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Phase transition in the early Universe
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Bubbles of new phase and collision
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Figure 1: Schematic illustration of a first-order phase transition, after Ref. [12]. Bubbles of the true vacuum
are nucleated in the false vacuum. These expand, and collide. Gravitational waves are sourced both by the
bubble collisions themselves, and by the overlapping sound shells after the bubbles have merged. Credit:
A. Kormu.

gravitational waves [14]. If the walls move subsonically and there is sufficient CP violation in the
theory, this also represents a viable framework in which to achieve electroweak baryogenesis (see
Ref. [15] for a review).

In some cases, the electroweak phase transition is not the only symmetry-breaking phase tran-
sition in the model. There may be a first-order phase transition only involving other fields, followed
by the electroweak phase transition (which is usually then first order, too). Such ‘two-step’ scenar-
ios have been studied in Refs. [16, 17, 18]. In fact, these papers focussed on a triplet extension of
the Standard Model, which we investigated using the technique of high-temperature dimensional
reduction in Ref. [19] (see Ref. [20] for a thorough discussion of dimensional reduction in the
context of the electroweak phase transition).

2.1 Dimensional reduction

The full four-dimensional theory of the electroweak sector of the Standard Model, or one of
its extensions, is difficult to study nonperturbatively. If we instead construct a three-dimensional
high-temperature effective field theory, we can handle the infrared physics in a consistent way;
integrate most of the field content out; and map the four-dimensional parameters onto a much
simpler field theory. In the case of the gauge-Higgs minimal model of Refs. [8, 9], there are just
two free parameters: the quadratic and quartic terms in the three-dimensional scalar potential.
Higher dimensional operators are neglected, and all other fields have been integrated out.

Equipped with a dimensionally reduced model, we can use the three-dimensional quantum
field theory to study the phase transition in the original model. As the dimensionally reduced theory
correctly describes the infrared physics of the full finite-temperature field theory, we can use it to
study the phase diagram and determine quantities such as the latent heat and critical temperature.
One can use the three-dimensional effective potential [21], or simulate the theory on the lattice [8].
The lattice simulations of the three-dimensional theory were used to show that the endpoint of the
first-order critical line lies around 80GeV.

2.2 Results for extended models

If the additional degrees of freedom beyond the Standard Model Higgs are sufficiently heavy,

2
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Order of phase transitions

Mazumdar, White, arXiv:1811.01948

1st-order phase transitions are abrupt (existence of a barrier):
the order parameter (VEV φ) changes discontinuously from zero to a
non-zero value
2nd-order phase transitions/crossovers are smooth (no barrier):
the order parameter (VEV φ) changes continuously from zero to a
non-zero value
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Order of phase transitions
Symmetry 2020, 12, 733 4 of 24

Figure 1. Two types of phase transitions. (Upper) Case of the first-order phase transition; shapes of
the effective potential at T > TC, T = TC and T < TC [left panel] and the temperature evolution of the
VEV of scalar [right panel]. (Lower) Counterparts in the case of the second-order phase transition.

Before we discuss EWPT, we consider the φ4 theory in order to see the symmetry behavior at
high-T. The Lagrangian is given by

L =
1
2

∂µ ϕ∂µ ϕ−V0(ϕ), V0(ϕ) = −m2

2
ϕ2 +

λ

4!
ϕ4, (7)

where λ > 0 and m2 > 0. This model has the Z2 symmetry, ϕ → −ϕ, but it is spontaneously
broken because of the −m2 term. The field-dependent scalar mass is derived by m̄2 = ∂2V0/∂ϕ2 =

−m2 + λϕ2/2. The one-loop effective potential in the MS scheme takes the form

V1(ϕ; T) =
m̄4

64π2

(
ln

m̄2

µ̄2 −
3
2

)
+

T4

2π2 IB(a2), (8)

where µ̄2 = 4πe−γE µ2 with γE being the Euler constant. Combining this with V0(ϕ), one finds

Veff(ϕ; T) = V0(ϕ) + V1(ϕ; T)

' −π2T4

90
+

1
2

(
−m2 +

λ

24
T2
)

ϕ2 − T
12π

(m̄2)3/2 +
λ

4!
ϕ4 +

m̄4

64π2

(
ln

T2

µ̄2 + 2cB

)
, (9)

where cB = ln αB/2 and HTE is used in the second line. One can find that the Z2 symmetry can be
restored at high temperature due to the positive contribution of theO(T2) term. Presence of the (m̄2)3/2

Senaha, Symmetry 2020, 12(5), 733
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First-order phase transitions

∼ 1/3

Wang, Huang, Zhang, arXiv:2003.08892
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Gravitational waves
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Gravitational-wave production

Wang, Huang, Zhang, arXiv:2003.08892
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Gravitational-wave power spectrum
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∗
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Supercooled first-order phase transitions

Sagunski, Schicho, Schmitt, arXiv:2303.02450

For supercooled first-order phase transitions
the Universes remains trapped in the false vacuum until T � Tc
∆V increases as T decreases
for T < Ti, the Universe becomes vacuum dominated (∆V = π2

30 g∗T
4
i )

and enters a period of thermal inflation
percolation may never happen if thermal inflation is too important
→ the phase transition may never complete

Nico Benincasa Conformal versus Non-Conformal 2HDM 11



Outline of the talk

1. Introduction

2. Model

3. Results

4. Conclusion

Nico Benincasa Conformal versus Non-Conformal 2HDM 12



Motivations

2HDM is motivated by MSSM

nearly conformal dynamics typically lead to large supercooling

compare the results from phase transitions and gravitational waves
between the 2HDM and its conformal version
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C2HDM tree-level potential

The tree-level potential of the classically conformal CP-conserving 2HDM is
given by

V0 =
λ1

2
(Φ†1Φ1)2 +

λ2

2
(Φ†2Φ2)2 + λ3Φ†1Φ1Φ†2Φ2

+ λ4Φ†1Φ2Φ†2Φ1 +
λ5

2

[
(Φ†1Φ2)2 + (Φ†2Φ1)2

]
,

where Φ1 and Φ2 denote the two SU(2)L Higgs doublets and where we
have imposed Z2 discrete symmetries to avoid FCNC at tree-level.
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C2HDM potential

The two SU(2)L Higgs doublets are given by

Φ1 =
1√
2

(
ρ1 + iη1

v1 + φ1 + iψ1

)
and Φ2 =

1√
2

(
ρ2 + iη2

v2 + φ2 + iψ2

)
,

with v1 = v cosβ, v2 = sinβ and v ' 246 GeV the VEV of the SM Higgs
doublets

Nico Benincasa Conformal versus Non-Conformal 2HDM 15



Tadpole conditions

Extremising V0 along φ1 and φ2 direction leads to the following conditions:

λ1

λ2
= tan4 β,

√
λ1λ2 = −λ345,

where λ345 ≡ λ3 + λ4 + λ5.
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Mass matrices

In the vacuum and using the tadpole conditions, the mass matrices, after
diagonalisation, are given by

M2
S =

(
m2
H 0

0 0

)
, M2

P =

(
m2
A 0

0 0

)
, M2

C =

(
m2
H± 0
0 0

)
,

with

m2
H = −λ345v

2 =
√
λ1λ2v

2, m2
A = −λ5v

2, m2
H± = −1

2
(λ4 + λ5)v2.

Finding m2
h = 0 means the direction h is the flat direction (second

derivative is zero)
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Flat direction

The C2HDM is naturally aligned at tree-level: α = β − π/2 such that MS

is diagonalised.

Flat direction along

φ ≡ h = − sinαφ1 + cosαφ2 = cosβφ1 + sinβφ2

with

φ1 = φ cosβ, φ2 = φ sinβ,

〈φ〉 = v, 〈φ1〉 = v cosβ = v1, 〈φ2〉 = v sinβ = v2
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Parametrisation

Using tadpole conditions and the relation of the mass matrices with the
physical masses, we obtain the following parametrisation:

λ1 =
m2
H

v2
tan2 β, λ2 =

m2
H

v2 tan2 β
, λ3 =

2m2
H± −m2

H

v2
,

λ4 =
−2m2

H± +m2
A

v2
, λ5 =

−m2
A

v2
,

for which V0(φ) = 0.

=⇒ along the flat direction, the scalar potential is generated at one-loop
order .
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Coleman-Weinberg potential

In Landau gauge, the Coleman-Weinberg potential VCW is defined in the
MS scheme as

VCW(φ) =
1

64π2

∑

i

(−1)F gim
4
i (φ)

[
ln
m2
i (φ)

µ2
− Ci

]
,

where
i ∈ {t,W±, Z, γ, h,H,G0, A,G

±, H±}
gi: the number of degrees of freedom
m2
i (φ): ith eigenvalue of the field-dependent mass matrix

(m2)ab ≡ ∂2V/∂φa∂φb

µ: renormalisation scale
F = 1 for fermions and F = 0 for bosons
Ci = 3/2 for scalars, fermions and Ci = 5/6 for gauge bosons
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One-loop improved tadpole conditions

Tree-level tadpole conditions:

Tφ1 ≡
〈
∂V0

∂φ1

〉
= v1

(
λ1v

2
1 +

1

2
λ345v

2
2

)
= 0

Tφ2 ≡
〈
∂V0

∂φ2

〉
= v2

(
λ2v

2
2 +

1

2
λ345v

2
1

)
= 0

⇒ one-loop improved tadpole conditions:
Lee, Pilaftsis, arXiv:1201.4891

〈
∂(V0 + VCW)

∂φi

〉
= Tφi +

viv
2

64π2
∆t̂i = 0, i = 1, 2

with

∆t̂i =
1

v2

[
4λ345m

2
H

(
1− log

m2
H

µ2

)
+ 4λ5m

2
A

(
1− log

m2
A

µ2

)
+ 4λ45m

2
H±

(
1− log

m2
H±

µ2

)
− 6g22m

2
W

(
1

3
− log

m2
W

µ2

)
− 3(g21 + g22)m2

Z

(
1

3
− log

m2
Z

µ2

)
+ 24y2fm

2
t

(
1− log

m2
t

µ2

)
δIi

]
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One-loop improved mass matrices

M2
S =


λ1v

2
1 +

Tφ1
v1

+
〈
∂2VCW
∂φ21

〉
λ345v1v2 +

〈
∂2VCW
∂φ1∂φ2

〉

λ345v1v2 +
〈
∂2VCW
∂φ1∂φ2

〉
λ2v

2
2 +

Tφ2
v2

+
〈
∂2VCW
∂φ22

〉



with 〈
∂2VCW
∂φi∂φj

〉
=

1

64π2
(v2∆t̂iδij + vivj∆m̂

2
ij),

∆m̂2
ij ≡ 8λ2345 log

|m2
H |
µ2

+ 8λ25 log
m2

A

µ2
+ 4λ245 log

m2
H±

µ2
+ g42

(
2 + 3 log

m2
W

µ2

)

+
g41 + g42

2

(
2 + 3 log

m2
Z

µ2

)
− 24y4f log

m2
t

µ2
δijδIi
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One-loop improved mass matrices

M2
S =

(
λ1v

2
1 +

Tφ1
v1

+ 1
64π2 (v2∆t̂1 + v21∆m̂2

11) λ345v1v2 + 1
64π2 v1v2∆m̂2

12

λ345v1v2 + 1
64π2 v1v2∆m̂2

12 λ2v
2
2 +

Tφ2
v2

+ 1
64π2 (v2∆t̂2 + v22∆m̂2

22)

)

one-loop improved tadpole conditions:
Tφi
vi

+ 1
64π2 v

2∆t̂i = 0

∆m̂2
ij = 0 for M2

P and M2
C =⇒ (M2

P,C)one-loop = (M2
P,C)tree-level

M2
S has now a second non-zero eigenvalue m2

h 6= 0 as a consequence
of the breaking of scale invariance at loop order
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Coleman-Weinberg potential

Along the flat direction we have m4
i (φ) = m4

i (v)φ4/v4. We can then
rewrite VCW as

VCW(φ) = φ4

(
A+B ln

φ2

µ2

)
,

with

A =
1

64π2v4

∑

i

(−1)F gim
4
i (v)

[
ln
m2
i (v)

µ2
− Ci

]
,

B =
1

64π2v4

∑

i

(−1)F gim
4
i (v).
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Gilderner-Weinberg renormalisation scale ΛGW

By minimising VCW, we find that µ = ΛGW is defined as

ln
ΛGW

v
=

A

2B
+

1

4
.

At this scale ΛGW, the minimum of VCW is at φ = v.
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Bounds on heavy scalar masses
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m
H
 [G

eV
]

sum rule: m4
H = 8π2v2m2

h + 12m4
t − 6m4

W± − 3m4
Z −m4

A − 2m4
H±

we need m4
H > 0 in order to have m2

H ∈ R → upper bounds for
mH ,mA and mH±

with the constraint mH > mh ' 125 GeV (otherwise perturbation
theory breaks down), the sum rule is a reliable method to compute mH

Eichten, Lane, arXiv:2209.06632
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One-loop thermal effective potential

We study the phase transitions in the early Universe: large temperature
⇒ finite-temperature quantum field theory must be used to take thermal
effects into account.

The resulting one-loop thermal effective potential in the C2HDM reads

Veff = V0 + VCW + V T
1L

V0: tree-level potential
VCW: Coleman-Weinberg potential
V T
1L: one-loop thermal corrections
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One-loop thermal effective potential

Veff = V0 + VCW + V T
1L.

The last term, V T
1L, is defined as

V T
1L(φ, T ) =

T 4

2π2

∑

i

gi JB/F

(
m2
i (φ)

T 2

)
− π2

90
g′∗T

4

with
JB/F(y2) = (−1)F

∫ ∞

0
x2 log

[
1∓ e−

√
x2+y2

]

T : temperature
gi: degrees of freedom of the ith particle
m2
i (φ): ith eigenvalue of the field-dependent mass matrix

(m2)ab ≡ ∂2V/∂φa∂φb

g′∗: relativistic degrees of freedom of the remaining (light) particles
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High-temperature expansion

In the high-temperature limit (|y2| = |m2
i /T

2| � 1), we can expand the
thermal function J as following:
Curtin, Meade, Ramani, arXiv:1612.00466

JB(y2) ≈ −π
4

45
+
π2

12
y2 − π

6
y3 − 1

32
y4 log

(
y2

ab

)

JF (y2) ≈ −7π4

360
+
π2

24
y2 +

1

32
y4 log

(
y2

af

)

ab = π2 exp(3/2− 2γE)

af = 16π2 exp(3/2− 2γE)

with γE ' 0.577, the Euler–Mascheroni constant.
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High-temperature expansion

0 2 4 6 8 10
m/T

2.00

1.75

1.50

1.25

1.00

0.75

0.50

0.25

0.00
J B

(m
/T

)
high-T approx.

0.0 0.5 1.0
2.1
2.0
1.9
1.8

Nico Benincasa Conformal versus Non-Conformal 2HDM 30



Imaginary contributions

The cubic term in

JB(y2) ≈ −π
4

45
+
π2

12
y2 − π

6
y3 − 1

32
y4 log

(
y2

ab

)

can be imaginary for m2
i < 0. Indeed,

y3 = (y2)3/2 =

(
m2
i

T 2

)3/2

⇒ Im y3 6= 0 for m2
i < 0

Likewise for the lnm2
i term in VCW.

⇒ Thus we always consider the real part of Veff in our calculations.
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Parwani thermal resummation

Finally, we use the thermally improved finite-temperature potential, which
is obtained by adding to the field-dependent masses in VCW and V T

1L the
leading thermal corrections:

m2
i (φ)→ m2

i (φ) + ciT
2,

where the coefficients ci are given by

ch =
1

16
(g2

1 + 3g2
2) +

3λ1 + 2λ3 + λ4

12
,

cH =
1

16
(g2

1 + 3g2
2) +

1

4
y2
t +

3λ2 + 2λ3 + λ4

12

for the scalars.
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NC2HDM tree-level potential

NC2HDM tree-level potential:

V0 = m2
11Φ†1Φ1 +m2

22Φ†2Φ2 −m2
12

[
Φ†1Φ2 + Φ†2Φ1

]

+
λ1

2
(Φ†1Φ1)2 +

λ2

2
(Φ†2Φ2)2 + λ3Φ†1Φ1Φ†2Φ2

+ λ4Φ†1Φ2Φ†2Φ1 +
λ5

2

[
(Φ†1Φ2)2 + (Φ†2Φ1)2

]
.

Nico Benincasa Conformal versus Non-Conformal 2HDM 33



Parametrisation

In the alignment limit we have

m2
11 = −m

2
h

2
+m2

12 tanβ,

m2
22 = −m

2
h

2
+

m2
12

tanβ
,

λ1v
2 = m2

h +m2
H tan2 β −M2 tan2 β,

λ2v
2 = m2

h +
m2
H

tan2 β
− M2

tan2 β
,

λ3v
2 = m2

h −m2
H + 2m2

H± −M2,

λ4v
2 = M2 +m2

A − 2m2
H± ,

λ5v
2 = M2 −m2

A,

with

M2 ≡ m2
12

sinβ cosβ
.
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One-loop thermal effective potential

The one-loop thermal effective potential in the NC2HDM reads

Veff = V0 + VCW + VCT + V T
1L

V0: tree-level potential
VCW: Coleman-Weinberg potential
VCT: counterterms
V T
1L: one-loop thermal corrections

Nico Benincasa Conformal versus Non-Conformal 2HDM 35



One-loop thermal effective potential

For the treatment of the phase transitions, we suppose that excursions in
the field space occur only along the direction φ (φ1 = φ cosβ,
φ2 = φ sinβ).
⇒ the tree-level potential

V0 = m2
11Φ†1Φ1 +m2

22Φ†2Φ2 −m2
12

[
Φ†1Φ2 + Φ†2Φ1

]

+
λ1

2
(Φ†1Φ1)2 +

λ2

2
(Φ†2Φ2)2 + λ3Φ†1Φ1Φ†2Φ2

+ λ4Φ†1Φ2Φ†2Φ1 +
λ5

2

[
(Φ†1Φ2)2 + (Φ†2Φ1)2

]
,

becomes

V0(φ) =
1

2
m2

11φ
2 cos2 β +

1

2
m2

22φ
2 sin2 β −m2

12φ
2 cosβ sinβ

+
1

8
λ1φ

4 cos4 β +
1

8
λ2φ

4 sin4 β +
1

4
λ345φ

4 cos2 β sin2 β.
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One-loop thermal effective potential

Veff = V0 + VCW + VCT + V T
1L

The third term, VCT, contains the finite parts of the counterterms that are
fixed such that the scalar VEVs and masses remain at their tree-level values
at the T = 0 global minimum (v1, v2):

VCT(φ1, φ2) = δm2
11φ

2
1 + δm2

22φ
2
2 + δλ1φ

4
1 + δλ2φ

4
2 + δλ345φ

2
1φ

2
2,

such that the following renormalisation conditions are satisfied:

∂VCT

∂φi

∣∣∣
vev

= −∂VCW

∂φi

∣∣∣
vev
, i = 1, 2,

∂2VCT

∂φ2
i

∣∣∣
vev

=

−∂2VCW|G≡0

∂φ2
i

+
1

32π2

∑
G=G0,G±

(
∂m2

G

∂φi

)2

ln

(
m2

IR

µ2

)∣∣∣∣∣
vev

, i = 1, 2,

∂2VCT

∂φ1∂φ2

∣∣∣
vev

=

−∂2VCW|G≡0

∂φ1∂φ2
+

1

32π2

∑
G=G0,G±

∂m2
G

∂φ1

∂m2
G

∂φ2
ln

(
m2

IR

µ2

)∣∣∣∣∣
vev

.
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Theoretical constraint

Constraints on λ’s from

perturbativity

perturbative unitarity

bounded-from-below potential
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Experimental constraints

Constraints on heavy scalar masses from
Arcadi, N.B., Djouadi, Kannike, arXiv:2212.14788

LEP2 search: mA & 90 GeV (e+e− → hA) and mH± & 80 GeV
(e+e− → H+H−)

constraint from FCNC via the loop-induced decay process B → Xsγ
(b→ sγ):

I type II: mH± & 800 GeV for any tanβ

I type I: mH± & 500 GeV for tanβ & 1

EW precision measurements: mass splitting between mH ,mA and
mH± cannot be too large
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Scan of the parameter space

To analyse the phase transition dynamics in the C2HDM, we scan the
parameter space over the following range:

mA ∈ [90, 1000] GeV, mH± ∈ [80, 1000] GeV, tanβ ∈ [0.1, 50].

In the NC2HDM, in addition, we scan over

mH ∈ [mh, 1000] GeV, |m12| ∈ [100, 1000] GeV.

We then analyse the points which pass the aforementioned theoretical and
experimental constraints.
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PT parameters: definition

inverse time duration β of PT normalised to the Hubble parameter:

β

H∗
= (8π)1/3 vw

R∗H∗
,

with R∗ the mean bubble separation
PT strength α:

α =
1

π2

30 g∗T
4
p

(
∆V − Tp

4
∆
∂V

∂T

) ∣∣∣∣∣
Tp

probability P (T ) of being in the false vacuum :

P (T ) = e−I(T ),

with I(T ), the fraction of the Universe that has transitioned
percolation temperature Tp:

I(Tp) = 0.34
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Parameter space
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PT parameters: results
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PT parameters: results
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Scalon mass impact on PT strength
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Scalon mass impact on PT strength
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Gravitational-wave power spectrum
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Conclusion

nearly-conformal dynamics typically lead to significant supercooling
because the thermal barrier remains until T → 0

in the C2HDM however the amount of supercooling is very limited

NC2HDM offers a larger variability in the amount of supercooling: it
can be smaller but also bigger than in the C2HDM case

a smaller value for the scalon mass (a softer breaking of the scale
invariance) leads to stronger FOPT

C2HDM could not provide a strong enough GW signal to be detected
by e.g. LISA, contrary to NC2HDM
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The
End!

Thank you
for your attention!

Any
questions ?
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