



#### **ELEPHANT: Hostless transient detection in Fink**

2025 Fink collaboration meeting, Clermont-Ferrand 17th of July 2025



Rupesh Durgesh on behalf of the ELEPHANT team

### **ELEPHANT**

COIN Residence Program #7, 2023, Portugal

**ELEPHANT: ExtragaLactic alErt Pipeline for Hostless AstroNomical Transients** 

A&A, 691, A181 (2024) https://doi.org/10.1051/0004-6361/202450535





Andre Moitinho

U. Lisbon, Portugal

æ

Ben Moews

U. Edinburgh - UK

Æh

Emille E. O. Ishida

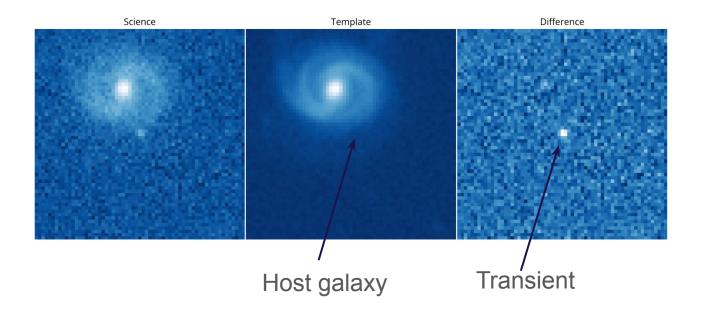
CNRS/UCA, France

4

Erin Haves

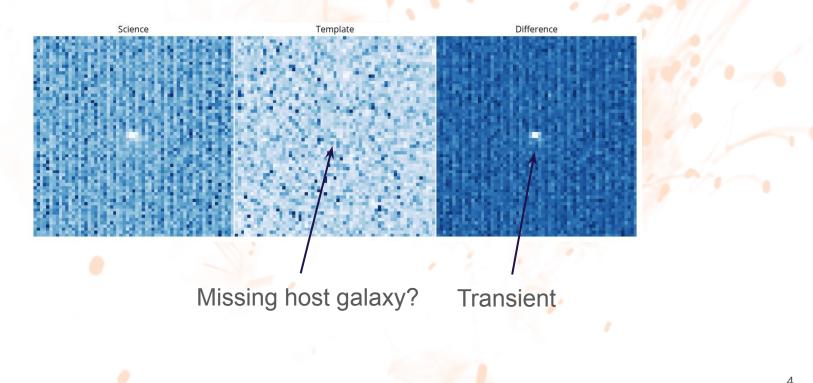
U. Cambridge, UK

m


(

Alberto Krone-Martins

UCI, USA and U. Lisbon,

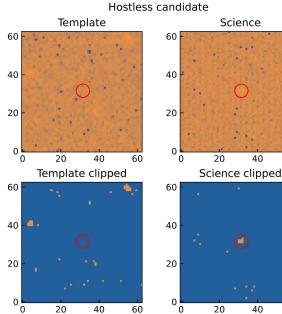

Portugal

#### **Transients in galaxies**





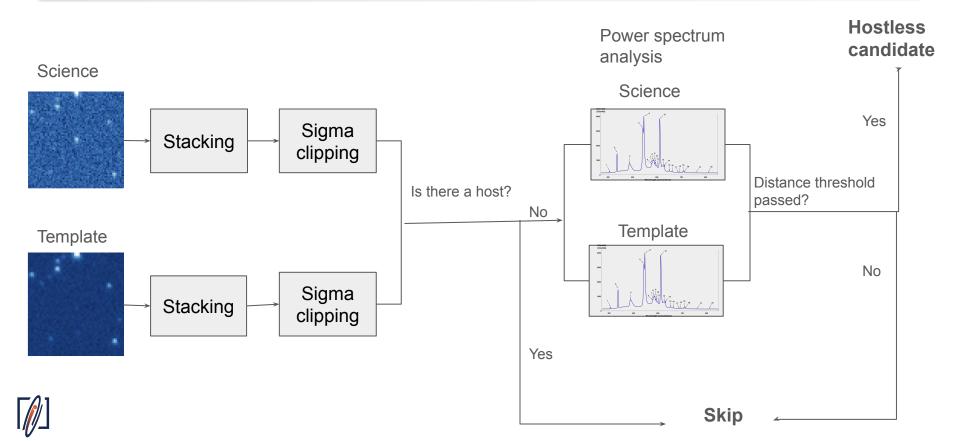
#### **Transients in galaxies**






#### **Transients in galaxies**

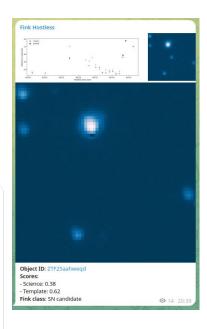
- Most SN happens in galaxies (hosts)
- If the host is not detected, we can use the transient to detect very faint galaxies
- We can use hostless to identify runaway stars (very rare, which process creates them?)
- We used Zwicky Transient Facility alerts


# We wanted to find hostless SLSN



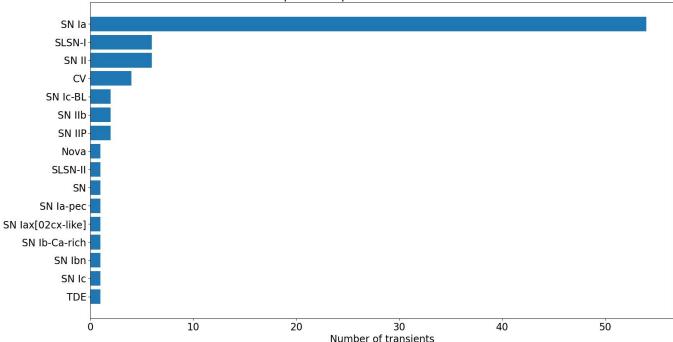


60

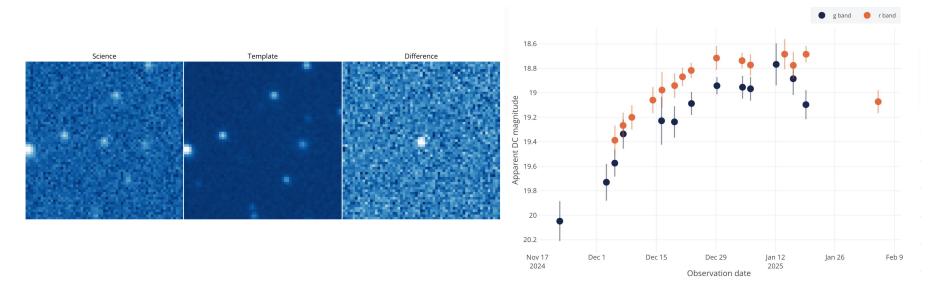

# A statistical pipeline



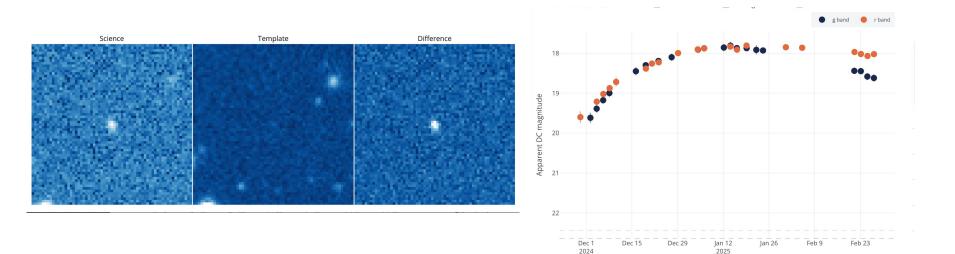
- Modifications in bot:
  - No stacking Magnitude thresholds
  - Updation of minimum number of light curve points and analysis thresholds values
- Run time: ~6.5 seconds per 100 alerts on a one-core M2 laptop





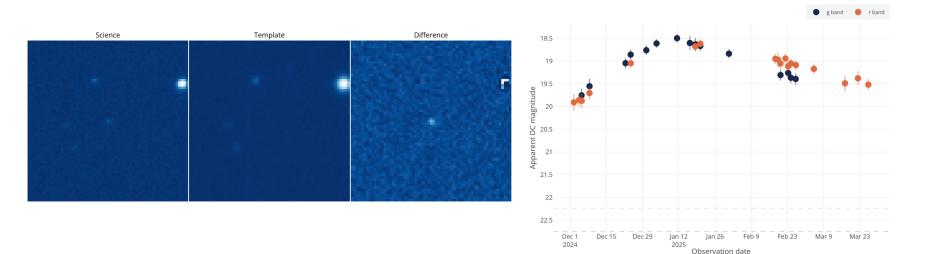

#### Report on Telegram with spectroscopic classification August 2024 - March 2025


Spectroscopic classification on TNS



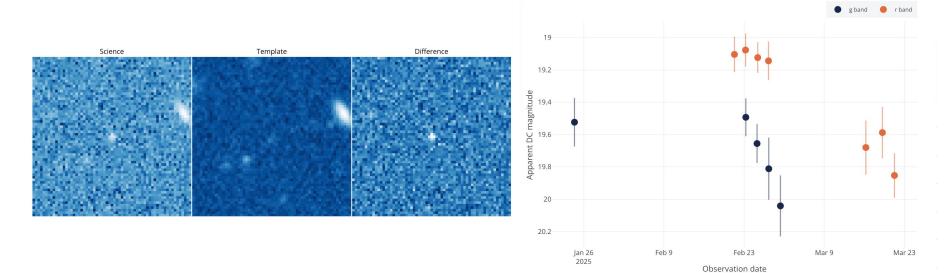
#### ZTF24abtlppf (SLSN-I)




#### ZTF24abtmueg (SLSN-I)






Observation date

#### ZTF24abvftmi (SLSN-II)





#### ZTF25aaczsit (SN IIB)

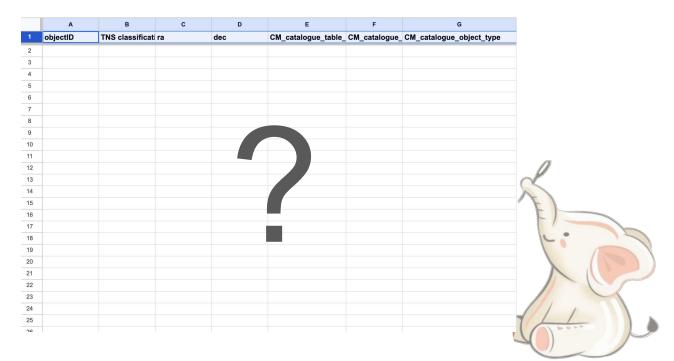


# **Next steps**

- Evaluate how good the pipeline is
- In progress: Refinement of hostless candidates list using catalog crossmatch
- Cross-matching with Sherlock, Pröst
- Analyse interesting transients

|    | А             | В               | С           | D           | E                   | F              | G                        |
|----|---------------|-----------------|-------------|-------------|---------------------|----------------|--------------------------|
| 1  | objectID      | TNS classificat | ra          | dec         | CM_catalogue_table_ | CM_catalogue_  | CM_catalogue_object_type |
| 28 | ZTF24aaervkt  | SN la           | 196.8401266 | -27.3752484 | NED/LASR            | ESO508-G008    | galaxy                   |
| 29 | ZTF24abqwodi  | SN II           | 174.8035653 | 48.8979073  | NED                 | SDSSJ113912.7  | galaxy                   |
| 30 | ZTF24aadecbb  | SN II           | 186.1997901 | -0.989909   | SDSS                | 1237648720159  | galaxy                   |
| 31 | ZTF23abbzdoj  | SN II           | 2.4879958   | 37.0742132  | SDSS                | 1237666185112  | galaxy                   |
| 32 | ZTF24abokdnf  | SN II           | 146.5871189 | -9.7288966  | 2MASS/LASR          | 09462226-09434 | galaxy                   |
| 33 | ZTF24aaezido  | SN II           | 190.30655   | 20.6699964  | SDSS/2MASS/LASR/P   | 1237667916496  | galaxy                   |
| 34 | ZTF24abqlxaf  | SN IIP          | 76.941196   | 16.1004361  | SDSS                | 1237673474717  | galaxy                   |
| 35 | ZTF24aafedkt  | Varstar         | 111.1265431 | 73.1821324  | PS1                 | 19581111126604 | galaxy                   |
| 36 | ZTF24abbvhxw  | CV              | 262.9989834 | 5.667437    | PS1                 | 1148026299895  | uncertain                |
| 37 | ZTF24abbggnw  | SLSN-I          | 23.2286698  | -27.7566988 | PS1                 | 7469023228684  | uncertain                |
| 38 | ZTF24aaedlew  | SLSN-I          | 169.8768603 | 22.1747936  | PS1                 | 1346116987670  | uncertain                |
| 39 | ZTF24aaaldzu  | SLSN-I          | 183.5463885 | -25.1319449 | PS1                 | 7784183546383  | uncertain                |
| 40 | ZTF23abjqxbe  | SN la           | 67.1141027  | -17.8909055 | PS1                 | 8653067114169  | uncertain                |
| 41 | ZTF23abavpyk  | SN la           | 352.7757065 | -27.0156789 | PS1                 | 7558352775689  | uncertain                |
| 42 | ZTF23abccont  | SN la           | 55.922605   | 11.4173786  | PS1                 | 1217005592242  | uncertain                |
| 43 | ZTF24abkegqp  | SN la           | 253.5319808 | 61.8077067  | SDSS/PS1            | 1237651211211  | uncertain                |
| 44 | ZTF24abzgggz  | SN Ic           | 170.4473179 | 46.1284203  | PS1                 | 1633517044748  | uncertain                |
| 45 | ZTF24abmtnee  | SN II           | 116.8199034 | -3.9933537  | PS1                 | 1032011681986  | uncertain                |
| 46 | ZTF23aaznguj  | CV              | 318.0644686 | 36.8699995  |                     |                |                          |
| 47 | ZTF24aalbxfh  | CV              | 160.7937031 | 82.6834327  |                     |                |                          |
| 48 | ZTF24abqbavo  | CV              | 55.6095103  | 9.2053951   |                     |                |                          |
| 49 | ZTF24aaejnbx  | SLSN-I          | 167.1427825 | -0.5066118  |                     |                |                          |
| 50 | ZTF24abvzgqt  | SLSN-I          | 131.6776349 | -16.6069139 |                     |                |                          |
| 51 | ZTF24abwsvtj  | SLSN-I          | 201.0711264 | 27.7170018  |                     |                |                          |
| 52 | 7TE23abofivba | CI CN I         | 346 0486036 | 13 9510/15  |                     |                |                          |




# Next steps: ZTF

- ZTF to continue operations in 2025 & 2026
- Improve and optimize the pipeline further
- Automatic cross-matching in Fink would be beneficial



# **Next steps: LSST**

#### • Update the pipeline for LSST alerts



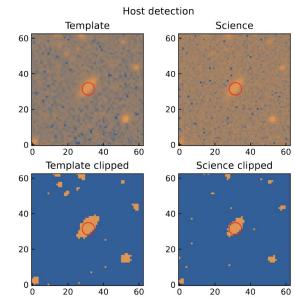


# Conclusion

- A Simple and fast python pipeline for hostless transient detection
- The potential hostless transients are being reported on the Telegram bot
- The pipeline can be transferred to other surveys
- Fine-tuning of the pipeline will be necessary to process LSST alerts



# Conclusion




Thank you! Questions?









Hostless candidate Science Template 60 l ĺΟ. Template clipped Science clipped 

indicates the aperture radius of the associated photometry.

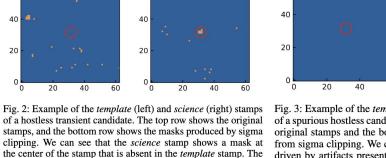



Fig. 3: Example of the template (left) and science (right) stamps of a spurious hostless candidate detection. The top row shows the original stamps and the bottom row shows the masks produced from sigma clipping. We can see that the erroneous detection is driven by artifacts present in the original template stamp. As a absence of a mask is considered as the absence of a host. At the result, sigma clipped *template* shown on the bottom left panel center of the stamps, we display a red circle of 7 pix radius that shows no signal. At the center of the stamps, we display a red circle of 7 pix radius that indicates the aperture radius of the associated photometry.

Spurious detection

Template

Template clipped

Fig. 1: Example of the template (left) and science (right) stamps for a transient associated with a host galaxy. The top row shows the original stamps and the bottom row shows the masks produced from sigma clipping. At the center of the stamps, we display a red circle of 7 pix radius that indicates the aperture radius of the associated photometry.

Science

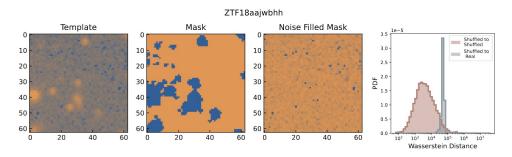



Fig. 4: Stages of the power spectrum analysis for a template with host (SN2017iuu / ZTF18aa jwbhh). From left to right the panels show the template image, the mask and the mask populated with noise. The right-most panel shows the distribution of Wasserstein distances between the original template and shuffled noised masks (gray) and between random pairs of shuffled noised masks (rose). The distributions were generated using 1000 different shuffles of the noised masks within the central patch of  $7 \times 7$  pixels.

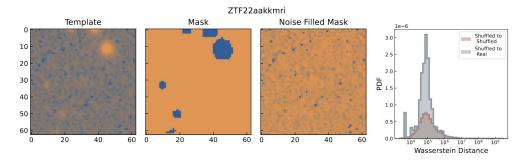



Fig. 5: Stages of the power spectrum analysis for a hostless template (SN2022knm / ZTF22aakkmri). Panel descriptions are equivalent to those described in Figure 4.

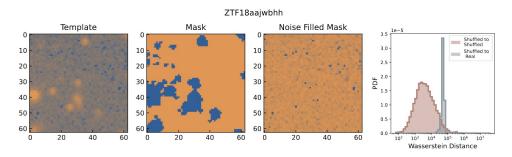



Fig. 4: Stages of the power spectrum analysis for a template with host (SN2017iuu / ZTF18aa jwbhh). From left to right the panels show the template image, the mask and the mask populated with noise. The right-most panel shows the distribution of Wasserstein distances between the original template and shuffled noised masks (gray) and between random pairs of shuffled noised masks (rose). The distributions were generated using 1000 different shuffles of the noised masks within the central patch of  $7 \times 7$  pixels.

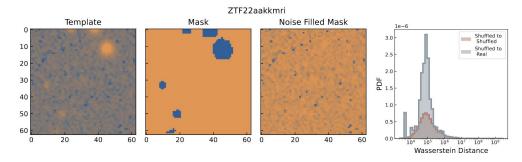



Fig. 5: Stages of the power spectrum analysis for a hostless template (SN2022knm / ZTF22aakkmri). Panel descriptions are equivalent to those described in Figure 4.

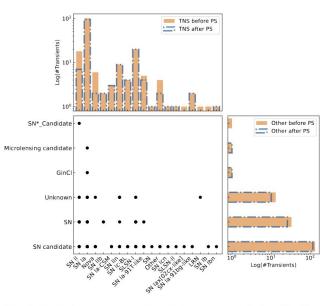



Fig. 6: Central panel: comparison between spectral classification reported on TNS (horizontal axis) and the classification reported by Fink obtained from other sources (vertical axis). The x and y axis side panels show the number of transients considered to be hostless by the sigma clipping method before applying the power spectrum (PS) analysis (orange), and the number of surviving hostless candidates after applying the PS analysis (blue).



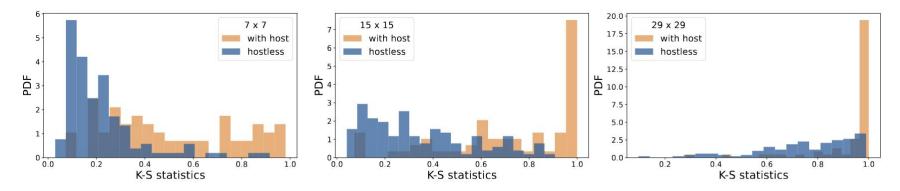



Fig. 7: Distributions of the Kolmogorov-Smirnov statistic for the 181 objects with TNS classifications. The two categories, with host (orange) and hostless (blue) were identified through visual inspection. Panels show distributions obtained through the power spectrum analysis (Section 3.3) for different image sizes.



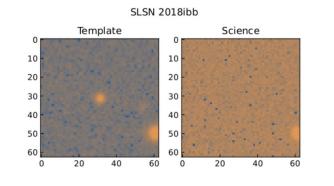



Fig. 8: Stacked *template* (left) and *science* (right) stamps for SLSN2018ibb (ZTF18acenqto, ZTF18adovhai).

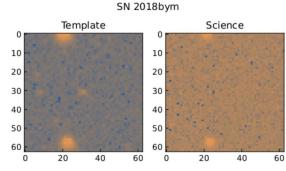



Fig. 9: Stacked *template* (left) and *science* (right) stamps for SN2018bym (ZTF18aapgrxo).

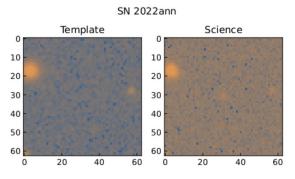



Fig. 10: Stacked *template* (left) and *science* (right) stamps for SN2022ann (ZTF22aaaihet).






Fig. 11: Number of transients without a reported classification on TNS considered to be hostless by the sigma clipping method before applying the power spectrum (PS) analysis (orange), and the number of surviving hostless candidates after applying the PS analysis (blue).



| Image size (pix) | K-S threshold | Contamination (%) |
|------------------|---------------|-------------------|
| $7 \times 7$     | 0.25          | 27.01             |
| $15 \times 15$   | 0.50          | 25.97             |
| $29 \times 29$   | 0.90          | 27.33             |

Table 1: Kolmogorov-Smirnov statistic thresholds and corresponding contamination levels for different cutout sizes. The threshold was determined using only visually confirmed hostless objects with TNS classification and requiring completeness of 75%.

