Conformal versus Non-Conformal 2HDM: Phase Transitions and Gravitational Waves

Nico Benincasa

UESTC, School of Physics, Chengdu, China

N.B., Ji-Wei Li, Robert B. Mann, Hanxiao Pu, Thomas G. Steele, and Zhi-Wei Wang Work in progress

> IP2I Seminar May 5, 2025

Conformal versus Non-Conformal 2HDM

Outline of the talk

- 1. Introduction
- 2. Model
- 3. Results
- 4. Conclusion

Outline of the talk

1. Introduction

2. Model

3. Results

4. Conclusion

Phase transition in the early Universe

Bubbles of new phase and collision

Order of phase transitions

Mazumdar, White, arXiv:1811.01948

- 1^{st} -order phase transitions are abrupt (existence of a barrier): the order parameter (VEV ϕ) changes *discontinuously* from zero to a non-zero value
- 2^{nd} -order phase transitions/crossovers are smooth (no barrier): the order parameter (VEV ϕ) changes *continuously* from zero to a non-zero value

Order of phase transitions

Senaha, Symmetry 2020, 12(5), 733

First-order phase transitions

Wang, Huang, Zhang, arXiv:2003.08892

Gravitational waves

spacetime

detection of gravitational waves

spacetime perturbation

Gravitational-wave production

High temperature

Wang, Huang, Zhang, arXiv:2003.08892

Gravitational-wave power spectrum

PLI sensitivity curves $h^2\Omega_{\rm PLI}(f)$ for LISA, DECIGO and BBO, with $t_{\rm obs} = 4$ yr and $\rho_{\rm thrs} = 10$.

• ----: α increases • \cdots : β/H_* increases • $-\cdots$: T_* increases, while keeping β/H_* constant • $-\cdots$: T_* increases, considering $H_* \sim T_*^2$

Supercooled first-order phase transitions

Sagunski, Schicho, Schmitt, arXiv:2303.02450

For supercooled first-order phase transitions

- ullet the Universes remains trapped in the false vacuum until $T\ll T_c$
- ΔV increases as T decreases
- for $T < T_i$, the Universe becomes vacuum dominated ($\Delta V = \frac{\pi^2}{30}g_*T_i^4$) and enters a period of thermal inflation
- percolation may never happen if thermal inflation is too important
 - \rightarrow the phase transition may never complete

Nico Benincasa

Conformal versus Non-Conformal 2HDM

Outline of the talk

1. Introduction

2. Model

3. Results

4. Conclusion

• 2HDM is motivated by MSSM

• nearly conformal dynamics typically lead to large supercooling

• compare the results from phase transitions and gravitational waves between the 2HDM and its conformal version

The tree-level potential of the classically conformal CP-conserving 2HDM is given by

$$\begin{split} V_0 &= \frac{\lambda_1}{2} (\Phi_1^{\dagger} \Phi_1)^2 + \frac{\lambda_2}{2} (\Phi_2^{\dagger} \Phi_2)^2 + \lambda_3 \Phi_1^{\dagger} \Phi_1 \Phi_2^{\dagger} \Phi_2 \\ &+ \lambda_4 \Phi_1^{\dagger} \Phi_2 \Phi_2^{\dagger} \Phi_1 + \frac{\lambda_5}{2} \left[(\Phi_1^{\dagger} \Phi_2)^2 + (\Phi_2^{\dagger} \Phi_1)^2 \right], \end{split}$$

where Φ_1 and Φ_2 denote the two SU(2)_L Higgs doublets and where we have imposed \mathbb{Z}_2 discrete symmetries to avoid FCNC at tree-level.

The two $SU(2)_L$ Higgs doublets are given by

$$\Phi_1 = \frac{1}{\sqrt{2}} \begin{pmatrix} \rho_1 + i\eta_1 \\ v_1 + \phi_1 + i\psi_1 \end{pmatrix} \text{ and } \Phi_2 = \frac{1}{\sqrt{2}} \begin{pmatrix} \rho_2 + i\eta_2 \\ v_2 + \phi_2 + i\psi_2 \end{pmatrix},$$

with $v_1 = v\cos\beta, v_2 = \sin\beta$ and $v\simeq 246~{\rm GeV}$ the VEV of the SM Higgs doublets

Extremising V_0 along ϕ_1 and ϕ_2 direction leads to the following conditions:

$$\frac{\lambda_1}{\lambda_2} = \tan^4 \beta, \qquad \sqrt{\lambda_1 \lambda_2} = -\lambda_{345},$$

where $\lambda_{345} \equiv \lambda_3 + \lambda_4 + \lambda_5$.

In the vacuum and using the tadpole conditions, the mass matrices, after diagonalisation, are given by

$$M_S^2 = \begin{pmatrix} m_H^2 & 0\\ 0 & 0 \end{pmatrix}, \quad M_P^2 = \begin{pmatrix} m_A^2 & 0\\ 0 & 0 \end{pmatrix}, \quad M_C^2 = \begin{pmatrix} m_{H^{\pm}}^2 & 0\\ 0 & 0 \end{pmatrix},$$

with

$$m_H^2 = -\lambda_{345}v^2 = \sqrt{\lambda_1\lambda_2}v^2, \quad m_A^2 = -\lambda_5v^2, \quad m_{H^{\pm}}^2 = -\frac{1}{2}(\lambda_4 + \lambda_5)v^2.$$

Finding $m_h^2 = 0$ means the direction h is the flat direction (second derivative is zero)

The C2HDM is naturally aligned at tree-level: $\alpha = \beta - \pi/2$ such that M_S is diagonalised.

Flat direction along

$$\phi \equiv h = -\sin\alpha\phi_1 + \cos\alpha\phi_2 = \cos\beta\phi_1 + \sin\beta\phi_2$$

$$\phi_1 = \phi \cos \beta, \quad \phi_2 = \phi \sin \beta,$$

$$\langle \phi \rangle = v, \quad \langle \phi_1 \rangle = v \cos \beta = v_1, \quad \langle \phi_2 \rangle = v \sin \beta = v_2$$

Using tadpole conditions and the relation of the mass matrices with the physical masses, we obtain the following parametrisation:

$$\begin{split} \lambda_1 &= \frac{m_H^2}{v^2} \tan^2 \beta, \quad \lambda_2 = \frac{m_H^2}{v^2 \tan^2 \beta}, \quad \lambda_3 = \frac{2m_{H^{\pm}}^2 - m_H^2}{v^2}, \\ \lambda_4 &= \frac{-2m_{H^{\pm}}^2 + m_A^2}{v^2}, \quad \lambda_5 = \frac{-m_A^2}{v^2}, \end{split}$$

for which $V_0(\phi) = 0$.

 \Longrightarrow along the flat direction, the scalar potential is generated at one-loop order .

Coleman-Weinberg potential

In Landau gauge, the Coleman-Weinberg potential $V_{\rm CW}$ is defined in the $\overline{\rm MS}$ scheme as

$$V_{\mathsf{CW}}(\phi) = \frac{1}{64\pi^2} \sum_{i} (-1)^F g_i \, m_i^4(\phi) \left[\ln \frac{m_i^2(\phi)}{\mu^2} - C_i \right],$$

where

- $i \in \{t, W^{\pm}, Z, \gamma, h, H, G_0, A, G^{\pm}, H^{\pm}\}$
- g_i : the number of degrees of freedom
- $m_i^2(\phi)$: i^{th} eigenvalue of the field-dependent mass matrix $(m^2)_{ab} \equiv \partial^2 V / \partial \phi_a \partial \phi_b$
- μ : renormalisation scale
- F = 1 for fermions and F = 0 for bosons
- $C_i = 3/2$ for scalars, fermions and $C_i = 5/6$ for gauge bosons

One-loop improved tadpole conditions

Tree-level tadpole conditions:

$$T_{\phi_1} \equiv \left\langle \frac{\partial V_0}{\partial \phi_1} \right\rangle = v_1 \left(\lambda_1 v_1^2 + \frac{1}{2} \lambda_{345} v_2^2 \right) = 0$$
$$T_{\phi_2} \equiv \left\langle \frac{\partial V_0}{\partial \phi_2} \right\rangle = v_2 \left(\lambda_2 v_2^2 + \frac{1}{2} \lambda_{345} v_1^2 \right) = 0$$

 \Rightarrow one-loop improved tadpole conditions:

Lee, Pilaftsis, arXiv:1201.4891

$$\left\langle \frac{\partial (V_0 + V_{\mathsf{CW}})}{\partial \phi_i} \right\rangle = T_{\phi_i} + \frac{v_i v^2}{64\pi^2} \Delta \hat{t}_i = 0, \quad i = 1, 2$$

$$\begin{aligned} \Delta \hat{t}_i &= \frac{1}{v^2} \left[4\lambda_{345} m_H^2 \left(1 - \log \frac{m_H^2}{\mu^2} \right) + 4\lambda_5 m_A^2 \left(1 - \log \frac{m_A^2}{\mu^2} \right) + 4\lambda_{45} m_{H^\pm}^2 \left(1 - \log \frac{m_{H^\pm}^2}{\mu^2} \right) \\ &- 6g_2^2 m_W^2 \left(\frac{1}{3} - \log \frac{m_W^2}{\mu^2} \right) - 3(g_1^2 + g_2^2) m_Z^2 \left(\frac{1}{3} - \log \frac{m_Z^2}{\mu^2} \right) + 24y_f^2 m_t^2 \left(1 - \log \frac{m_t^2}{\mu^2} \right) \delta_{Ii} \end{aligned}$$

One-loop improved mass matrices

$$M_{S}^{2} = \begin{pmatrix} \lambda_{1}v_{1}^{2} + \frac{T_{\phi_{1}}}{v_{1}} + \left\langle \frac{\partial^{2}V_{\text{CW}}}{\partial\phi_{1}^{2}} \right\rangle & \lambda_{345}v_{1}v_{2} + \left\langle \frac{\partial^{2}V_{\text{CW}}}{\partial\phi_{1}\partial\phi_{2}} \right\rangle \\ \lambda_{345}v_{1}v_{2} + \left\langle \frac{\partial^{2}V_{\text{CW}}}{\partial\phi_{1}\partial\phi_{2}} \right\rangle & \lambda_{2}v_{2}^{2} + \frac{T_{\phi_{2}}}{v_{2}} + \left\langle \frac{\partial^{2}V_{\text{CW}}}{\partial\phi_{2}^{2}} \right\rangle \end{pmatrix}$$

$$\left\langle \frac{\partial^2 V_{\rm CW}}{\partial \phi_i \partial \phi_j} \right\rangle = \frac{1}{64\pi^2} (v^2 \Delta \hat{t}_i \delta_{ij} + v_i v_j \Delta \hat{m}_{ij}^2),$$

$$\begin{split} \Delta \hat{m}_{ij}^2 &\equiv 8\lambda_{345}^2 \log \frac{|m_H^2|}{\mu^2} + 8\lambda_5^2 \log \frac{m_A^2}{\mu^2} + 4\lambda_{45}^2 \log \frac{m_{H^\pm}^2}{\mu^2} + g_2^4 \left(2 + 3\log \frac{m_W^2}{\mu^2}\right) \\ &+ \frac{g_1^4 + g_2^4}{2} \left(2 + 3\log \frac{m_Z^2}{\mu^2}\right) - 24y_f^4 \log \frac{m_t^2}{\mu^2} \delta_{ij} \delta_{Ii} \end{split}$$

$$M_{S}^{2} = \begin{pmatrix} \lambda_{1}v_{1}^{2} + \frac{T_{\phi_{1}}}{v_{1}} + \frac{1}{64\pi^{2}}(v^{2}\Delta\hat{t}_{1} + v_{1}^{2}\Delta\hat{m}_{11}^{2}) & \lambda_{345}v_{1}v_{2} + \frac{1}{64\pi^{2}}v_{1}v_{2}\Delta\hat{m}_{12}^{2} \\ \lambda_{345}v_{1}v_{2} + \frac{1}{64\pi^{2}}v_{1}v_{2}\Delta\hat{m}_{12}^{2} & \lambda_{2}v_{2}^{2} + \frac{T_{\phi_{2}}}{v_{2}} + \frac{1}{64\pi^{2}}(v^{2}\Delta\hat{t}_{2} + v_{2}^{2}\Delta\hat{m}_{22}^{2}) \end{pmatrix}$$

- one-loop improved tadpole conditions: $\frac{T_{\phi_i}}{v_i} + \frac{1}{64\pi^2}v^2\Delta \hat{t}_i = 0$
- $\Delta \hat{m}_{ij}^2 = 0$ for M_P^2 and $M_C^2 \Longrightarrow (M_{P,C}^2)_{\text{one-loop}} = (M_{P,C}^2)_{\text{tree-level}}$
- M_S^2 has now a second non-zero eigenvalue $m_h^2 \neq 0$ as a consequence of the breaking of scale invariance at loop order

Coleman-Weinberg potential

Along the flat direction we have $m_i^4(\phi) = m_i^4(v)\phi^4/v^4$. We can then rewrite $V_{\rm CW}$ as

$$V_{\mathsf{CW}}(\phi) = \phi^4 \left(A + B \ln \frac{\phi^2}{\mu^2} \right),$$

$$A = \frac{1}{64\pi^2 v^4} \sum_i (-1)^F g_i \, m_i^4(v) \left[\ln \frac{m_i^2(v)}{\mu^2} - C_i \right],$$
$$B = \frac{1}{64\pi^2 v^4} \sum_i (-1)^F g_i \, m_i^4(v).$$

By minimising $V_{\rm CW},$ we find that $\mu=\Lambda_{\rm GW}$ is defined as

$$\ln \frac{\Lambda_{\mathsf{GW}}}{v} = \frac{A}{2B} + \frac{1}{4}.$$

At this scale Λ_{GW} , the minimum of V_{CW} is at $\phi = v$.

Bounds on heavy scalar masses

- sum rule: $m_{H}^{4} = 8\pi^{2}v^{2}m_{h}^{2} + 12m_{t}^{4} 6m_{W^{\pm}}^{4} 3m_{Z}^{4} m_{A}^{4} 2m_{H^{\pm}}^{4}$
- we need $m_{H}^4>0$ in order to have $m_{H}^2\in\mathbb{R}\to$ upper bounds for m_{H},m_{A} and $m_{H^{\pm}}$
- with the constraint $m_H > m_h \simeq 125$ GeV (otherwise perturbation theory breaks down), the sum rule is a reliable method to compute m_H Eichten, Lane, arXiv:2209.06632

We study the phase transitions in the early Universe: large temperature \Rightarrow finite-temperature quantum field theory must be used to take thermal effects into account.

The resulting one-loop thermal effective potential in the C2HDM reads

$$V_{\rm eff} = V_{\rm 0} + V_{\rm CW} + V_{\rm 1L}^T$$

- V₀: tree-level potential
- V_{CW}: Coleman-Weinberg potential
- V_{1L}^T : one-loop thermal corrections

One-loop thermal effective potential

$$V_{\text{eff}} = V_0 + V_{\text{CW}} + V_{1\text{L}}^T.$$

The last term, V_{1L}^T , is defined as

$$V_{1\mathsf{L}}^{T}(\phi,T) = \frac{T^4}{2\pi^2} \sum_{i} g_i J_{\mathsf{B}/\mathsf{F}}\left(\frac{m_i^2(\phi)}{T^2}\right) - \frac{\pi^2}{90}g'_*T^4$$

$$J_{\mathsf{B/F}}(y^2) = (-1)^F \int_0^\infty x^2 \log\left[1 \mp e^{-\sqrt{x^2 + y^2}}\right]$$

- T: temperature
- g_i : degrees of freedom of the i^{th} particle
- $m_i^2(\phi)$: i^{th} eigenvalue of the field-dependent mass matrix $(m^2)_{ab} \equiv \partial^2 V / \partial \phi_a \partial \phi_b$
- g'_* : relativistic degrees of freedom of the remaining (light) particles

In the high-temperature limit ($|y^2| = |m_i^2/T^2| \ll 1$), we can expand the thermal function J as following:

Curtin, Meade, Ramani, arXiv:1612.00466

$$J_B(y^2) \approx -\frac{\pi^4}{45} + \frac{\pi^2}{12}y^2 - \frac{\pi}{6}y^3 - \frac{1}{32}y^4 \log\left(\frac{y^2}{a_b}\right)$$
$$J_F(y^2) \approx -\frac{7\pi^4}{360} + \frac{\pi^2}{24}y^2 + \frac{1}{32}y^4 \log\left(\frac{y^2}{a_f}\right)$$

•
$$a_b = \pi^2 \exp(3/2 - 2\gamma_E)$$

• $a_f = 16\pi^2 \exp(3/2 - 2\gamma_E)$

with $\gamma_E \simeq 0.577$, the Euler–Mascheroni constant.

High-temperature expansion

Conformal versus Non-Conformal 2HDM

Imaginary contributions

The cubic term in

$$J_B(y^2) \approx -\frac{\pi^4}{45} + \frac{\pi^2}{12}y^2 - \frac{\pi}{6}y^3 - \frac{1}{32}y^4 \log\left(\frac{y^2}{a_b}\right)$$

can be imaginary for $m_i^2 < 0$. Indeed,

$$y^{3} = (y^{2})^{3/2} = \left(\frac{m_{i}^{2}}{T^{2}}\right)^{3/2}$$
$$\Rightarrow \operatorname{Im} y^{3} \neq 0 \text{ for } m_{i}^{2} < 0$$

Likewise for the
$$\ln m_i^2$$
 term in $V_{\sf CW}$.

 \Rightarrow Thus we always consider the real part of V_{eff} in our calculations.

Finally, we use the thermally improved finite-temperature potential, which is obtained by adding to the field-dependent masses in V_{CW} and V_{1L}^T the leading thermal corrections:

$$m_i^2(\phi) \to m_i^2(\phi) + c_i T^2,$$

where the coefficients c_i are given by

$$c_h = \frac{1}{16}(g_1^2 + 3g_2^2) + \frac{3\lambda_1 + 2\lambda_3 + \lambda_4}{12},$$

$$c_H = \frac{1}{16}(g_1^2 + 3g_2^2) + \frac{1}{4}y_t^2 + \frac{3\lambda_2 + 2\lambda_3 + \lambda_4}{12}$$

for the scalars.

NC2HDM tree-level potential:

$$\begin{aligned} V_0 &= m_{11}^2 \Phi_1^{\dagger} \Phi_1 + m_{22}^2 \Phi_2^{\dagger} \Phi_2 - m_{12}^2 \left[\Phi_1^{\dagger} \Phi_2 + \Phi_2^{\dagger} \Phi_1 \right] \\ &+ \frac{\lambda_1}{2} (\Phi_1^{\dagger} \Phi_1)^2 + \frac{\lambda_2}{2} (\Phi_2^{\dagger} \Phi_2)^2 + \lambda_3 \Phi_1^{\dagger} \Phi_1 \Phi_2^{\dagger} \Phi_2 \\ &+ \lambda_4 \Phi_1^{\dagger} \Phi_2 \Phi_2^{\dagger} \Phi_1 + \frac{\lambda_5}{2} \left[(\Phi_1^{\dagger} \Phi_2)^2 + (\Phi_2^{\dagger} \Phi_1)^2 \right]. \end{aligned}$$

Parametrisation

In the alignment limit we have

$$\begin{split} m_{11}^2 &= -\frac{m_h^2}{2} + m_{12}^2 \tan\beta, \\ m_{22}^2 &= -\frac{m_h^2}{2} + \frac{m_{12}^2}{\tan\beta}, \\ \lambda_1 v^2 &= m_h^2 + m_H^2 \tan^2\beta - M^2 \tan^2\beta, \\ \lambda_2 v^2 &= m_h^2 + \frac{m_H^2}{\tan^2\beta} - \frac{M^2}{\tan^2\beta}, \\ \lambda_3 v^2 &= m_h^2 - m_H^2 + 2m_{H^\pm}^2 - M^2, \\ \lambda_4 v^2 &= M^2 + m_A^2 - 2m_{H^\pm}^2, \\ \lambda_5 v^2 &= M^2 - m_A^2, \end{split}$$

with

$$M^2 \equiv \frac{m_{12}^2}{\sin\beta\cos\beta}.$$

Nico Benincasa

Conformal versus Non-Conformal 2HDM

The one-loop thermal effective potential in the NC2HDM reads

$$V_{\rm eff} = V_0 + V_{\rm CW} + V_{\rm CT} + V_{\rm 1L}^T$$

- V₀: tree-level potential
- V_{CW}: Coleman-Weinberg potential
- V_{CT}: counterterms
- V_{1L}^T : one-loop thermal corrections
One-loop thermal effective potential

For the treatment of the phase transitions, we suppose that excursions in the field space occur only along the direction ϕ ($\phi_1 = \phi \cos \beta$, $\phi_2 = \phi \sin \beta$). \Rightarrow the tree-level potential

$$\begin{split} V_0 &= m_{11}^2 \Phi_1^{\dagger} \Phi_1 + m_{22}^2 \Phi_2^{\dagger} \Phi_2 - m_{12}^2 \left[\Phi_1^{\dagger} \Phi_2 + \Phi_2^{\dagger} \Phi_1 \right] \\ &+ \frac{\lambda_1}{2} (\Phi_1^{\dagger} \Phi_1)^2 + \frac{\lambda_2}{2} (\Phi_2^{\dagger} \Phi_2)^2 + \lambda_3 \Phi_1^{\dagger} \Phi_1 \Phi_2^{\dagger} \Phi_2 \\ &+ \lambda_4 \Phi_1^{\dagger} \Phi_2 \Phi_2^{\dagger} \Phi_1 + \frac{\lambda_5}{2} \left[(\Phi_1^{\dagger} \Phi_2)^2 + (\Phi_2^{\dagger} \Phi_1)^2 \right], \end{split}$$

becomes

$$V_{0}(\phi) = \frac{1}{2}m_{11}^{2}\phi^{2}\cos^{2}\beta + \frac{1}{2}m_{22}^{2}\phi^{2}\sin^{2}\beta - m_{12}^{2}\phi^{2}\cos\beta\sin\beta + \frac{1}{8}\lambda_{1}\phi^{4}\cos^{4}\beta + \frac{1}{8}\lambda_{2}\phi^{4}\sin^{4}\beta + \frac{1}{4}\lambda_{345}\phi^{4}\cos^{2}\beta\sin^{2}\beta.$$

One-loop thermal effective potential

$$V_{\rm eff} = V_{\rm 0} + V_{\rm CW} + V_{\rm CT} + V_{\rm 1L}^T$$

The third term, V_{CT} , contains the finite parts of the counterterms that are fixed such that the scalar VEVs and masses remain at their tree-level values at the T = 0 global minimum (v_1, v_2) :

$$V_{\mathsf{CT}}(\phi_1,\phi_2) = \delta m_{11}^2 \phi_1^2 + \delta m_{22}^2 \phi_2^2 + \delta \lambda_1 \phi_1^4 + \delta \lambda_2 \phi_2^4 + \delta \lambda_{345} \phi_1^2 \phi_2^2$$

such that the following renormalisation conditions are satisfied:

$$\begin{split} & \left. \frac{\partial V_{\text{CT}}}{\partial \phi_i} \right|_{\text{vev}} = -\frac{\partial V_{\text{CW}}}{\partial \phi_i} \right|_{\text{vev}}, \quad i = 1, 2, \\ & \left. \frac{\partial^2 V_{\text{CT}}}{\partial \phi_i^2} \right|_{\text{vev}} = \left(-\frac{\partial^2 V_{\text{CW}}|_{G \equiv 0}}{\partial \phi_i^2} + \frac{1}{32\pi^2} \sum_{G = G^0, G^{\pm}} \left(\frac{\partial m_G^2}{\partial \phi_i} \right)^2 \ln\left(\frac{m_{\text{IR}}^2}{\mu^2} \right) \right) \right|_{\text{vev}}, \quad i = 1, 2, \\ & \left. \frac{\partial^2 V_{\text{CT}}}{\partial \phi_1 \partial \phi_2} \right|_{\text{vev}} = \left(-\frac{\partial^2 V_{\text{CW}}|_{G \equiv 0}}{\partial \phi_1 \partial \phi_2} + \frac{1}{32\pi^2} \sum_{G = G^0, G^{\pm}} \frac{\partial m_G^2}{\partial \phi_1} \frac{\partial m_G^2}{\partial \phi_2} \ln\left(\frac{m_{\text{IR}}^2}{\mu^2} \right) \right) \right|_{\text{vev}}. \end{split}$$

Constraints on λ 's from

- perturbativity
- perturbative unitarity
- bounded-from-below potential

Experimental constraints

Constraints on heavy scalar masses from

Arcadi, N.B., Djouadi, Kannike, arXiv:2212.14788

- LEP2 search: $m_A \gtrsim 90$ GeV $(e^+e^- \rightarrow hA)$ and $m_{H^{\pm}} \gtrsim 80$ GeV $(e^+e^- \rightarrow H^+H^-)$
- constraint from FCNC via the loop-induced decay process $B \to X_s \gamma$ $(b \to s \gamma)$:
 - type II: $m_{H^{\pm}} \gtrsim 800$ GeV for any $\tan \beta$
 - type I: $m_{H^{\pm}} \gtrsim 500$ GeV for $\tan \beta \gtrsim 1$
- EW precision measurements: mass splitting between m_H, m_A and m_{H^\pm} cannot be too large

To analyse the phase transition dynamics in the C2HDM, we scan the parameter space over the following range:

 $m_A \in [90, 1000] \ {\rm GeV}, \quad m_{H^\pm} \in [80, 1000] \ {\rm GeV}, \quad \tan\beta \in [0.1, 50].$

In the NC2HDM, in addition, we scan over

 $m_H \in [m_h, 1000] \text{ GeV}, \quad |m_{12}| \in [100, 1000] \text{ GeV}.$

We then analyse the points which pass the aforementioned theoretical and experimental constraints.

Outline of the talk

1. Introduction

2. Model

3. Results

4. Conclusion

PT parameters: definition

• inverse time duration β of PT normalised to the Hubble parameter:

$$\frac{\beta}{H_*} = (8\pi)^{1/3} \frac{v_w}{R_* H_*}$$

with R_* the mean bubble separation

• PT strength α :

$$\alpha = \frac{1}{\frac{\pi^2}{30}g_*T_p^4} \left(\Delta V - \frac{T_p}{4} \Delta \frac{\partial V}{\partial T} \right) \bigg|_{T_p}$$

• probability P(T) of being in the false vacuum :

$$P(T) = e^{-I(T)},$$

with I(T), the fraction of the Universe that has transitioned • percolation temperature T_p :

$$I(T_p) = 0.34$$

Parameter space

Nico Benincasa

PT parameters: results

PT parameters: results

Nico Benincasa

$M_h \; [{\rm GeV}]$	$T_c \; [\text{GeV}]$	$T_p [{ m GeV}]$	α
35	[43.38 - 59.92]	[5.55 - 28.46]	[0.246 - 134.941]
65	[61.39 - 71.52]	[32.48 - 54.58]	[0.054 - 0.401]
95	[78.99 - 90.22]	[57.11 - 79.38]	[0.021 - 0.083]
125	[96.12 - 108.52]	[78.36 - 102.10]	[0.011 - 0.037]
155	[113.00 - 124.35]	[97.69 - 120.05]	[0.007 - 0.021]
185	[129.62 - 138.40]	[116.16 - 135.53]	[0.005 - 0.014]
215	[145.40 - 150.99]	[133.66 - 148.31]	[0.004 - 0.010]

Scalon mass impact on PT strength

Gravitational-wave power spectrum

Outline of the talk

1. Introduction

2. Model

3. Results

4. Conclusion

Conclusion

- nearly-conformal dynamics typically lead to significant supercooling because the thermal barrier remains until $T\to 0$
- in the C2HDM however the amount of supercooling is very limited
- NC2HDM offers a larger variability in the amount of supercooling: it can be smaller but also bigger than in the C2HDM case
- a smaller value for the scalon mass (a softer breaking of the scale invariance) leads to stronger FOPT
- C2HDM could not provide a strong enough GW signal to be detected by e.g. LISA, contrary to NC2HDM

