
 Overview of the infrastructure
and usage report

Fink Collaboration meeting
16/07/2025

1

Fink & the technics
Fink is way more than a bunch of codes. But we should not forget what runs behind.

3 main ingredients:
● Computing infrastructure (compute, volumes, network, …)
● Core software (manipulating alerts, filling database, providing live connection &

web services, …): e.g. fink-broker, fink-science-portal, fink-object-api, …
● User-defined codes (providing the scientific surplus): e.g. fink-science, fink-filters

3 main services to interact with the data:
● Science Portal (+ API): daily work, quick search, visualisation
● Data Transfer: Bulk download, complex analyses, …
● Livestream: follow-up analyses

2

Fink in the early days…

3

Fink today

4

(almost…)

High level architecture

Data
TransferScience

Portal

Livestream

a.k.a the datalake

5

Datalake vs database
Why two different data sources in Fink? Because there are many usage for the data (many different
questions to be asked to the data), imposing different constraints that can be hardly solved by one single
system.

The Fink Datalake contains processed alerts, partitioned by time. It is distributed over many machines.
● Pro: Easy to load large chunks of data ordered by time (last month, last year, …). Easy to interface

with a distributed computing framework for additional analyses. SQL syntax works under certain
circumstances.

● Cons: Basic data structure is alert. If you want objects (i.e. a collection of alerts sharing the same
ID), or something else than time-ordered, data is slow to access.

The Fink Database contains processed objects, indexed primarily by ID. It is distributed over machines.
● Pro: Easy to access full data for an object. Easy to connect with external services.
● Cons: difficult to get away the primary key (ID). Hard to debug (compared to a datalake).

6And you will hear about Graphs tomorrow by Julius.

Real-time system
Fink processes autonomously data in 3 stages:
● Decoding & backing up the incoming stream

○ 4 vCPUs, 8GB RAM
● Processing the stream & backing up

○ 8 vCPUS, 16GB RAM
○ Quality cuts + science modules

● Filtering the stream
○ 4 vCPUs, 8GB RAM
○ Fink filters, Slack/Telegram bots

Monitored via Grafana & Telegram bots

vdmaster1:~$ hdfs dfs -du -h
archive
12.4 T archive/raw
8.1 T archive/science

Spark CPU usage

7

Science modules
We currently host 12+ science modules:

● ML-based
● Simple feature-based (decision

tree, fit, etc.)
● Crossmatch with external catalogs

They are all tested, profiled, curated,
modified as dependencies change (67
Python deps!).

Scaling is horizontal → more workers,
bigger throughput.

8

https://github.com/astrolabsoftware/fink-science-perf

On the ML side
We know how to deploy ML models at scale. But we don’t do it in a clean way…

Here is the current story of Toto, doing ML in Fink:
● Toto asks Julien to deploy a model, by opening a PR on fink-science
● Julien is busy. After days (weeks?), the model finally is deployed.
● Then toto wants to change the model. Toto needs to ask Julien again. Delay again.
● Then toto wants to try different models in parallel to compare outputs, and perform active

learning loops. Julien is unfortunately on holidays. Toto gives up…

This could be solved simply by using the right tools. Here is an alternative world:
● Toto trains one or several models, uploads them to a platform without the need of Julien.

Fink collects new models ready for production*, without Julien. Toto & Fink are happy, Julien
has disappeared from the loop!

9Stay tuned!
*to be defined

After the night operations
Several (autonomous) operations
performed at 8pm Paris time:

● Data consolidation (80 vCPUs)
● Once-in-night filters (8 vCPUs)
● Database aggregation (9 vCPUs)

Problems for months about database
push for large nights… Largely solved
by decoupling cutouts from the rest (and
by my capability to better understand
how HBase works…).

vdmaster1:~$ fink_db -h

fink_db is a wrapper around fink to control the database operations.

Usage: fink_db [OPTIONS]

...

Examples:
fink_db -s ztf --merge # merge files
fink_db -s ztf --main_table # Push data to HBase
fink_db -s ztf --index_tables # Push data to HBase index tables
fink_db -s ztf --clean_night # Clean temp files for the next
night

10

Science Portal / API
Key points:
● https://fink-portal.org (doc)
● https://api.fink-portal.org (doc)
● Quick search based on name, position, class
● Data source is the Fink database
● 100+ users every day (not counting robots!)
● ~30k requests/day (½ /api/v1/objects)
● Anonymous, no limits, but usage heavily

monitored!

11

https://fink-portal.org
https://fink-broker.readthedocs.io/en/latest/services/search/getting_started/
https://api.fink-portal.org
https://fink-broker.readthedocs.io/en/latest/services/search/cheatsheet/

Data Transfer
Key points:
● https://fink-portal.org/download (documentation)
● Access to 200M+ alerts from ZTF from the Fink Data Lake
● Each job is allocated 8 vCPUs on the Spark cluster.
● Customisation: dates, filters (updated!), content (new!)

Data Lake
HDFS

Distributed computation
Apache Spark / Livy

Communication
Apache Kafka

Fink Science Portal
Dash1

User

2 4

5

2

3

12

“Not formally our
job, but we fill a
crucial gap in the
alert community”

https://fink-portal.org/download
https://fink-broker.readthedocs.io/en/latest/services/data_transfer/

Livestream
Key points:
● Facilitate follow-up observations or heavy

analyses
● Rely on fink-filters (documentation)
● Output: Kafka stream, Slack/TG channels
● It gives all flexibility to the users about the

definition of cuts and filters, and it should
be de-facto the primary choice for
real-time analyses. But it is not so much
used… Why?

13

https://github.com/astrolabsoftware/fink-filters
https://fink-broker.readthedocs.io/en/latest/broker/filters/

Fink client
fink-client is a package to manipulate alerts issued from Fink
programmatically
● It is a convenient wrapper around Kafka low-level functionalities.
● It is used to retrieve data from the Data Transfer (fink_datatransfer) &

the Livestream (fink_consumer) services
● Multithreaded to increase the throughput, but sensitive to timeouts.

14

--
25/07/15 11:12:10 INFO Number of partitions for topic ftransfer_coucou_toto: 10
100%|██| 7781/7781 [00:30<00:00, 253.88alerts/s]
100%|██| 7831/7831 [00:30<00:00, 254.96alerts/s]
 90%|███████████████████████████████████ ▉ | 7000/7791 [00:19<00:00, 890.74alerts/s]
100%|██| 7848/7848 [00:30<00:00, 254.85alerts/s]
100%|██| 7685/7685 [00:30<00:00, 249.25alerts/s]
100%|██| 7824/7824 [00:31<00:00, 251.91alerts/s]
100%|██| 7791/7791 [00:31<00:00, 249.88alerts/s]
 89%|██████████████████████████████████ ▊ | 7000/7831 [00:19<00:00, 1518.91alerts/s]
100%|██| 7707/7707 [00:30<00:00, 251.80alerts/s]
100%|██| 7697/7697 [00:30<00:00, 252.02alerts/s]

Important!

After 6 years, Fink is still alive
Main ingredients to get an evolving & sustainable system (and happy Julien)

● Code quality! 5% code, 95% quality checks
○ Incl. versioning, documentation, tests, continuous integration
○ Open source code, documented (users, developers)

● Monitoring is not an option
○ Performances (profiling) & logs. Set up easy-to-use interface.

● Continuous deployment
○ Release fast, take into account feedback quickly
○ Digest release notes available for all components (example)

● Develop easy-to-use sandbox
○ Make distributed computing easy (cf Fabrice’s talk)

15

https://github.com/astrolabsoftware
https://fink-broker.readthedocs.io/en/latest/
https://gitlab.in2p3.fr/fink
https://github.com/astrolabsoftware/fink-science-portal/releases

And what is next for LSST?

16

Same infrastructure, but at CC-IN2P3
cloud (the beauty of clouds!), and
bigger.

Operation Rehearsals 4 & 5 already
comfort us in our capability to meet
real-time requirements.

Elasticc was a first test for ML
classification.

Database & web services are still TBD.

