

Could magnetic reconnection be the source of the Sagittarius A* flares?

Collaborators: F. Vincent, A. Dmytriiev, I. El Mellah, T. Paumard, G. Perrin, A. Zech

Workshop: kinetic physics of astrophysical plasma 20 Juin 205

ndaimar@fe.up.pt

Nicolas Aimar Workshop: Kinetic physics 29/06/2025

Table of content

- 1. Introduction
- 2. Magnetic reconnection in black holes environment
 - 1) **GRMHD** simulations
 - 2) (GR)PIC simulations
- 3. Hotspot model from magnetic reconnection
 - 1) Model properties
 - 2) Comparison with observations
- 4. Future prospects

Conclusion

Credits: Naval Research Laboratory & ESO/GRAVITY collaboration

Polarized reconstructed images of Sgr A*. Credits: EHT collaboration

Light curves of Sgr A* in NIR with Spitzer. Credit: Witzel et al., 2018

Light curve of Sgr A* in IR (bande-L). Credit: Hamaus et al., 2009

Sgr A* flare fit from GRAVITY 2018

Credit: GRAVITY Collaboration, 2018

- Simple hotspot model with a Keplerian circular orbit in the equatorial plane
- > Results:
 - Low inclination
 - Orbit at a few R_g
 - Possible superkeplerian velocity?

Sgr A* flare in NIR

Credit: GRAVITY Collaboration, 2023

- > Time scale of 30min-1h
- Average flare shows orbital motion at r = 9M with $i \approx 157^\circ$
- Polarization angular velocity is only compatible with poloidal magnetic field configuration
- Maybe super Keplerian velocity
- Some double peak LC have been observed

Sgr A* flare in radio

- > Time scale of ~70min
- ightharpoonup Polarization loops also hints toward an equatorial orbital motion of an hotspot at r=10M and $i=160^\circ$
- Radio polarization also constraint the magnetic field to be in a purely vertical configuration
- > Orbital velocity is **Keplerian**
- > Very low density plasma $n_e \approx 5 \times 10^5 \ cm^{-3}$

Credit: Wielgus et al., 2022

Sgr A* flare in X-rays

- Single and double peak light curve are observed
- > Time scale between ~10min and 1,5h
- \succ Hard spectral index $\Gamma \approx 2,0$
- > High energy photons could be generated by
 - High energy (non-thermal) electrons emitting synchrotron radiation
 - Low energy electrons emitting synchrotron self-Compton (SSC) radiation

Credit: Haggard et al., 2019

Multi-wavelength Sgr A* flares observation show puzzling properties

Simultaneous radio and NIR flares

Credit: Fazio et al., 2018

Credit: Boyce et al., 2022

Long terms objectives:

- > Test the "no hair" theorem of black holes
- > Find a limit of General relativity

Credit: EHT Collaboration

Credit: ESO/L. Calçada

Credit: ESO/Gravity Consortium

Credit: National Science Foundation

MagnetoHydroDynamic (MHD)

Credit: B. Ripperda, 2022

Short terms objectives:

- > Better constrain plasma physics in the strong gravity regime
- Decipher the origin of Sgr A* flares
- Create a model capable of explaining the astrometry, light curves and polarization observables of flares

2. Magnetic reconnection in BH environments

1) GRMHD simulations

GRMHD simulations:

Pro:

- Fluid approach -> reduced number of variables (density, velocity, energy, magnetic field)
- > Large-scale evolution
- Long-term simulations

Cons:

- Fluid approach-> non valid for collisionless plasma
- No microphysics

Credit: Ripperda et al., 2022

2. Magnetic reconnection in BH environments

2) (GR)PIC simulations

Credit: El Mellah et al., 2022

GRPIC simulations:

Pro:

- Capture all the microphysics
- Evolution of the particles distribution function and of the electromagnetic field
- Self-consistent pair production

Cons:

- Computationally expensive: limited number of particles
- Scale separation
- No global kinetic evolution of the accretion disk

2. Magnetic reconnection in BH environments

What could we learn from magnetic reconnection simulations?

- Creation of magnetic island called flux tubes (both GRMHD and GRPIC)
- Flux tubes geometry (both GRMHD and GRPIC)
- Dynamics of flux tubes (both GRMHD and GRPIC)
- Magnetic field configuration (both GRMHD and GRPIC)
- > Timescales: duration of flares, delay between two events (GRMHD)
- > Electron Energy Distribution (EED) evolution inside the flux tubes (GRPIC)

1) Model properties

How build a model from magnetic reconnection simulations?

- > Size, shape
- > Motion
- Number density, temperature, magnetic field and their profiles (uniform or Gaussian)
- > Electron distribution function (thermal, power-law, kappa, ...)
- > Magnetic field configuration (important for polarization)

1) Model properties

Model composed of:

- A jet ⇔ quiescent state
- A hotspot ⇔ source of the flare

Hotspot:

- Uniform sphere
- > Conical ejection, i.e. $v_r > 0$, at $\theta = cst$
- $\triangleright v_{\varphi}$ is a free parameter (not necessary Keplerian)
- Time dependant electron energy distribution
- Tangled magnetic field (work in progress for Vertical configuration)

1) Model properties

2 phases in a kinetic approach (A. Dmytriiev):

- Growth phase: injection of accelerated e-following a k-distribution at a constant rate
- Cooling phase : cooling through synchrotron radiation

2) Comparison with observations

Aimar et al., 2023

Total number parameters of the hotspot model: 13

22 July flare comparison:

- Orbital velocity compatible with constrains from El Mellah et al., 2022
- Strong influence of the beaming effect
- Shows good agreement with the data (not a fit!)

2) Comparison with observations

Double peak light curve:

- 1st peak : injection of accelerated electrons
- 2nd peak : beaming + lensing
 - $\theta \approx \text{inclination}$
 - Plasmoïd is behind the black hole

The alignment constrains the maximum and shape of the second peak

4. Future prospects

Improve the model:

- Better orbital motion prescription (work in progress)
- Use well-defined magnetic field configuration (work in progress)
- Compute polarized coefficients from non-well-defined EED (work in progress)
- Study the multi-wavelength properties (future work)
- Fit the model to data (future work)

Conclusion

- > Sagittarius A* flares is an ideal subject for **testing general relativity** and the black hole **no hair theorem**.
- ➤ But the physical origin of flares is still under debate. Nevertheless, magnetic reconnection is very promising to explain Sgr A* flares origin.
- ➤ We have developed a **hotspot** model using kinetic simulations mimicking magnetic reconnection based on GRMHD and (GR)PIC results. The hotspot model shows very promising results compared to data.
- > Next steps: fit the data, include the **polarization** and make a **multi-wavelength** analysis.