

Finding Magnetic Cataclysmic Variable Stars with Fink

Clément Mur

With Emille Ishida and the Fink Cataclysmic Variable team from Brasil

Fink Collaboration Meeting — July 17, 2025

Magnetic Cataclysmic Variable Stars

Method

Performances

Results

ZTF Implementation

Expectations for LSST

Magnetic Cataclysmic Variable Stars

Method

Performances

Results

ZTF Implementation

Expectations for LSST

- M2 internship
- Supervized by Emille Ishida
- In collaboration with the Fink CV team from Brazil
- Goal: Implement a Fink module for mCVs

ÉCOLE UNIVERSITAIRE DE PHYSIQUE ET D'INGÉNIERIE Université Clermont Auvergne

Outline

Introduction

Magnetic Cataclysmic Variable Stars

Method

Performances

Results

ZTF Implementation

Expectations for LSST

Non-Magnetic Cataclysmic Variable Stars

Philip D. Hall, Wikimedia

• Eclipses

Clément Mur

- Eclipses
- Change of regime

- Eclipses
- Change of regime
- Outbursts / novae

Artist view of a Cataclysmic Variable outburst, NASA/SOFIA/L. Proudfit

Polars & Intermediate Polars

Polar diagram, Cropper, The Polars, 1990

Intermediate Polar diagram, NASA, https://heasarc.gsfc.nasa.gov/docs/objects/ cvs/cvstext.html

Magnetic Cataclysmic Variable Stars

Method

Performances

Results

ZTF Implementation

Expectations for LSST

Full Pipeline Overview

Full Pipeline Overview

Alert:

Package containing lightcurve data of an object over the 30 days previous to the last detection.

Full Pipeline Overview

Alert:

Package containing lightcurve data of an object over the 30 days previous to the last detection.

Algorithm Working Principle

Nearest neighbors list:

Unknown objects from a night of observation

All known mCVs

Nearest neighbors list: a, b

Nearest neighbors list: a, b, d, c

Nearest neighbors list: a, b, d, c, d, c

Nearest neighbors list: a, b, d, c, d, c, b, c

Nearest neighbors list: a, b, d, c, d, c, b, c Scores: a: 1, b: 2, c: 3, d: 2

Unknown objects from a night of observation

All known mCVs

f1

Magnetic Cataclysmic Variable Stars

Method

Performances

Results

ZTF Implementation

Expectations for LSST

• Sample 2 000 negatives and 1 mCV

- Sample 2 000 negatives and 1 mCV
- Evaluate scores

- Sample 2 000 negatives and 1 mCV
- Evaluate scores
- Repeat 1 000 times

Magnetic Cataclysmic Variable Stars

Method

Performances

Results

ZTF Implementation

Expectations for LSST

Results

Applied the algorithm on new data from 4 different nights

Results

Applied the algorithm on new data from 4 different nights

Results

Applied the algorithm on new data from 4 different nights

These two are Polars, already classified in VSX

Magnetic Cataclysmic Variable Stars

Method

Performances

Results

ZTF Implementation

Expectations for LSST

Run automatically every night

Run automatically every night

But,

Run automatically every night

But, concatenating tens of thousands of lightcurves is computationally heavy!

1-month lightcurves

6-month lightcurves

2-years lightcurves

full lightcurves (~5 years)

• Reduce number of objects to evaluate:

- Reduce number of objects to evaluate:
 - Take only long lightcurves

- Reduce number of objects to evaluate:
 - Take only long lightcurves
 - Cuts on features

- Reduce number of objects to evaluate:
 - Take only long lightcurves
 - Cuts on features

• Improve algorithm performances with better data quality / quantity:

- Reduce number of objects to evaluate:
 - Take only long lightcurves
 - Cuts on features

- Improve algorithm performances with better data quality / quantity:
 - More mCVs in the base set

- Reduce number of objects to evaluate:
 - Take only long lightcurves
 - Cuts on features

- Improve algorithm performances with better data quality / quantity:
 - More mCVs in the base set
 - More points in the lightcurves

- Reduce number of objects to evaluate:
 - Take only long lightcurves
 - Cuts on features

- Improve algorithm performances with better data quality / quantity:
 - More mCVs in the base set
 - More points in the lightcurves

Patience is key!

Magnetic Cataclysmic Variable Stars

Method

Performances

Results

ZTF Implementation

Expectations for LSST

• Slower cadence

- Slower cadence
- Deeper field \rightarrow saturated objects

- Slower cadence
- Deeper field \rightarrow saturated objects

Expect worse performances for now

- Slower cadence
- Deeper field \rightarrow saturated objects

 \rightarrow

Expect worse performances for now

LSST will operate for 10 years

Tank you for your attention!

Any question?