MIXED QCD-EW Corrections to the Drell-yan process

GDR QCD workshop on W mass Orsay, 01/07/2025

Simone Devoto

In collaboration with: T. Armadillo, R. Bonciani, L. Buonocore, M. Grazzini, S. Kallweit, N. Rana, A. Vicini

MOTIVATIONS

Standard Model Precision Studies

- Extremely precise measurement of W boson mass (10 MeV uncertainties!);
- > Determination of $\sin^2 \theta_{\text{eff}}^{\text{lep}}$ is becoming competitive with LEP result: 0.23152(16);
- ► Crucial process for PDF determination.

Can we provide SM theoretical predictions matching experimental accuracy?

 $q(p_1) + \bar{q}(p_2) \to l^-(p_3) + l^+(p_4) = \sigma^{(0,0)}$ Drell-Yan (1970)

 $q(p_1) + \bar{q}(p_2) \rightarrow l^-(p_3) + l^+(p_4) = \sigma^{(0,0)}$ Drell-Yan (1970)

+
$$\alpha_S \sigma^{(1,0)}$$
 + $\alpha \sigma^{(0,1)}$
+ $\alpha_S^2 \sigma^{(2,0)}$ + $\alpha \alpha_S \sigma^{(1,1)}$ + $\alpha^2 \sigma^{(0,2)}$
+ $\alpha_S^3 \sigma^{(3,0)}$ + ...

QCD MIXED EW

$q(p_1) + \bar{q}(p_2) \rightarrow l^-(p_3) + l^+(p_4) =$ **QCD CORRECTIONS**

+
$$\alpha_S \sigma^{(1,0)}$$
 + $\alpha \sigma^{(0,1)}$
+ $\alpha_S^2 \sigma^{(2,0)}$ + $\alpha \alpha_S \sigma^{(1,1)}$ + $\alpha^2 \sigma^{(0,2)}$
+ $\alpha_S^3 \sigma^{(3,0)}$ + ...

Dominant effect;

NLO:

[G.Altarelli, R.Ellis, G.Martinelli Nucl.Phys.B 157 (1979)];

NNLO:

[R.Hamberg, T.Matsuura, W.van Nerveen, Nucl. Phys. B 359 (1991)];

[C.Anastasiou, L.J.Dixon, K.Melnikov, F.Petriello, hep-ph:0306192]; [S.Catani, L.Cieri, G.Ferrera, D.de Florian, M.Grazzini arXiv:0903.2120];

► Known up to N3LO.

(0,0)

N3LO:

[C.Duhr, F.Dulat, B.Mistlberger arXiv:2007.13313];
[X.Chen, T.Gehrmann, N.Glover, A.Huss, T.Yang, and H.Zhu arXiv:2107.09085];
[S.Camarda, L.Cieri, G.Ferrera arXiv:2103.04974];
[X.Chen, T.Gehrmann, N.Glover, A.Huss, P.Monni, E.Re, L.Rottoli, P.Torrielli arXiv:2203.01565];.

Subdominant with respect to QCD: physical counting $\alpha_S \simeq \alpha^2$;

► NLO corrections known;

[U.Baur, O.Brein, W.Hollik, C.Schappacher, D.Wackeroth, hep-ph:0108274];[S.Dittmaier, M.Kramer, hep-ph:0109062];[U.Baur, D.Wackeroth, hep-ph:0405191];

NNLO corrections still missing (available Sudakov high energy approximation).

[B. Jantzen, J.H.Kühn. A.A.Penin, V.A.Smirnov, hep-ph:0509157];

GDR QCD workshop on W mass, 01.07.2025 - Simone Devoto

5

NLO QCD and NLO EW separately large: what about mixed?

By physical counting, expected size comparable with N3LO QCD!

[R. Bonciani, L. Buonocore, M. Grazzini, S. Kallweit, N. Rana, F. Tramontano, A.Vicini, arXiv:2106.11953]
[T. Armadillo, R. Bonciani, L. Buonocore, SD, M. Grazzini, S. Kallweit, N. Rana, A.Vicini, arXiv:2412.16095]
[F. Buccioni, F. Caola, H. Chawdhry, F. Devoto, M.Heller, A. von Manteuffel, K. Melnikov, R. Röntsch, C. Signorile-Signorile, arXiv:2203.11237]

RECENT PROGRESSES IN MIXED CORRECTIONS

Theoretical Developments

2-loop virtual Master Integrals with internal masses [U. Aglietti, R. Bonciani, arXiv:0304028, arXiv:0401193], [R. Bonciani, S. Di Vita, P. Mastrolia, U. Schubert, arXiv:1604.08581], [M.Heller, A.von Manteuffel, R.Schabinger arXiv:1907.00491], [M.Long, R, Zhang, W.Ma, Y, Jiang, L.Han, Z.Li, S.Wang, arXiv:2111.14130], [X.Liu, Y.Ma, arXiv:2201.11669]

- Altarelli-Parisi splitting functions including QCD-QED effects [D. de Florian, G. Sborlini, G. Rodrigo, arXiv:1512.00612]
- Renormalisation [G.Degrassi, A.Vicini, hep-ph/0307122], [S.Dittmaier, T.Schmidt, J.Schwarz, arXiv:2009.02229], [S.Dittmaier, arXiv:2101.05154]

On-shell Z and W production

- pole approximation of the NNLO QCD-EW corrections [S.Dittmaier, A.Huss, C.Schwinn, arXiv:1403.3216, 1511.08016]
- analytical total Z production cross section including NNLO QCD-QED corrections [D. de Florian, M.Der, I.Fabre, arXiv:1805.12214]
- fully differential on-shell Z production including exact NNLO QCD-QED corrections [M.Delto, M.Jaquier, K.Melnikov, R.Roentsch, arXiv:1909.08428] [S.Hasan, U.Schubert, arXiv:2004.14908]
- analytical total Z production cross section including NNLO QCD-EW corrections [R. Bonciani, F. Buccioni, R.Mondini, A.Vicini, arXiv:1611.00645], [R. Bonciani, F. Buccioni, N.Rana, I.Triscari, A.Vicini, arXiv:1911.06200], [R. Bonciani, F. Buccioni, N.Rana, A.Vicini, arXiv:2007.06518, arXiv:2111.12694]
- fully differential Z and W production including NNLO QCD-EW corrections [F. Buccioni, F. Caola, M.Delto, M.Jaquier, K.Melnikov, R.Roentsch, arXiv:2005.10221], [A. Behring, F. Buccioni, F. Caola, M.Delto, M.Jaquier, K.Melnikov, R.Roentsch, arXiv:2009.10386, 2103.02671]

► <u>Complete Drell-Yan</u>

- neutrino-pair production including NNLO QCD-QED corrections [L. Cieri, D. de Florian, M.Der, J.Mazzitelli, arXiv:2005.01315]
- **2-loop amplitudes** [M.Heller, A.von Manteuffel, R.Schabinger, arXiv:2012.05918], [T.Armadillo, R.Bonciani, SD, N.Rana, A.Vicini, arXiv:2201.01754; arXiv:2412.16095],
- NNLO QCD-EW corrections to neutral-current DY including leptonic decay [R.Bonciani, L.Buonocore, M.Grazzini, S.Kallweit, N.Rana, F.Tramontano, A.Vicini, arXiv:2106.11953], [F.Buccioni, F.Caola, H.Chawdhry, F.Devoto, M.Heller, A.von Manteuffel, K.Melnikov, R.Röntsch, C.Signorile-Signorile, arXiv:2203.11237] [T. Armadillo, R. Bonciani, L. Buonocore, SD, M. Grazzini, S. Kallweit, N. Rana, A. Vicini, arXiv:2412.16095]
- NNLO QCD-EW corrections to charged-current DY including leptonic decay (2-loop contributions in pole approximation). [L.Buonocore, M.Grazzini, S.Kallweit, C.Savoini, F.Tramontano, arXiv:2102.12539]

CONTENTS

Phenomenological application:

- Neutral Current Drell-Yan;
- Forward-Backward Asymmetry;
- **Two-loop Amplitudes:**
 - Theoretical challenges;
 - Our workflow;
 - Neutral Current Drell-Yan;
 - Charged Current Drell-Yan.

PHENOMENOLOGY EXPLORING THE STANDARD MODEL

NEUTRAL CURRENT DRELL-YAN

[T. Armadillo, R. Bonciani, L. Buonocore, SD, M. Grazzini, S. Kallweit, N. Rana, A. Vicini, arXiv:2412.16095]

IR singularities handled by q_T-subtraction formalism;

[S. Catani, M. Grazzini (2007)] [L.Buonocore, M. Grazzini, F.Tramontano (2019)]

$$d\sigma^{F}_{(N)NLO} = \mathcal{H}^{F}_{(N)NLO} \otimes d\sigma^{F}_{LO} + \left[d\sigma^{F+jets}_{(N)LO} - d\sigma^{CT}_{(N)LO} \right]$$

- ► Final-state soft singularities are regularised by the **muon mass** m_{μ} ;
- Process implemented in the MATRIX framework.

https://matrix.hepforge.org

DIFFERENTIAL RESULTS

[T. Armadillo, R. Bonciani, L. Buonocore, SD, M. Grazzini, S. Kallweit, N. Rana, A. Vicini, arXiv:2412.16095]

We compare exact results MIX with the factorised approximation MIX_{fact}

$$\frac{d\sigma_{\text{fact}}^{(1,1)}}{dX} = \left(\frac{d\sigma^{(1,0)}}{dX}\right) \times \left(\frac{d\sigma_{q\bar{q}}^{(0,1)}}{dX}\right) \times \left(\frac{d\sigma_{\text{LO}}}{dX}\right)^{-1};$$

- We observe a shape distortion: the strongest effect comes from NNLO QCD, but it is emphasised by the mixed corrections;
- Effect of the mixed corrections up to the O(1%) level;
- Shape distortions are relevant for PDF determinations.

DIFFERENTIAL RESULTS

[T. Armadillo, R. Bonciani, L. Buonocore, SD, M. Grazzini, S. Kallweit, N. Rana, A. Vicini, arXiv:2412.16095]

- Mild shape distortion from QCD corrections;
- Strong shape distortion from
 EW corrections, which generate
 a radiative tail before the peak;
- The mixed corrections provide a non-trivial shape distortion;
- The factorised approximation does not give a good description of the resonant region.

FORWARD-BACKWARD ASYMMETRY

[T. Armadillo, R. Bonciani, L. Buonocore, SD, M. Grazzini, S. Kallweit, N. Rana, A. Vicini, arXiv:2412.16095]

$$(m_{\mu\mu}) = \overline{F(m_{\mu\mu}) + B(m_{\mu\mu})}$$

FORWARD-BACKWARD ASYMMETRY

[T. Armadillo, R. Bonciani, L. Buonocore, SD, M. Grazzini, S. Kallweit, N. Rana, A. Vicini, arXiv:2412.16095]

- ► Significant effect from **mixed corrections** to the **forward-backward asymmetry**;
- > This measurement has a direct impact on $\sin^2 \theta_{eff}^{\ell}$.
- ► We apply the cuts used by the CMS collaboration for the extraction of $\sin^2 \theta_{eff}^{\ell}$: $p_{T,1} > 25 \text{ GeV}; p_{T,2} > 15 \text{ GeV}; |y_{\mu}| < 2.4; 60 < m_{\mu\mu} < 120 \text{ GeV}.$ [CMS collaboration, arXiv:1806.00863] GDR QCD workshop on W mass, 01.07.2025 - Simone Devoto 14

TWO-LOOP AMPLITUDES THEORETICAL CHALLENGES

THEORY BOTTLENECKS

THEORY BOTTLENECKS

What makes EW corrections challenging?

additional internal massive lines;

additional scales in the problem $(m_Z, m_W, m_H...)$ bring additional complications!

• treatment of γ_5 ;

how can γ_5 be consistently used in dimensional regularisation?

need for the complex mass scheme; requires to analytically continue the master integrals on the complex plane!

OUR WORKFLOW THE BUILDING BLOCKS

OUR WORKFLOW

Differential Equation:

 $dI_i = A_{ij}I_j$

OUR WORKFLOW

Numerical Result

The result of the master integral is provided as a numerical grid.

Analytical Result

The result of the master integral can be expressed in closed form as a combination of elementary and special functions, whose **power expansion is known**.

Semi-Analytical Result

The result of the master integral can be expanded as a power series at every point of its domain, but <u>without</u> any additional functional relations.

We solve the master integral with **series expansion**!

[T. Armadillo, R. Bonciani, SD, N.Rana, A.Vicini, arXiv:2205.03345]

The latest version of SEASYDE can be downloaded from: github.com/TommasoArmadillo/SeaSyde

- SEASYDE(Series Expansion Approach for SY stem of Differential Equations) is a MATHEMATICA package for solving the system of differential equation, associated to the Master Integrals of a given topology.
- ► SEASYDE can handle any system of coupled differential equations.
- Method implemented in the Mathematica package DiffExp for real kinematic variables [F. Moriello, arXiv:1907.13234], [M. Hidding, arXiv:2006.05510] (see also AMFLOW [X. Liu and Y.-Q. Ma, arXiv: 2201.11669]; LINE[R.M. Prisco, J. Ronca, F. Tramontano, arXiv:2501.01943])
- ► By using the auxiliary mass flow, AMFLOW can provide **boundary conditions**.

- We generalised the series expansion method to arbitrary complex-valued masses —>complex plane of the kinematical invariants!
- ► The radius of convergence of the series is limited by the presence of **poles**;
- "Transport" of the boundary conditions need to consider branch-cuts.

- We generalised the series expansion method to arbitrary complex-valued masses —>complex plane of the kinematical invariants!
- ► The radius of convergence of the series is limited by the presence of **poles**;
- "Transport" of the boundary conditions need to consider branch-cuts.

- We generalised the series expansion method to arbitrary complex-valued masses —>complex plane of the kinematical invariants!
- ► The radius of convergence of the series is limited by the presence of **poles**;
- "Transport" of the boundary conditions need to consider branch-cuts.

- We generalised the series expansion method to arbitrary complex-valued masses —>complex plane of the kinematical invariants!
- ► The radius of convergence of the series is limited by the presence of **poles**;
- "Transport" of the boundary conditions need to consider branch-cuts.

- We generalised the series expansion method to arbitrary complex-valued masses —>complex plane of the kinematical invariants!
- ► The radius of convergence of the series is limited by the presence of **poles**;
- "Transport" of the boundary conditions need to consider branch-cuts.

COMPUTATIONAL FRAMEWORK

- IR singularities handled by q_T-subtraction formalism (straightforward implementation of any other framework by replacing the subtraction operator);
- Final-state collinear singularities regularised by the lepton mass;
- ► small lepton mass limit: consider the ratio m_l/\sqrt{s} and keep only logarithmic terms $\sim \log(m_l/\sqrt{s})$.
- When dealing with intermediate unstable particles, such as W and Z, it is useful to perform the calculations in the complex-mass scheme;
- ► We introduce the complex mass $\mu_V^2 = m_V^2 i\Gamma_V m_V$ for both the Z and W bosons.

GDR QCD workshop on W mass, 01.07.2025 - Simone Devoto 22

NCDY - NUMERICAL GRIDS

- ► After subtracting IR and UV divergences, we obtain the hard function;
- Publicly available as a MATHEMATICA notebook;
- ► Subtraction of the IR poles done in the **qT-subtraction** formalism;
- ▶ Production of the grid (3250 points) required O(12h) on a 32-cores machine;
- ► Interpolation of the grid with excellent accuracy requires **negligible time**.

GDR QCD workshop on W mass, 01.07.2025 - Simone Devoto 23

CCDY – BASIS OF MASTER INTEGRALS

[T. Armadillo, R. Bonciani, SD, N.Rana, A.Vicini, arXiv:2405.00612]

Computationally similar to neutral current Drell-Yan;

Extra complexity coming from new diagrams where two different internal massive lines appear:

- ► **56** Master integrals with two internal masses:
 - 34 **identical** to the ones appearing in the neutral current case;
 - 22 generalisation of masters with two massive lines to the case of different masses;

CCDY – NUMERICAL GRIDS

- ► Two possible approaches:
 - Compute the boundary conditions with AMFLOW and use the differential equations in s and t to build the grid;
 - Use the grid of the neutral-current
 Drell-Yan as a boundary condition and
 use the differential equation w.r.t.
 one of the masses.

UV renormalisation & IR subtraction are analogous to the neutral current case.

GDR QCD workshop on W mass, 01.07.2025 - Simone Devoto 25

[T. Armadillo, R. Bonciani, SD, N.Rana, A.Vicini, arXiv:2405.00612]

CCDY - NUMERICAL GRIDS

- The mass evolution offers the possibility to also provide the additional dependence on the W-boson mass;
- ► Useful for frontier studies, such as M_W determination.

$$\delta M_W = M_W - \bar{M}_W$$
 $\bar{M}_W \rightarrow$ reference value

GDR QCD workshop on W mass, 01.07.2025 - Simone Devoto 26

SUMMARY & OUTLOOK

- EW corrections will be of crucial importance for the future LHC scientific program;
- We developed a framework which relies on ABISS for the evaluation of rational coefficients and SEASYDE for the evaluation of the Master Integrals;
- We successfully applied our framework to the computation of mixed QCD-EW corrections to the Drell-Yan process.

SUMMARY & OUTLOOK

- Phenomenological studies for chargedcurrent Drell-Yan;
- ► Towards **NNLO EW**?

SUMMARY & OUTLOOK

- Phenomenological studies for chargedcurrent Drell-Yan;
- ► Towards **NNLO EW**?

BACKUP SLIDES

DIFFERENTIAL RESULTS

[T. Armadillo, R. Bonciani, L. Buonocore, SD, M. Grazzini, S. Kallweit, N. Rana, A. Vicini, arXiv:2412.16095]

- ► We examine the high invariantmass region, following cuts from [CMS collaboration, arXiv:2103.02708]: $p_{T,\mu^{\pm}} > 53 \text{ GeV}, |y_{\mu}| < 2.4,$ $m_{\mu\mu} > 150 \text{ GeV}$
- The mixed corrections provide a relevant contribution, increasing at higher invariant mass and larger than the statistical error expected by the end of HL-LHC;
- The factorised approximation gives a good description of the high-invariant mass region.

ABISS – EVALUATING c_k

Method implemented in the Mathematica package DiffExp for real kinematic variables [F.Moriello, arXiv:1907.13234], [M.Hidding, arXiv:2006.05510] (see also AMFLOW [X. Liu and Y.-Q. Ma, arXiv: 2201.11669])

A Simple Example

$$\begin{cases} f'(x) + \frac{1}{x^2 - 4x + 5} f(x) = \frac{1}{x + 2} \\ f(0) = 1 \end{cases}$$

$$f_{hom}(x) = x^r \sum_{k=0}^{\infty} c_k x^k$$

$$f'_{hom}(x) = \sum_{k=0}^{\infty} (k + r) c_k x^{(k+r-1)}$$

$$\begin{cases} rc_0 = 0 \\ \frac{1}{5}c_0 + c_1(r+1) = 0 \\ \frac{4}{25}c_0 + \frac{1}{5}c_1 + c_2(2 + r) = 0 \\ \dots \end{cases}$$

$$f_{hom}(x) = 5 - x - \frac{3}{10}x^2 + \frac{11}{150}x^3 + \dots$$

Expanded around $x' = 0$

$$f_{part}(x) = f_{hom}(x) \int_0^x dx' \frac{1}{(x'+2)} f_{hom}^{-1}(x')$$

$$= \frac{1}{2}x - \frac{7}{40}x^2 + \frac{2}{75}x^3 + \dots$$

$$f(x) = f_{part}(x) + Cf_{hom}(x)$$

$$f(0) = 1 \to C = \frac{1}{5}$$

TAYLOR VS LOGARITHMIC EXPANSION

- ► **Taylor expansion**: **avoids** the singularities;
- ► Logarithmic expansion: uses the singularities as expansion points.
- Logarithmic expansion has larger convergence radius but requires longer evaluation time. We use Taylor expansion as default.

GDR QCD workshop on W mass, 01.07.2025 - Simone Devoto 33

TREATMENT OF γ_5

 γ_5 is not well defined in a non integer number of dimensions!

	ANTICOMMUTATION $\{\gamma_{\mu}, \gamma_{5}\} = 0$	CYCLICITY OF THE TRACE
't Hooft and Veltmann Nucl. Phys. B 44 (1972) 189–213	×	
Kreimer et al. Phys. Lett. B 237 (1990) 59–62		×

For neutral-current Drell Yan proven that at 2loops the two prescriptions yield:
 ➤ different scattering amplitudes; ➤ same finite corrections after subtraction.
 [M. Heller, A. von Manteuffel, R. M. Schabinger and H. Spiesberger, arXiv:hep-ph/2012.05918]

Our procedure:

- 1. Use anticommutation relation, bring all γ_5 at the end of the Dirac trace;
- 2. Use $\gamma_5^2 = 1$, end up with zero or one γ_5 in each Dirac trace;
- 3. Replace the (single) leftover γ_5 with the relation: $\gamma_5 = \frac{\iota}{\Lambda I} \epsilon_{\mu\nu\rho\sigma} \gamma^{\mu} \gamma^{\nu} \gamma^{\rho} \gamma^{\sigma}$.

NCDY - BASIS OF MASTER INTEGRALS

Basis of Master integrals composed by:

- MIs relevant for the QCD-QED corrections, with massive final state; [R.Bonciani, A.Ferroglia, T.Gehrmann, D.Maitre, C.Studerus, arXiv:0806.2301, 0906.3671]
- MIs with 1or 2 internal mass relevant for the EW form factor;
 [U.Aglietti, R.Bonciani, hep-ph/0304028, hep-ph/ 0401193]

> 31 MIs with 1 mass and 36 MIs with 2 masses including boxes, relevant for the QCD-EW corrections to the full Drell-Yan.

NCDY - NUMERICAL GRIDS

- ► 31 out of 36 masters known in terms of GPLs: validation of SEASYDE.
- ► 5 out of 36 masters are a genuine SEASYDE **prediction**;
- solution can be computed with arbitrary number of significant digits.

