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Invitation: Meaningful Theory Uncertainties

Meaningful Theory Uncertainties.

Comparing a measured quantity to its theory prediction to extract POI y
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Theory uncertainty �f is due to inherent inexactness of our prediction
because of any approximations we make

Theory uncertainty must be as meaningful as experimental one, so it should
Reflect our level of knowledge
I Quantify the intrinsic precision of the current prediction
I It is not the distance to the true (or higher-order) result f̂

�f 6= |f � f̂ |

Have some form of statistical interpretation
I We want to have some probability or level of confidence that

f̂ 2 [f � �f, f + �f ]

Have correct correlations

2025-07-01 | Frank Tackmann 2/27.



Invitation: Meaningful Theory Uncertainties

Meaningful Theory Uncertainties.

Comparing a measured quantity to its theory prediction to extract POI y

h
f ± �f

i

measured

!
=

h
f(y) ± �f

i

theory
) y ± �y

exp
± �y

th

Theory uncertainty �f is due to inherent inexactness of our prediction
because of any approximations we make

Theory uncertainty must be as meaningful as experimental one, so it should
Reflect our level of knowledge
I Quantify the intrinsic precision of the current prediction
I It is not the distance to the true (or higher-order) result f̂

�f 6= |f � f̂ |

Have some form of statistical interpretation
I We want to have some probability or level of confidence that

f̂ 2 [f � �f, f + �f ]

Have correct correlations

2025-07-01 | Frank Tackmann 2/27.



Invitation: Meaningful Theory Uncertainties

Meaningful Theory Uncertainties.

Comparing a measured quantity to its theory prediction to extract POI y

h
f ± �f

i

measured

!
=

h
f(y) ± �f

i

theory
) y ± �y

exp
± �y

th

Theory uncertainty �f is due to inherent inexactness of our prediction
because of any approximations we make

Theory uncertainty must be as meaningful as experimental one, so it should
Reflect our level of knowledge
I Quantify the intrinsic precision of the current prediction
I It is not the distance to the true (or higher-order) result f̂

�f 6= |f � f̂ |

Have some form of statistical interpretation
I We want to have some probability or level of confidence that

f̂ 2 [f � �f, f + �f ]

Have correct correlations

2025-07-01 | Frank Tackmann 2/27.



Invitation: Meaningful Theory Uncertainties

Meaningful Theory Uncertainties.

Comparing a measured quantity to its theory prediction to extract POI y

h
f ± �f

i

measured

!
=

h
f(y) ± �f

i

theory
) y ± �y

exp
± �y

th

Theory uncertainty �f is due to inherent inexactness of our prediction
because of any approximations we make

Theory uncertainty must be as meaningful as experimental one, so it should
Reflect our level of knowledge
I Quantify the intrinsic precision of the current prediction
I It is not the distance to the true (or higher-order) result f̂

�f 6= |f � f̂ |

Have some form of statistical interpretation
I We want to have some probability or level of confidence that

f̂ 2 [f � �f, f + �f ]

Have correct correlations
2025-07-01 | Frank Tackmann 2/27.



Invitation: Meaningful Theory Uncertainties

Theory Correlations.

Correlations can be crucial once several predictions are used in combination

Prototype example: Ratio of two quantities f and g

f =
h
g ± �g

i

measured
⇥


f ± �f

g ± �g

�

theory

| {z }
wanted

| {z }
measure precisely

| {z }
theory uncertainties cancel

I Unc. of ratio depends critically on exact correlation ⇢ between �f and �g

I For �f/f = �g/g ⌘ � we have �f/g = �
p

2(1 � ⇢)

a correlation ⇢ of 99.5% 98% 95.5% 87.5%
yields ratio unc. �f/g = 0.1� 0.2� 0.3� 0.5�

Differential spectrum f(x) ⌘ d�/dx

I Uncertainty on shape of f(x) is encoded in point-by-point correlations ⇢ij

between �f(xi) and �f(xj)

) Critical for interpreting differential spectra when relying on shape effects
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Scale Variations

Our Standard Estimation Method.

Consider expansion of quantity f in some small parameter ↵

f(↵) = f0 + f1 ↵ + f2 ↵
2 + f3 ↵

3 + O(↵4)

To make a prediction, we calculate first few true values f̂n

NLO: f(↵) = f̂0 + f̂1 ↵

Can also perform the expansion in a slightly different way (aka “scheme”)

↵̃(↵) = ↵
⇥
1 + b0 ↵ + b1 ↵

2 + b2 ↵
3 + O(↵4)

⇤

) f̃(↵̃) = f̃0 + f̃1 ↵̃ + f̃2 ↵̃
2 + f̃3 ↵̃

3 + O(↵̃4)

To all orders: f(↵) ⌘ f̃(↵̃)

Finite-order prediction using f̃(↵̃) differs by higher-order terms

NLO: f̃(↵̃) = ˆ̃
f0 + ˆ̃

f1 ↵̃ = f̂0 + f̂1 ↵ + b0f̂1 ↵
2 + b1f̂2↵

3 + · · ·
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Scale Variations

Our Standard Estimation Method.

Idea: Take the difference between schemes as uncertainty

NLO: �f(↵) = b0f̂1 ↵
2 + b1f̂1 ↵

3 + O(↵4)

NNLO: �f(↵) =
⇥
2b0(f̂2 � b0f̂1) + b1f̂1

⇤
↵

3 + O(↵4)

We effectively estimate inexactness due to missing terms by
approximating them by some linear combination of known lower-order
terms, e.g. at NLO f2 ⇡ f̂1 b0, f3 ⇡ f̂1 b1

X Resulting estimated �f(↵) is indeed O(↵n+1)

7 But nothing guarantees that this is a good approximation (often it is not)
I fn+1 often has more complex internal structure than fn

I bn are (rather arbitrary) numbers, have a priori nothing to do with f
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Scale Variations

Scale Variations.

↵ ⌘ ↵s(µ0) , ↵̃ ⌘ ↵s(µ) , b0 = 0.85 L , b1 = 0.75 L
2 + 0.34 L

Correspond to a continuous scheme change with L = ln(µ/µ0)/ ln 2

µ (or b0) is not an actual parameter with a true value that f depends on
I No value for it might ever capture the true result (happens regularly)

I At higher order, uncertainty reduces only because µ (or b0) becomes less
relevant and not because it somehow becomes better known
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Scale Variations

What About Correlations?

f(↵) = f̂0 + f̂1 ↵ ± �f with �f = f̂1 b0 ↵
2 + · · ·

g(↵) = ĝ0 + ĝ1 ↵ ± �g with �g = g1 b0 ↵
2 + · · ·

How are �f and �g correlated?

We don’t know – the method simply does not tell us
I Correlations require a common uncertain parameter

(or more generally a common source of uncertainty)

I b0, b1, ... (or µ) are not common or uncertain parameters

7 Scale variations do not give correct correlations or shape uncertainties

Best we can do is assume some theoretically motivated but still ad hoc
correlation model that we impose on �f and �g

I Example: Correlating/uncorrelating scale variations
I Another example: Offsetting/scanning over scale variations (! backup)

) Probably the most severe shortcoming of scale variations
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Scale Variations

Existing Alternatives to Scale Variations.

There have been precious few efforts to develop alternatives

Bayesian models [Cacciari, Houdeau ’11; Bagnaschi et al. ’14; Bonvini ’20; Duhr et al. ’21]

Series acceleration [David, Passarino ’13]

Using reference processes [Gosh et al. ’22]

All go in the right direction
X Try to more directly estimate size of missing higher orders
X Expose assumptions more explicitly
X Try to address statistical interpretation

However

7 Uncertainty estimate still based on the known lower-order terms and/or
scale variations

7 Do not address correlations

) Unfortunately, have similar level of arbitrariness and share many
limitations of scale variations
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Theory Nuisance Parameters

Parametric Theory Uncertainties.

Let’s go back to our expansion of f

f(↵) = f0 + f1 ↵ + f2 ↵
2 + f3 ↵

3 + O(↵4)

We calculate first few true f̂n to make an approximate prediction

LO: f(↵) = f̂0

NLO: f(↵) = f̂0 + f̂1 ↵

NNLO: f(↵) = f̂0 + f̂1 ↵ + f̂2 ↵
2

Q: What is the source of uncertainty in this?
I The missing terms fn ↵

n
s ?

I No, actually, it is the unknown series coefficients fn

I Or more precisely, their unknown true values f̂n

) To estimate the theory uncertainty, we need to quantify our limited or lack
of knowledge of fn

2025-07-01 | Frank Tackmann 9/27.



Theory Nuisance Parameters

Parametric Theory Uncertainties.

Consider fn as an unknown parameter to be varied in some way

To evaluate associated uncertainty, we need to propagate this variation
into the prediction

For that, fn actually has to appear in the prediction, so we include it

N1+1LO: f(↵, f2) = f̂0 + f̂1 ↵ + f2 ↵
2

N1+2LO: f(↵, f2, f3) = f̂0 + f̂1 ↵ + f2 ↵
2 + f3 ↵

3

N2+1LO: f(↵, f3) = f̂0 + f̂1 ↵ + f̂2 ↵
2 + f3 ↵

3

And that’s basically it!
I We explicitly include the (leading) sources of uncertainty in our prediction
I fn are well-defined parameters of our prediction with a true but unknown

(or imprecisely known) value
I We simply treat them as such
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Theory Nuisance Parameters

Theory Nuisance Parameters (TNPs).

In reality, fn ⌘ fn(x) has (lots of) nontrivial internal structure “x”

Parameterize it in terms of TNPs: fn(x, ✓n) where ✓n ⌘ {✓
i

n
}

N1+1LO: f(↵, x, ✓2) = f̂0(x) + f̂1(x)↵ + f2(x, ✓2)↵
2

N1+2LO: f(↵, x, ✓2,3) = f̂0(x) + f̂1(x)↵ + f2(x, ✓2)↵
2+ f3(x, ✓3)↵

3

N2+1LO: f(↵, x, ✓3) = f̂0(x) + f̂1(x)↵ + f̂2(x)↵2 + f3(x, ✓3)↵
3

Key condition: There must be true values ✓̂n such that

f̂n(x) = fn(x, ✓̂n)

I This makes TNPs well-defined parameters with true but unknown value
I Theory uncertainties become truly parametric with all the implied benefits

) Step 1: Derive an appropriate TNP parameterization fn(x, ✓n)
and implement it in all the predictions
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Theory Nuisance Parameters

Step 1: TNP Parameterization.

fn(x) are functions of various x dependences
I Discrete: partonic channels, quantum numbers, ...
I Continuous but discrete values: nf , Nc, Ecm, ...
I Fully continuous: Kinematic variables (pZ

T , Y , q2), particle masses, ...

Q: Which dependences do we need to account for and parameterize?
I All those in which we need correlations
I Plus those that help to obtain better theory constraints

To satisfy key condition fn(x, ✓n) must encode correct x dependence

f̂n(x) = fn(x, ✓̂n)

Requires expert knowledge on underlying structure (functional form in x)

I Deriving fn(x, ✓n) means deriving correct theory correlation structure in x

7 This is where scale variations, Pythia variations, etc. fail:
I Do not yield a correct parameterization, cannot give correct correlations

2025-07-01 | Frank Tackmann 12/27.
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Theory Nuisance Parameters

Step 1: Parameterization Strategies.

General strategy
) Break down internal structure until remaining unknowns fn,i are numbers

Specific strategy depends on what we know about functional form of fn(x)

1 We know it well enough to parameterize it explicitly
For example:
I Dependence on partonic channels is always known exactly
I We might know from theory that fn(x) is a polynomial in lnx

) fn(x) =
kX

i=0

fn,i lni
x
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Theory Nuisance Parameters

Step 1: Parameterization Strategies.

General strategy
) Break down internal structure until remaining unknowns fn,i are numbers

Specific strategy depends on what we know about functional form of fn(x)

1 We know it well enough to parameterize it explicitly

2 We know it well enough to apply 1) in some limit and can expand around
that limit

fn(x) = fn0(x) + fn1(x) " + fn2(x) "
2 + O("3)

For example:
I Drell-Yan pT spectrum at small pT : " = p

2
T /Q

2

I fn0(pT ) can be obtained from pT resummation with strategy 1)
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Theory Nuisance Parameters

Step 1: Parameterization Strategies.

General strategy
) Break down internal structure until remaining unknowns fn,i are numbers

Specific strategy depends on what we know about functional form of fn(x)

1 We know it well enough to parameterize it explicitly

2 We know it well enough to apply 1) in some limit

3 If we don’t have sufficient knowledge for either strategy 1 or 2, we can
always expand in a suitable, complete functional basis {�i}

fn(x) =
1X

i=0

fn,i �i(x) ! fn(x, ✓n) =
kX

i=0

✓n,i �i(x)

I A good basis is one that we can truncate after a few terms with high
confidence that we can neglect truncated terms as a subleading source of
uncertainty

I There are various ways for designing good bases
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Theory Nuisance Parameters

Constraining the TNPs.

Since ✓n are proper parameters, they can have proper estimates/constraints

✓n = un ± �un

Can come from
I From theory: Can be modelled as “imagined” auxiliary measurement
I From experiment: Real auxiliary or nominal measurement

Could profile them as a free nuisance parameter in fit to data
I No dependence on theory prejudice on how much to vary/assumptions
I If the data is sensitive to a ✓n, it will constrain it, otherwise it doesn’t matter

Nevertheless, still worthwhile/useful to have a theory constraint
I Leaving them completely free in a fit may not always be possible or practical
I Important to know their expected “natural” size to check data constraints
I We do like to know the uncertainty of a prediction without having to fit to data

) Step 2: Obtain suitable constraints on ✓n
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Theory Nuisance Parameters

Step 2: Theory Constraints for Scalar Series.

Assume everything has been broken down to scalar series (in QCD)

f(↵s) = 1 +
X

n=1

fn

⇣
↵s

4⇡

⌘n

Parameterize coefficients fn (numbers) as

fn(✓n) = Nn ✓n

I Normalization Nn from expected “natural size” of fn: |f̂n| . Nn

I Expect ✓n to have O(1) natural size: |✓̂n| . 1

Impose a theory constraint

✓n = un ± �un = 0 ± 1

I Default assumption: Model un as normal distributed random variable

) Defines a specific “theory estimator”: Validate it on known pert. series
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Theory Nuisance Parameters

Step 2: Estimating Natural Size.

Let’s take as an example: qq̄ ! V , qq̄ ! H, gg ! H form factors

f(↵s) Nn f̂1/N1 f̂2/N2 f̂3/N3 f̂4/N4

cqq̄V (↵s) 1 �8.47 �48.6 �1387 �42015

4n
�2.12 �3.04 �21.7 �164

4n
CF C

n�1
A

�1.59 �0.76 �1.81 �4.56

4n
CF C

n�1
A

(n � 1)! �1.59 �0.76 �0.90 �0.76

cqq̄S(↵s) 1 �0.47 +87.1 +2309 +76100

4n
�0.12 +5.44 +36.1 +297

4n
CF C

n�1
A

�0.09 +1.36 +3.01 +8.26

4n
CF C

n�1
A

(n � 1)! �0.09 +1.36 +1.50 +1.38

cgg(↵s) 1 +4.93 �24.0 �4066 �123979

4n +1.23 �1.50 �63.5 �484

4n
CAC

n�1
A

+0.41 �0.17 �2.35 �5.98

4n
CAC

n�1
A

(n � 1)! +0.41 �0.17 �1.18 �1.00

) Let’s pick: Nn = 4Cr(4CA)n�1(n�1)!
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Theory Nuisance Parameters
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�1.59 �0.76 �1.81 �4.56

4n
CF C

n�1
A

(n � 1)! �1.59 �0.76 �0.90 �0.76

cqq̄S(↵s) 1 �0.47 +87.1 +2309 +76100

4n
�0.12 +5.44 +36.1 +297

4n
CF C

n�1
A

�0.09 +1.36 +3.01 +8.26

4n
CF C

n�1
A

(n � 1)! �0.09 +1.36 +1.50 +1.38

cgg(↵s) 1 +4.93 �24.0 �4066 �123979

4n +1.23 �1.50 �63.5 �484

4n
CAC

n�1
A

+0.41 �0.17 �2.35 �5.98

4n
CAC

n�1
A

(n � 1)! +0.41 �0.17 �1.18 �1.00

) Let’s pick: Nn = 4Cr(4CA)n�1(n�1)!
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Theory Nuisance Parameters
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Theory Nuisance Parameters

Step 2: Validation on Known Series.

1 loop: ✓̂
f

1 2 loop: ✓̂
f

2

-3 -2 -1 0 1 2 3
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

-3 -2 -1 0 1 2 3
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Consider set of QCD series F = {f} of a common type/category

Identify P
✓
f
n
(x) with population distribution of ✓̂

f

n
2 Fn (assumption)

I For any given ✓
f
n, its unknown ✓̂

f
n comes from a QCD bag of coefficients

Estimate population distribution from a sample of known series
I Good fit to normal distribution (“central-limit theorem of Feynman diagrams”)
I Note: Distribution is a property of this specific estimator
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Theory Nuisance Parameters

Step 2: Validation on Known Series.
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Application to Drell-Yan pT Spectrum

Application to Drell-Yan pT Spectrum.
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Application to Drell-Yan pT Spectrum

TNP Parameterization for V pT Spectrum.

Consider dependence on x ⌘ qT = p
V

T
(where V = Z/�,W )

1) Apply strategy 2: Expand in " = q
2
T

/Q
2 (where Q ⌘ m``)

d�

dqT

=
d�

(0)

dqT

⇥

h
1 + O

✓
q
2
T

Q2

◆i

I O(q2
T /Q

2) corrections stay below . 5% up to qT . Q/3...Q/2

2) Apply strategy 1 to d�
(0)

/dqT

d�
(0)

dqT

=

X

a,b

Hab ⇥ Ba ⌦ Bb ⌦ S

�
(L = ln qT /Q)

F (↵s, L) = F (↵s) exp

Z
L

0
dL

0
n
�cusp[↵s(L

0)] L0 + �F [↵s(L
0)]

o

I qT dependence is predicted by resummation in terms of several
independent (scalar) series

I Boundary conditions and anomalous dimensions of RGE for each function
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Application to Drell-Yan pT Spectrum

TNPs for pT Spectrum: After the Dust has Settled.

Brake things down to independent perturbative series, e.g. at N2+1LL
5 scalar series (plus a few more we can neglect here for simplicity)

�(↵s) = ↵s �̂0 + ↵
2
s
�̂1 + ↵

3
s
�̂2 + ↵

4
s
�3(✓

�
3 )

�µ(↵s) = ↵s �̂µ0 + ↵
2
s

�̂µ1 + ↵
3
s

�µ2(✓
�µ

2 )

�⌫(↵s) = ↵s �̂⌫0 + ↵
2
s

�̂⌫1 + ↵
3
s

�⌫2(✓
�⌫
2 )

H(↵s) =
���ĉ0 + ↵s ĉ1 + ↵

2
s

c2(✓
H

2 )
���
2

S̃(↵s) =
h
ˆ̃
S0 + ↵s

ˆ̃
S1 + ↵

2
s

S̃2(✓
S

2 )
i2

Up to 5 one-dimensional functional series for beam functions
(plus several more for DGLAP splitting functions)

b̃i(x, ↵s) =
X

j

Z
dz

z

h
Îij,0(z) + Îij,1(z) + Iij,2(z, ✓

Bij

2 )
i
fj

⇣
x

z

⌘
,

I Currently use known functional form: Iij,n(z, ✓
Bij
n ) =

3
2
✓
Bij
n Îij,n(z)

I In the future use strategy 2 to parameterize z dependence
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Application to Drell-Yan pT Spectrum

Results for Drell-Yan pT Spectrum.

Comparing different orders at 95% “theory CL” (�✓n = 2)
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/
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Uncertainties reduce as we go to higher order (by construction)
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Application to Drell-Yan pT Spectrum

Uncertainty Breakdown.
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]

SCETlib N3+1LL pre-fit pp ! Z (8 TeV)
MSHTaN3LO, 80 < mll < 100 GeV, |Y | < 1.6

�cusp

�µ

��

H

S

Bqq

Bqg

Separately varying each TNP by ±�✓n = 1

TNPs provide breakdown into independent uncertainty sources with
correct shape
I Encodes correct point-by-point correlations
I Importantly, carries over to p

`
T and other decay kinematics
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Application to Drell-Yan pT Spectrum

Correlations between W and Z.

relative impacts for Z relative impacts for W
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relative impacts on W/Z
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Caveats apply: These are only the
(formerly) leading perturbative unc.

Subleading effects can become
important (or even dominant) now
I Quark mass effects
I EW corrections
I Power corrections
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Application to Drell-Yan pT Spectrum

Profiling TNPs.
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�↵s(mZ) [10�3]

Fit to pseudodata generated from N3+1LL

Include prior Gaussian theory constraint ✓n = 0 ± 1

Data provides nontrivial constraints on TNPs
I Post-fit prediction has reduced theory uncertainties
I Induces nontrivial post-fit correlations
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Application to Drell-Yan pT Spectrum

Profile against True Higher Order.
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Fit to pseudodata generated from true N4LL
Simulates fit to real data (which contains all-order result)

I TNPs are pulled toward their true values
I Post-fit prediction gets corrected toward true result
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Application to Drell-Yan pT Spectrum

Relaxing the Prior Theory Constraint.
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Data is able to sufficiently constrain TNPs by itself
Reduces dependence on prior theory constraint (and associated potential bias)

I Post-fit constraints on TNPs become even more consistent with true values

Uncertainty on final result almost unchanged
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Application to Drell-Yan pT Spectrum

Bonus: Including Nonperturbative Effects.
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For 1/bT ⇠ qT � ⇤QCD nonpert. effects
can be systematically expanded in an OPE

f̃i(x, bT , µ,Q) = f̃
(0)
i (x, bT , µ,Q)

⇢
1 + b

2
T

h
⇤2,i(x) + �2 ln

bTQ

b0

i
+ O(⇤4

QCDb
4
T )

�

Also include quadratic and quartic OPE coefficients in the fit
I TNPs still pulled toward their true values but less constrained
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Application to Drell-Yan pT Spectrum

Summary.

Interpretation of precision measurements requires meaningful theory
uncertainties which includes in particular proper theory correlations

Scale variations become insufficient once theory unc. ⇠ experimental unc
Neither particularly reliable nor can they do correlations

Theory nuisance parameters
Provide truly parametric theory uncertainties that
X Encode correct correlations
X Can be consistently propagated everywhere (fits, MCs, neural networks, ...)

X Can be consistently profiled and constrained by data

Bonus: Can fully benefit from all known partial higher-order information

First successful applications to resummed Drell-Yan pT spectrum
I Implemented in SCETlib (available upon request, hopefully fully public soon)
I Precision W -mass measurement by CMS [! see Kenneth’s talk]

First promising applications to PDF fits and fixed-order predictions
[MSHT20aN3LO (Gowan et al.) ’22; Poncelet, Lim ’24]
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Additional Slides
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Backup

Scanning over Scale Variations.

⇢12 ⇢13 ⇢23

a 0 �1 0

b +1 +1 +1

c +1 �1 �1

Repeat fit for each individual scale variation and take envelope of results
Amounts to trying out various correlation models for the same total
uncertainty band
I None of the trial variations provides a realistic correlation model
I Individual variations are not meaningful (which is why we take their envelope)

Best we can do with scale variations
I Perform as many variations as we can to “fill out” the band, hoping to include

at least one that happens to give sufficiently conservative estimate
I And/or identify conceptually “independent” subsets of variations and add

their envelopes
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Backup

TNPs for Drell-Yan pT Spectrum: More Details.

Apply strategy 2 with " = q
2
T

/Q
2 (Q ⌘

p
m``)

d�

d4q
=

d�
(0)

d4q
⇥

h
1 + O

✓
q
2
T

Q2

◆i

Power corrections stay below . 5% up to qT . Q/3...Q/2

Leading-power term is subject of qT factorization and resummation

d�(0)

d4q
=

1

2E2
cm

LV V 0(q2)
X

a,b

HV V 0 ab(q
2
, µ)

⇥

Z
d2~bT

(2⇡)2
e
i~bT ·~qT eBa(xa, bT , µ, ⌫/Q) eBb(xb, bT , µ, ⌫/Q)S̃(bT , µ, ⌫)

xa,b =
Q

Ecm
e
±Y

I Here V V
0 = {��, �Z,Z�, ZZ,W

+
W

+
,W

�
W

�
}

I Factorization allows us to apply strategy 1 to qT (bT ), q2, V
I Also allows us to factorize xa,b dependence and apply strategy 2 to it
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Backup

Results for Drell-Yan pT Spectrum: Other Ratios.

Z(Q = 1TeV)/Z(Q = mZ) Z(Y = 1.6)/Z(Y = 0)

0 5 10 15 20 25 30
qT [GeV]

�2.0

�1.5

�1.0

�0.5

0.0

0.5

1.0

1.5

2.0

re
l.

di
ffe

re
nc

e
[%

]

SCETlib N3+1LL Z(Q = 1 TeV)
Z(Q = mZ)

(13 TeV)

MSHTaN3LO, Y =0

�cusp

�µ

��

H

S

Bqq

Bqg

0 5 10 15 20 25 30
qT [GeV]

�0.3

�0.2

�0.1

0.0

0.1

0.2

0.3

re
l.

di
ffe

re
nc

e
[%

]

SCETlib N3+1LL Z(Y = 1.6)
Z(Y = 0)

(13 TeV)

MSHTaN3LO, Q=mZ

�cusp

�µ

��

H

S

Bqq

Bqg

W
+
/W

�
W

+(Ecm = 7TeV)/W+(Ecm = 13TeV)

0 5 10 15 20 25 30
qT [GeV]

�0.3

�0.2

�0.1

0.0

0.1

0.2

0.3

re
l.

di
ffe

re
nc

e
[%

]

SCETlib N3+1LL W
+
/W

� (13 TeV)

MSHTaN3LO, Q=mW , Y =0

�cusp

�µ

��

H

S

Bqq

Bqg

0 5 10 15 20 25 30
qT [GeV]

�0.5

�0.4

�0.3

�0.2

�0.1

0.0

0.1

0.2

0.3

0.4

0.5

re
l.

di
ffe

re
nc

e
[%

]

SCETlib N3+1LL W
+(Ecm = 7 TeV)

W +(Ecm = 13 TeV)

MSHTaN3LO, Q=mW , Y =0

�cusp

�µ

��

H

S

Bqq

Bqg

2025-07-01 | Frank Tackmann 30/27.



Backup

Asimov Fit Setup.

[For details see Cridge, Marinelli, FT; arXiv:2506.13874]

We perform Asimov fits to (unfluctuated) pseudodata
Standard method to study expected uncertainties in a controlled setting
I Unobscured by statistical fluctuations and subleading effects

Goals: Demonstrate TNPs and estimate expected uncertainties in ↵s(mZ)
I Can consistently drop subleading effects in both pseudodata and theory

model (power corrections, quark mass effects, EW corrections)
I They are needed to fit the real data, but are irrelevant for estimating the

dominant uncertainties

Pseudodata
Central value given by central SCETlib prediction with ↵s(mZ) = 0.118

Exp. uncertainties and correlations from ATLAS 8 TeV inclusive Z pT

measurement [Eur. Phys. J. C 84 (2024) 315 [arXiv: 2309.09318]]

Same bins and cuts as used by ATLAS ↵s(mZ) determination
[arXiv:2309.12986]

2025-07-01 | Frank Tackmann 31/27.



Backup

Results for ↵s with Profiling TNPs.

[For details see Cridge, Marinelli, FT; arXiv:2506.13874]

different pert. orders relaxing theory constraint

0.116 0.117 0.118 0.119 0.120
↵s(mZ)

N2+1LL +0.66
�0.62

N3+0LL +0.44
�0.43

N3+1LL +0.47
�0.50

N4+0LL
�0.37
+0.41

Z qT Asimov
(ATLAS 8 TeV unc.)

SCETlib
profiled against N4LL

0.116 0.117 0.118 0.119 0.120
↵s(mZ)

�✓n = 1
+0.47
�0.50

�✓n = 2
+0.49
�0.48

�✓n = 4
+0.51
�0.47

Z qT Asimov
(ATLAS 8 TeV unc.)

SCETlib N3+1LL
against N4LL

Important: Not all sources of theory uncertainties included yet
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↵s Results with TNPs and Nonpert. Parameters.

[For details see Cridge, Marinelli, FT; arXiv:2506.13874]

0.115 0.116 0.117 0.118 0.119 0.120 0.121
↵s(mZ)

no nonp. +0.47
�0.50

+0.06,

�0.06,

�2,4, �2

+1.41

�1.41

�2,4, �2,4
+ lattice

+0.69
�0.72

+0.24,

�0.26,

�2,4
+0.67

�0.71

+0.19,

�0.19,

Z qT Asimov
(ATLAS 8 TeV unc.)

N3+1LL vs N4LL
profiled TNPs
no TNPs

Important: Not all sources of theory uncertainties included yet
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