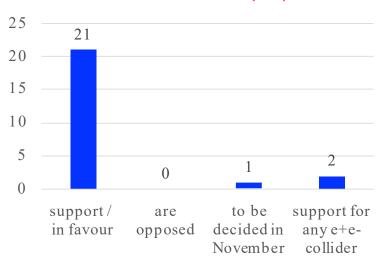
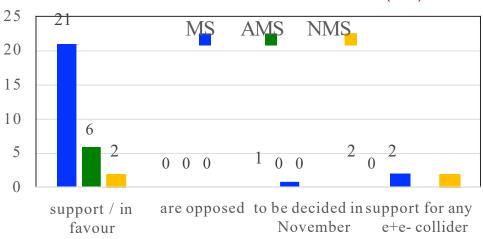


Figure 1: The stages of rational decision-making

Source: Preda (2006)


The decision process is a complex process depending on internal and external conditions, some of which are only partially available/known during the process.

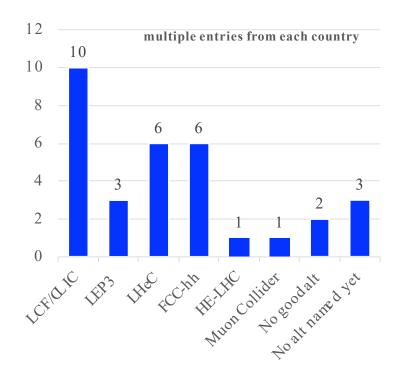
- National input / roadmaps
- Comparisons across proposed projects (Project assessment, Physics Potential)
- Strategy Implementation
- Relation with other fields of physics
- Sustainability and environmental impact
- Public engagement, education and communication
- Knowledge and technology transfer



CERN Member States (MS)

 Overwhelming support (21/24 CERN MS HEP communities) in favour of the integrated FCC-ee/hh programme

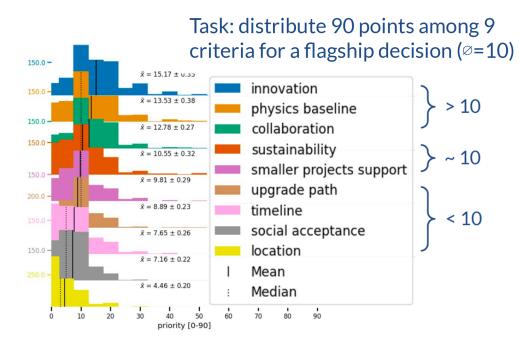
... incl. Associate- and Non-Member States (MS)



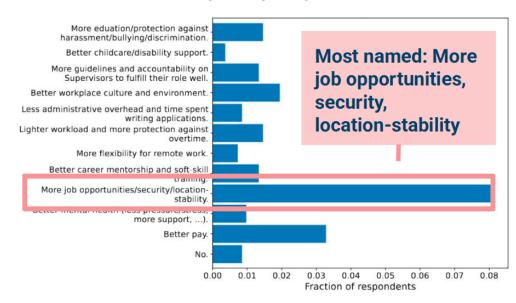
 Support as well from Associate Member states (AMS) and Non-member states (NMS)

42

What is the alternative if the preferred option is not feasible?

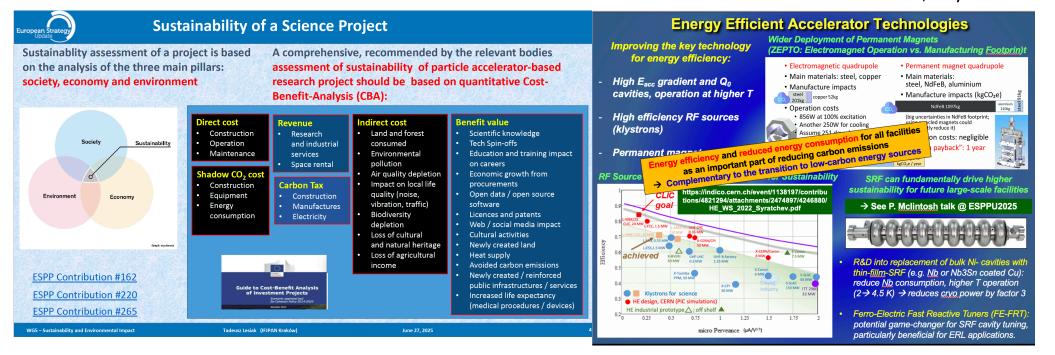


CERN Member States (MS) (multiple entries allowed)


- 10 MS HEP communities list a Linear Collider (LCF, CLIC) as second best choice (LCF is preferred to be realised with 550 GeV)
- 3 MS HEP mention LEP3 as a genuinely less costly alternative to FCC-ee
- 6 MS HEP communities support LHeC
- 6 MS HEP communities support a lower-energy hadron collider
- 2 MS HEP see no reason for another option, as they would be equally costly.

And more parameters: Early Career Survey

Measures to improve your personal situation?

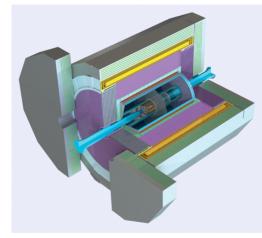


Sustainability and social acceptance should be smaller drivers for the flagship decision, but are necessary conditions for any flagship

Sustainability

T. Lesziak Open Symposium Venise june 2025

https://indico.in2p3.fr/event/33627/contributions/153159/attachments/95165/145657/2025 07 MARSEIL LE-FRANCE EPS-HEP2025 CONFERENCE ENVIRONMENTAL-IMPACT ACCELERATOR-FACILITIES 10072025.pdf

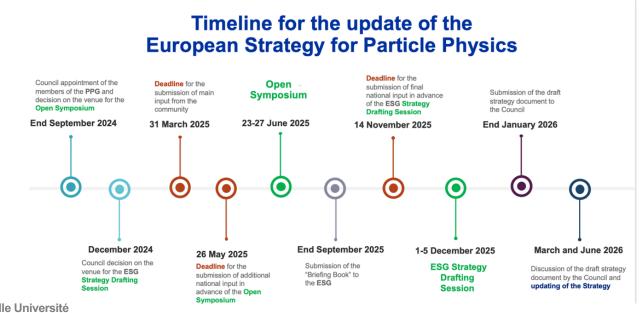

M. Titov EPS-HEP 2025 Marseille, July 2025

Europe competiveness and geopolitical situation

 Oct. 2025 "Although our proposal that CEPC be included in the next five-year plan was not successful, IHEP will continue this effort, which an international collaboration has developed for the past 10 years," says study leader Wang Yifang, of the Institute of High Energy Physics (IHEP) in Beijing. "We plan to submit CEPC for consideration again in 2030, unless FCC is officially approved before then, in which case we will seek to join FCC, and give up CEPC."

 Nov 2024: "One of CERN's most promising current projects, with significant scientific potential, is the construction of the Future Circular Collider (FCC): a 90-km ring designed initially for an electron collider and later for a hadron collider. Refinancing CERN and ensuring its continued global leadership in frontier research should be regarded as a top EU priority ..."

CEPC Study Group 2025 arXiv:2510.05260



https://commission.europa.eu/topics/competitiveness/draghi-report_en

The future? Stay tuned!

- "Nobody can really guarantee the future. The best we can do is size up the chances, calculate the risks involved, estimate our ability to deal with them and then make our plans with confidence." Henri Ford
- Before the flood, Noah's idea of designing and building an ark on a mountain was believed to be absurd, however in a changed context, in the flood, his decision became ideal and the other resolutions were downgraded to the level of absurdity (Preda, 2006).

Your future, your vote

https://qruiz.net/Q/?ehojnr

Pathways for New Physics

• https://qruiz.net/Q/?u94FjR

How do you believe the Particle Physics will evolve?

- The future of particle physics
- https://qruiz.net/Q/?iUjatb

Backup

French community input

- Preferred Option for the Next Collider at CERN: FCCee:
 - Strong support from the French community for the Future Circular Collider (FCCee) project.
 - FCCee aims to advance knowledge of Higgs boson couplings, electroweak and strong gauge couplings, and prominent electroweak observables.
 - Operation at the Z pole is expected to improve fundamental measurements by factors of 10-100 compared to LEP1.
 - Potential for a future ~100 TeV hadron collider reusing the FCCee tunnel.
 - CERN is considered the best place to host FCCee due to its expertise, infrastructure, and sustainability practices.

Fall-back Options if FCCee is Not Feasible:

- If no comparable e+e-e+e- collider is established outside Europe:
 - A linear e+e-e+e- collider facility (LCF) at CERN as the next best option for a Higgs factory.
 - Consideration of LEP3 as a last-resort fallback, with limitations in luminosity and energy range.
- If a comparable e+e- collider is established outside Europe:
 - Development of a high-energy hh/eh program in a new tunnel, with reduced energy reach.
 - Complement both FCChh and HL-LHC with an electron-hadron collider such as the LHeC.

Scientific Complementarity and Return:

- Fall-back scenarios offer faster scientific return and increased complementarity.
- Programs including ee, pp, and ep collisions on similar timescales can compensate for the scientific loss compared to the FCC program.

ESPP Organisation and decision process

□ "Secretariat":

Secretary (chair): K. Jakobs

CERN SPC chair: H. Montgomery

ECFA chair: P. S

LDG chair: D. Newbold

M. Seidel from 1/1/2025

PPG:

Physics + Technology working groups

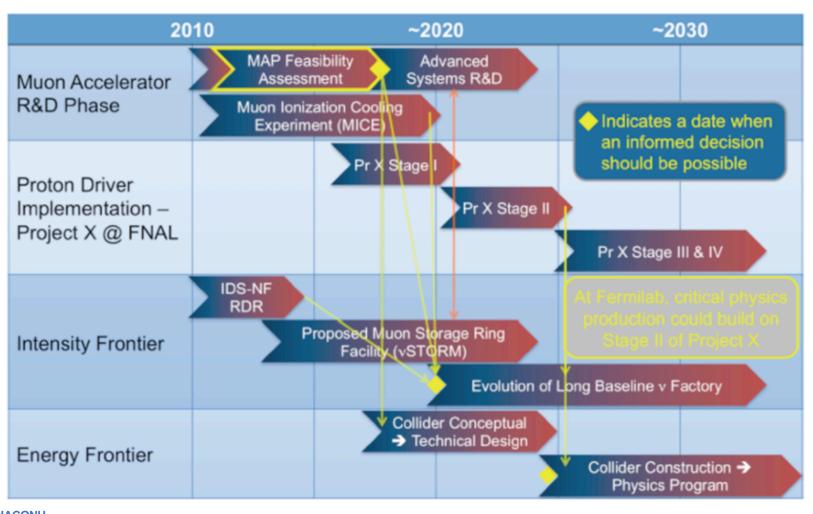
- Electroweak physics (including Higgs physics)
- Strong interaction
- Flavour physics
- Beyond the Standard Model physics
- Neutrino physics and cosmic messengers
- Dark matter and dark sector
- Accelerator science and technology
- Detector instrumentation
- Computing

à Physics Briefing Book

□ European Strategy Group (ESG): ~60 persons

- Secretariat (secretary chairs ESG);
- One rep per CERN member state;
- One rep per lab in LDG;
- CERN DG, CERN DG-elect;
- Invitees: PPG, President of Council, 1 rep from each Associate Member State and Observer State, 1 rep from EC; chairs of ApPEC, NuPECC, ESFRI

ESG: Overarching topics


- National input / roadmaps (à strategic)
- Projects (FCC, LC, LE-FCC-hh, MC, ..)
 (timeline, costs, (physics à PPG))
 - Comparisons across proposed projects
- Relations with other fields of physics
- Implementation of the Strategy

 (role of CERN and National Labs, coordination of European participation in projects sited outside Europe, ...)
- Knowledge and Technology transfer
- Sustainability, environmental impact
- Public engagement, education, communication

. . .

Don't look back (snowmass 2013)

