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Context: anatomy of a high-energy collision

?

1 GeV 10 GeV 100 GeV 1 TeV scale

hard
processparton shower

hadrons
(π,K , p, n, ...)

Simulating a high-energy
collision requires several

ingredients

A hard process

Parton shower (initial
and final-state)

Hadronisation

Multi-parton
interactions

perturbatively
“calculable”

non-pert.
“modelled”
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Context: physics at all scales

BSM

mt
mH

mW/Z

mb
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Q ≡
100 GeV
→ 1 TeV

Q ≫ µNP

µNP ∼
1 GeVph
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Hard
process,
matching

Hadronisation
MPI/UE

Parton
shower

“Standard” perturbative expansion

αs(Q)f1(v) + α2
s (Q)f2(v) + α3

s (Q)f3(v) + . . .

LO NLO NNLO

expect logs between disparate scales

αs log
2Q/µNP, αs logQ/µNP

(double, single,...) logs to resum
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Parton shower v. resummations

Resummation is a vast field ⇒ let us take a concrete example: event shapes

For a generic shape v , the analytic QCD prediction is

lnΣ(vcut) ≡ lnP(v < vcut) =
1

αs
g1(αsL) + g2(αsL) + αsg3(αsL) + ...

with L = log(vcut). [Working limit: αs ≪ 1, αsL ∼ cst]

All order resummation of logarithmically-enhanced terms:
1
αs
g1 = αsL

2 + α2
sL

3 + α3
sL

4 + · · · ≡ leading-logs (LL)

g2 = αsL+ α2
sL

2 + α3
sL

3 + · · · ≡ next-to-leading-logs (NLL)
αsg3 = αs + α2

sL+ α3
sL

2 + · · · ≡ next-to-next-to-leading-logs (NNLL)

Side note: one can also work with αs ≪ 1, αsL
2 ∼ cst (e.g. for Σ(vcut) or multiplicity observables).

We then get an expansion h1(αsL
2) +

√
αsh2(αsL

2) + αsh3(αsL
2) + . . . .

h1 resums double-logs (DL), h2 next-to-double-logs (NDL), h3 next-to-next-to-double-logs, etc...
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Parton shower v. resummations

Resummation is a vast field ⇒ let us take a concrete example: event shapes

FIRST TAKE-HOME MESSAGE
shower accuracy means logarithmic accuracy

(LL, NLL, NNLL, ...)

well-defined & systematically improvable
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Moriond QCD, March 2023Gavin P. Salam

selected collider-QCD accuracy milestones

6

DGLAP splitting functions
LO NLO NNLO [parts of N3LO]

1980 1990 2000 2010 20201970

Drell-Yan (γ/Ζ) & Higgs production at hadron colliders
NLOLO NNLO[……………….] N3LO

transverse-momentum resummation (DY&Higgs)
NLL[……]LL NNLL[…] N3LL

fixed-order matching of parton showers
LO NLO NNLO […….] [N3LO]

parton showers
[parts of NLL…………………………………………..]LL

(many of today’s widely-used showers only LL@leading-colour)

[slide from Gavin Salam (Moriond QCD 2023)]

This talk:
improve on this

Gregory Soyez Towards accuracy in parton showers W -mass 2025 5 / 29



1 An intuitive graphical
representation

2 Ingredients of a
(dipole) parton shower

3 Systematic approach
to log accuracy

4 How to test the
shower accuracy?

5 Achieving NLL

6 Towards NNLL
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Basic features of QCD radiation

Take a gluon emission from a (qq̄) dipole

p̃q
pq

pq̄
p̃q̄

k

Emission (p̃qp̃q̄) → (pqk)(kpq̄):

kµ ≡ zqp̃
µ
q + zq̄p̃

µ
q̄ + kµ⊥

3 degrees of freedom:

Rapidity: η = 1
2 log

zq
zq̄

Transverse momentum: k⊥
Azimuth: ϕ

In the soft-collinear approximation

dP =
αs(k⊥)CF

π2
dη

dk⊥
k⊥

dϕ
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Basic features of QCD radiation: the Lund plane

Lund plane: natural representation uses the 2 “log” variables η and log k⊥

log kt η = − log tan(θ/2)

E k
≤
1
2
m qq̄

q sideq̄ side

k

q̄ q

k

soft &
colinear

hard
collinear

so
ft
(l
ar
ge

an
gl
e)

soft &
colinear

ha
rd
co
lli
ne
ar

easy log
counting

αsL2αsL2 αsL
αsL αsL

αs
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Multiple emissions in the Lund plane

log kt η = − log tan(θ/2)

E k
≤
1
2
m qq̄

q sideq̄ side

a

b

c

a
b c

primary plane

secondary plane(s)

ternary plane(s)
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A (Dipole) Parton-Shower primer
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Basic of parton showering in one slide

Dipoles at large-Nc

In the large-Nc limit, a gluon emission corresponds
to a dipole splitting

Mechanism: generate emissions one-by-one

ordering variable v (e.g. transverse momentum kt)

Virtuals as Sudakov/unitarity/no-emission probability

generated as

→ →

v1 v1 v2

p̃i

p̃j

pi

pj

pk

Ingredient 1: Momentum map

How to go from
pre-branching momenta (p̃i , p̃j)
to post-branching (pi , pj , pk)

Ingredient 2: Emission probability

QCD-driven rate of emissions:

dP

d ln vdη
=
αs(kt)CA

π
g(η)P(z)

( for NLL, need 2-loop CMW αs(kt))
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(Dipole) parton shower in the Lund plane

Ordering variable: transverse momentum kt

log kt η = − log tan(θ/2)

E k
≤
1
2
m qq̄

q sideq̄ side

Start with kt = Q

one qq̄ dipole

Generate kt1 < Q
(using Sudakov proba)

Generate η1
&split dipoles

(qq̄) → (qg1) + (g1q̄)

Generate kt2 < kt1
(now from 2 dipoles)

Generate η2
&split dipoles

(g1q̄) → (g1g2) + (g2q̄)

Iterateuntil kt = kt,cut
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Physics result #1: an organising principle:

at a given (all-order) accuracy, what physics do we need to get right?
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Systematic approach: accuracy ↔ reproducing sets of MEs

target: describe disparate scales
at all-order perturbative QCD

⇓
minimum: get the ME for an arbitrary number

of well-separated emissions

If “log distance” ∆ emissions factorise up to
O(e−∆) corrections

this achieves NLL accuracy
in a way NLL can be viewed as the first meaningful order

In particular, in a parton showers, an emission
should not be affected by subsequent distant
emissions

a

(only half the primary Lund plane for simplicity)

ln kt

η = ln tan θ
2

≥∆

separated
in any

direction

mistake
allowed
at NLL

any # pairs
required
at NNLL

any # triplets
required
at N3LL

Robust construction in pQCD

Systematically improvable

“only” a handful of ME at each order
thanks to QCD factorisation

difficulty: the shower algorithm
generates spurious terms one needs to
avoid/correct for

Gregory Soyez Towards accuracy in parton showers W -mass 2025 14 / 29



Systematic approach: accuracy ↔ reproducing sets of MEs

target: describe disparate scales
at all-order perturbative QCD

⇓
minimum: get the ME for an arbitrary number

of well-separated emissions

If “log distance” ∆ emissions factorise up to
O(e−∆) corrections

this achieves NLL accuracy
in a way NLL can be viewed as the first meaningful order

In particular, in a parton showers, an emission
should not be affected by subsequent distant
emissions

a

(only half the primary Lund plane for simplicity)

ln kt

η = ln tan θ
2

≥∆

separated
in any

direction

mistake
allowed
at NLL

any # pairs
required
at NNLL

any # triplets
required
at N3LL

Robust construction in pQCD

Systematically improvable

“only” a handful of ME at each order
thanks to QCD factorisation

difficulty: the shower algorithm
generates spurious terms one needs to
avoid/correct for

Gregory Soyez Towards accuracy in parton showers W -mass 2025 14 / 29



Systematic approach: accuracy ↔ reproducing sets of MEs

target: describe disparate scales
at all-order perturbative QCD

⇓
minimum: get the ME for an arbitrary number

of well-separated emissions (NLL!)

Beyond NLL

At NNLL we also want an arbitrary number of
pairs of emissions

N3LL also requires triplets, etc...

a

(only half the primary Lund plane for simplicity)

ln kt

η = ln tan θ
2

≥∆

separated
in any

direction

mistake
allowed
at NLL

any # pairs
required
at NNLL

any # triplets
required
at N3LL

Robust construction in pQCD

Systematically improvable

“only” a handful of ME at each order
thanks to QCD factorisation

difficulty: the shower algorithm
generates spurious terms one needs to
avoid/correct for

Gregory Soyez Towards accuracy in parton showers W -mass 2025 14 / 29



Systematic approach: accuracy ↔ reproducing sets of MEs

target: describe disparate scales
at all-order perturbative QCD

⇓
minimum: get the ME for an arbitrary number

of well-separated emissions (NLL!)

Beyond NLL

At NNLL we also want an arbitrary number of
pairs of emissions

N3LL also requires triplets, etc...

a

(only half the primary Lund plane for simplicity)

ln kt

η = ln tan θ
2

≥∆

separated
in any

direction

mistake
allowed
at NLL

any # pairs
required
at NNLL

any # triplets
required
at N3LL

Robust construction in pQCD

Systematically improvable

“only” a handful of ME at each order
thanks to QCD factorisation

difficulty: the shower algorithm
generates spurious terms one needs to
avoid/correct for

Gregory Soyez Towards accuracy in parton showers W -mass 2025 14 / 29



Systematic approach: accuracy ↔ reproducing sets of MEs

target: describe disparate scales
at all-order perturbative QCD

⇓
minimum: get the ME for an arbitrary number

of well-separated emissions (NLL!)

Beyond NLL

At NNLL we also want an arbitrary number of
pairs of emissions

N3LL also requires triplets, etc...

a

(only half the primary Lund plane for simplicity)

ln kt

η = ln tan θ
2

≥∆

separated
in any

direction

mistake
allowed
at NLL

any # pairs
required
at NNLL

any # triplets
required
at N3LL

Robust construction in pQCD

Systematically improvable

“only” a handful of ME at each order
thanks to QCD factorisation

difficulty: the shower algorithm
generates spurious terms one needs to
avoid/correct for

Gregory Soyez Towards accuracy in parton showers W -mass 2025 14 / 29



Testing log accuracy: a novel approach

0.6 0.4 0.2 0.0
= 1

2 slog(y23)

0.80

0.85

0.90

0.95

1.00

M
C
/

N
LL

(
s,

)

Cam. y23, ratio to NLL

Pythia8

NLL
s = 0.02

Recall our regime: αs log(v) ∼ 1, αs ≪ 1
Idea for NLL testing:

ΣMC(λ=αsL,αs)

ΣNLL(λ=αsL,αs)
v. 1

with λ = αsL

NLL deviations

or

subleading effects?

At NkLL: test if

1

αk
s

log ΣMC − log Σresum

log Σresum

αs→0−→ 0 ?
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Physics result #2: NLL-accurate showers
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Assessing accuracy: y23
[M.Dasgupta,F.Dreyer,K.Hamilton,P.Monni,G.Salam,GS,20]

NLL if
ΣMC (λ=αsL,αs)

ΣNLL(λ=αsL,αs)

αs→0−→ 1

Failure of standard dipole showers

Pythia8, Dire(v1) deviate from NLL

Reason:
spurious recoil for commensurate-kt
emissions at disparate angles
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Assessing accuracy: y23
[M.Dasgupta,F.Dreyer,K.Hamilton,P.Monni,G.Salam,GS,20]
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Assessing accuracy: extensive observable list

[M.Dasgupta,F.Dreyer,K.Hamilton,P.Monni,G.Salam,GS,20]
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More progress with NLL-accurate showers

Beyond
large Nc

(backup)

(collinear
& soft)
spin cor-
relations

hadronic
collisions
DIS/VBF

(backup)

Physics:

∆ψ distribution due to spin correlations
~n1 ~n2

∆ψ12

P1

P2

∆ψ12

~p1
~p3

~p2
~p4

~p5

Solution: adapt the Collins-Knowles alg.

Mλ1λ2

hard

Dλ1λ
′
1

1

Mλ1λ5λ6
1→56

Dλ2λ
′
2

2

Mλ2λ3λ4
2→34

δλ3λ
′
3

δλ4λ
′
4

δλ5λ
′
5

Dλ6λ
′
6

6

Mλ6λ7λ8
6→78

δλ7λ
′
7

δλ8λ
′
8

Mhard 12
3

4

5

6
7

8

build and update
a spin correlation tree
as shower progresses

Tests:

both hard &
collinear

also EEEC v.
analytics

2 0 2
12

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

d d
12

Pa
nS

ca
le

s:
 

s
=

10
7 , 

ln
v m

in
=

(1
+

)
10

7 , 
 T

oy
 sh

ow
er

: t
m

ax
=

1/

gg

qq
rest

all

gg

qq
rest

all

gg

qq
rest

all

gg

qq
rest

all

gg

qq
rest

all

Toy shower
PanGlobal = 0
PanLocal (dip.) = 0.5
PanLocal (ant.) = 0.5
Pythia 8

PS
to

y
to

y

×10 3

5
0
5all

5
0
5gg

5
0
5rest

2 0 2
12

5
0
5qq

All-order 12, sL = 1, z1, min = z2, min = 0.1

soft + hard
collinear

first all-order
result

9.4

9.6

9.8

1
σ

to
t

d
σ

d
∆
ψ

1
2

×10−2 All channels

O(α2
s) · 〈S + C〉/〈O(α2

s)〉
No spin

Collinear spin
Soft + collinear spin

8.0

8.2

8.4

8.6

8.8
×10−2 gg channel

P
a
n
G

lo
b
a
l
β

=
0
,

1
-lo

o
p

ru
n
n
in

g
|η

1 |
<

1
,
z
2
>

0
.1
,α
s

=
1
0 −

7,
λ

=
−

0
.5

−π −π/2 0 π/2 π

∆ψ12

0.5

1.0

1.5

1
σ

to
t

d
σ

d
∆
ψ

1
2

×10−2 qq̄ channel

−π −π/2 0 π/2 π

∆ψ12

1.0

1.5

2.0

×10−3 Rest channel

γ∗ → qq̄

Gregory Soyez Towards accuracy in parton showers W -mass 2025 19 / 29



NLL now becoming the standard

PanScales

▷ Parton showers Beyond leading logarithmic accuracy [2002.11114]
▷ PanScales parton showers for hadron collisions: formulation and fixed-order
studies [2205.02237]

▷ PanScales showers for hadron collisions: all-order validation [2207.09467]
▷ Next-to-leading logarithmic PanScales showers for Deep Inelastic scattering
and Vector Boson Fusion [2305.08645]

▷ Colour and logarithmic accuracy in final-state parton showers [2011.10054]
▷ Spin correlations in final-state parton showers and jet observables [2103.16526]
▷ Soft spin correlations in final-state parton showers [2111.01161]
▷ Introduction to the PanScales framework, version 0.1 [2312.13275]
Various combinations of M.vanBeekveld, M.Dasgupta, B.El Menoufi, S.Ferrario
Ravasio, K.Hamilton, J.Helliwell, A.Karlberg, R.Medves, P.Monni, G.P.Salam,
L.Scyboz, A.Soto-Ontoso, G.Soyez, R.Verheyen

Apollo

▷ A partitioned dipole-antenna shower with improved transverse recoil [2403.19452]
C. Preuss

Deductor

▷ Summations of large logarithms by parton showers [2011.04773]
▷ Summations by parton showers of large logarithms in electron-positron
annihilation [2011.04777]

Z.Nagy, D.Soper

Alaric

▷ A new approach to color-coherent parton evolution [2208.06057]
▷ New approach to QCD final-state evolution in processes with
massive partons [2307.00728]

▷ alaric parton shower for hadron colliders [2404.14360]
Combinations of B.Assi, F.Herren, S.Höche, F.Krauss, D.Reichelt,
M.Schönherr

CVolver

▷ Parton branching at amplitude level [1905.08686]
▷ Building a consistent parton shower [2003.06400]
▷ Improvements on dipole shower colour [2011.15087]
J.Forshaw, J.Holguin, S.Platzer
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Physics result #3: towards NNLL-accurate showers

Rule of thumb:
LL ≡ qualitative starting point
NLL ≡ first quantitative order

NNLL ≡ towards precision physics
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(NNLL) accuracy ↔ reproducing (extra) sets of MEs

NNLL: include pairs of emissions a

(only half the primary Lund plane for simplicity)

ln kt

η = ln tan θ
2

hard emission
angle and kt
similar to

“hard” Born

soft emission
angle and kt
similar to
earlier one

(can be large angle)

Achieved via a revised emission rate:

dP

d ln vdη
=
αs(kt)CA

π
×M × g(η)P(z)

Matrix elements

First emission: M(k) corrects to the
exact O(αs) ME (matching)

Next emissions: M(k1, k2) corrects for
double-soft ME
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(NNLL) accuracy ↔ reproducing (extra) sets of MEs

NNLL: include pairs of emissions

Matching

Get exact 3-jet LO (2-jet NLO) ME
≡ one hard emission (pair with the hard event)

Standard approaches work but require care to
preserve NLL accuracy

[K.Hamilton,A.Karlberg,G.P.Salam,L.Scyboz,arXiv:2301.09645],
[M.vanBeekveld,S.Ferrario Ravasio,J.Helliwell,A.Karlberg,G.P.Salam,L.Scyboz,

A.Soto-Ontoso,G.Soyez,S.Zanoli,arXiv:2504.05377]
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ln kt
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[M.vanBeekveld,S.Ferrario Ravasio,J.Helliwell,A.Karlberg,G.P.Salam,L.Scyboz,
A.Soto-Ontoso,G.Soyez,S.Zanoli,arXiv:2504.05377]

Double-soft corrections

Two soft emissions at commensurate angles and kt
(not necessarily collinear)

Correction spurious shower ME → correct ME
watch out for flavour channels and colour flows

Need to get the correct virtual contributions
(done through a modified KCMW)

Gain: state-of-the-art (next-to-single-log) non-global logs
[S.Ferrario Ravasio,K.Hamilton,A.Karlberg,G.P.Salam,L.Scyboz,GS,arXiv:2307.11142]
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NNLL Sudakov: revised emission strenght

(only half the primary Lund plane for simplicity)

ln kt

η = ln tan θ
2

∫
∼α3

sL
2

∫
∼α2

sL

∫
∼α2

sL

Full analytic proof of
NNLL accuracy

αs = α
(3ℓ)
s (kt)

[
1 + αs∆K1 + αs(B2 +∆B2) + α2

s∆K2

]

3-loop running in the CMW scheme (K1, K2)

B2: analytic (∼ NLO DGLAP + right C
(1)
hc αs(Qhc))

rest: analytic and shower assume different
conserved different quantities (≈ “scheme”).
These absorb spurious α2

sL double-soft effects

∆K2: 2 numbers (δy , δln kt ) from num integration

∆K1(y): (soft wide angles)
shapes only need

∫
dy∆K1(y) ∝ δy .

Non-globals need full differential (sumrule!)

∆B2(z): (hard-collinear)
shapes only need

∫
dz ∆B2(z) ∝ δy + δln kt+π2

12 β0

Full differential for e.g. jet substructure.
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Beyond NLL: double-soft corrections
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Gnole

0.3 0.2 0.1
= sln Et, max

Q
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CA=2CF=3, nf=5
2-jet NLO matching

double-soft
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= 0

PG = 0

PG = 1
2

NSL accuracy tests: energy in a slice

Successfully reproduce next-to-single (non-global) logs for emissions in a slice
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NNLL accuracy tests
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NNLL accuracy tests

explicit numerical test
that we get g3 (NNLL
coefficient) right.
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NNLL preliminary pheno
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NLL deviation from
one could be seen as
uncertainty

NNLL expected to
give better accuracy

NP tuning (mostly)
not sizeable
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pp NLL+NLO preliminary pheno

M. van Beekveld, S. Ferrario Ravasio, J. Helliwell, A. Karlberg, G. P. Salam, L. Scyboz, A. Soto-Ontoso, G. Soyez, S. Zanoli, arXiv:2504.05377
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Still some work needed
to reach
≥NNLL+NNLO but
going in this direction
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Conclusions and perspectives

Recap of take-home messages

Parton showers are a cornerstone of collider physics

Parton showers accuracy ≡ log accuracy

Systematically improvable, can be tested analytically and numerically

PanScales 2019-2023: NLL parton showers... several others now

PanScales 2023-now: good NNLL progress (ee shapes, large angle non-globals)

Future

NNLL in pp (LHC)

NNLL hard-colliner (jet substructure)

NNLL PanLocal

more complex processes/(N)NLO

Tuning

Investigate phenomenology
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89

  … key steps towards NNLL were just O(5) years away

1980 1990 2000 2010 2020
CERN-TH-2020-026

Parton showers beyond leading logarithmic accuracy

Mrinal Dasgupta,1 Frédéric A. Dreyer,2 Keith Hamilton,3 Pier
Francesco Monni,4 Gavin P. Salam,2, ⇤ and Grégory Soyez5

1Consortium for Fundamental Physics, School of Physics and Astronomy,
University of Manchester, Manchester M13 9PL, United Kingdom

2Rudolf Peierls Centre for Theoretical Physics, Parks Road, Oxford OX1 3PU, UK
3Department of Physics and Astronomy, University College London, London, WC1E 6BT, UK

4CERN, Theoretical Physics Department, CH-1211 Geneva 23, Switzerland
5Institut de Physique Théorique, Université Paris-Saclay, CNRS, CEA, F-91191, Gif-sur-Yvette, France

Parton showers are among the most widely used tools in collider physics. Despite their key
importance, none so far has been able to demonstrate accuracy beyond a basic level known as leading
logarithmic (LL) order, with ensuing limitations across a broad spectrum of physics applications.
In this letter, we propose criteria for showers to be considered next-to-leading logarithmic (NLL)
accurate. We then introduce new classes of shower, for final-state radiation, that satisfy the main
elements of these criteria in the widely used large-NC limit. As a proof of concept, we demonstrate
these showers’ agreement with all-order analytical NLL calculations for a range of observables,
something never so far achieved for any parton shower.

High-energy particle collisions produce complex
hadronic final states. Understanding these final states
is of crucial importance in order to extract maximal
information about the underlying energetic scattering
processes and the fundamental Lagrangian of particle
physics. To do so, there is ubiquitous reliance on gen-
eral purpose Monte Carlo (GPMC) event generators [1],
which provide realistic simulations of full events. A core
component of GPMCs is the parton shower, a subject of
much recent research [2–28]. Partons refer to quarks and
gluons, and a shower aims to encode the dynamics of par-
ton production between the high-energy scattering (e.g.
production of electroweak or new-physics states) and the
low scale of hadronic Quantum Chromodynamics (QCD),
at which experimental observations are made.

Typically parton showers are built using a simple
Markovian algorithm that takes an n-parton state and
stochastically maps it to an n + 1-parton state. The it-
eration of this procedure, e.g. starting from a 2-parton
state, builds up events with numerous partons. A fur-
ther step, hadronisation, then maps the partons onto a
set of hadrons. Even though this last step involves mod-
elling [29, 30], many of the features of the resulting events
are driven by the parton shower component which is, in
principle, within the realm of calculations in perturbative
QCD. This is because the showering occurs at momen-
tum scales where the strong coupling, ↵s is small.

Much of collider physics, experimental and theoreti-
cal [31–34], is moving towards high precision, especially
in view of large volumes of data collected so far at
CERN’s Large Hadron Collider (LHC). On the theoreti-
cal front many of the advances either involve approxima-
tions with a small number of partons, or else are specific
to individual observables. Parton showers, in contrast,

⇤ On leave from CNRS, UMR 7589, LPTHE, F-75005, Paris,
France and CERN, Theoretical Physics Department, CH-1211
Geneva 23, Switzerland

use a single algorithm to describe arbitrary observables
of any complexity. This versatility comes at a cost: lesser
accuracy for any specific observable and, quite generally,
at best only limited knowledge [35–38] of what the ac-
curacy even is for a given observable. In fact there is
currently no readily accepted criterion for categorising
the accuracy of parton showers. One novel element that
we introduce in this paper is therefore a set of criteria for
doing so.

The role of showers is to reproduce emissions across
disparate scales. Our first criterion for accuracy starts
by structuring this phase space: there are three phase
space variables per emission, and two of them (e.g. en-
ergy and angle) are associated with logarithmic diver-
gences in the product of squared matrix element and
phase space. We define LL accuracy to include a con-
dition that the shower should generate the correct e↵ec-
tive squared tree-level matrix element in a limit where
every pair of emissions has distinctly di↵erent values for
both logarithmic variables. At NLL accuracy, we fur-
ther require that the shower generate the correct squared
tree-level matrix element in a limit where every pair of
emissions has distinctly di↵erent values for at least one of
the logarithmic variables (or some linear combination of
their logarithms). Beyond NLL accuracy we would con-
sider configurations with a pair of emissions (or multiple
pairs) both of whose logarithmic variables are similar.

To help make this discussion concrete, let us consider
showers that are not NLL accurate according to this cri-
terion: angular ordered showers [39–41] do not repro-
duce the matrix element for configurations ordered in
energy, but with commensurate angles, and this is as-
sociated with their inability to correctly predict ↵n

s Ln

(NLL) e↵ects for non-global observables [36]. Transverse-
momentum (kt) ordered showers with dipole-local re-
coil [2, 3, 5, 11, 42, 43] do not reproduce matrix elements
for configurations ordered in angle but with commensu-
rate transverse momenta, because of the way they assign
transverse recoil [37]. As a result they fail to reproduce
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A new standard for the logarithmic accuracy of parton showers
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We report on a major milestone in the construction of logarithmically accurate final-state parton
showers, achieving next-to-next-to-leading-logarithmic (NNLL) accuracy for the wide class of ob-
servables known as event shapes. The key to this advance lies in the identification of the relation
between critical NNLL analytic resummation ingredients and their parton-shower counterparts. Our
analytic discussion is supplemented with numerical tests of the logarithmic accuracy of three shower
variants for more than a dozen distinct event-shape observables in Z ! qq̄ and Higgs! gg decays.
The NNLL terms are phenomenologically sizeable, as illustrated in comparisons to data.

Parton showers are essential tools for predicting QCD
physics at colliders across a wide range of momenta from
the TeV down to the GeV regime [1–4]. In the presence
of such disparate momenta, the perturbative expansions
of quantum field theories have coe�cients enhanced by
large logarithms of the ratios of momentum scales. One
way of viewing parton showers is as automated and im-
mensely flexible tools for resumming those logarithms,
thus correctly reproducing the corresponding physics.

The accuracy of resummations is usually classified
based on terms with the greatest logarithmic power at
each order in the strong coupling (leading logarithms or
LL), and then towers of terms with subleading powers of
logarithms at each order in the coupling (next-to-leading
logarithms or NLL, NNLL, etc.). Higher logarithmic ac-
curacy for parton showers should make them consider-
ably more powerful tools for analysing and interpreting
experimental data at CERN’s Large Hadron Collider and
potential future colliders. The past years have seen major
breakthroughs in advancing the logarithmic accuracy of
parton showers, with several groups taking colour-dipole
showers from LL to NLL [5–18]. There has also been ex-
tensive work on incorporating higher-order splitting ker-
nels into showers [19–29] and understanding the structure
of subleading-colour corrections, see e.g. Refs. [6, 30–41].

Here, for the first time, we show how to construct par-
ton showers with NNLL accuracy for the broad class of
event-shape observables at lepton colliders, like the well-
known Thrust [42, 43] (see e.g. Refs. [44–65] for calcula-
tions at NNLL and beyond). This is achieved by devel-
oping a novel framework that unifies several recent devel-
opments, on (a) the inclusive structure of soft-collinear
gluon emission [58, 66] up to third order in the strong cou-
pling ↵s; (b) the inclusive pattern of energetic (“hard”)
collinear radiation up to order ↵2

s [67, 68]; and (c) the in-
corporation of soft radiation fully di↵erentially up to or-
der ↵2

s in parton showers, ensuring correct generation of

any number of well-separated pairs of soft emissions [29].
We will focus the discussion on the e+e� ! Z ! qq̄

process, with the understanding that the same arguments
apply also to H ! gg. Each event has a set of emis-
sions with momenta {ki} and we work in units where the
centre-of-mass energy Q ⌘ 1. We will examine the prob-
ability ⌃(v) that some global event shape, V ({ki}), has
a value V ({ki}) < v. Event-shape observables have the
property [69] that for a single soft and collinear emission
k, V (k) / kte

��obs|y|, where kt (y) is the transverse mo-
mentum (rapidity) of k with respect to the Born event
direction and �obs depends on the specific observable,
e.g. �obs = 1 for Thrust. Whether considering analytic
resummation or a parton shower, for v ⌧ 1 we have

⌃(v)=F exp


�4

Z
dkt

kt

Z 1

kt

dzPgq(z)M(k)
↵e↵

2⇡
⇥(V (k)>v)

�
,

(1)

with Pgq(z) = CF
1+(1�z)2

z and M(k) a function that ac-
counts for next-to-leading order matching, with M(k) !
1 for kt ! 0. The exponential is a Sudakov form factor,
encoding the suppression of emissions with V (k) > v, cf.
the grey region of Fig. 1. It brings the LL contributions
to ln⌃, terms ↵n

s Ln+1 with L = ln v, as well as NLL
(↵n

s Ln), NNLL (↵n
s Ln�1), etc., contributions. The func-

tion F accounts [69] for the di↵erence between the actual
condition V ({ki}) < v and the simplified single-emission
boundary V (k) < v that is used in the Sudakov. It starts
at NLL.

In Eq. (1), the e↵ective coupling, ↵e↵, can be under-
stood as the intensity of gluon emission, inclusive over
possible subsequent branchings of that emission and cor-
responding virtual corrections. We write it as

↵e↵ = ↵s


1+

↵s

2⇡
(K1+�K1(y)+B2(z)) +

↵2
s

4⇡2
K2

�
, (2)

with ↵s ⌘ ↵ms
s (kt) and here the rapidity y = ln z/kt.
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We present a detailed model for exclusive properties of initial state parton showers. A numerically efficient algorithm is 
obtained by tracing the parton showers backwards, i.e. start with the hard scattering partons and then successively reconstruct 
preceding branchings in falling sequence of spacelike virtualities Q2 and rising sequence of parton energies. We show how the 
Altarelli-Parisi equations can be recast in a form suitable for this, and also discuss the kinematics of the branchings. The 
complete model is implemented in a Monte Carlo program, and some first results are presented. 

A model for exclusive properties of  high-p T events 
in hadron-hadron interactions requires a number of  
separate components [ 1 ]: QCD hard scattering matrix 
elements, structure functions, initial state (spacelike) 
parton evolution, final state (timelike) parton showers, 
and jet fragmentation. Of these, the initial state parton 
showers probably are the least well studied. In the 
present paper we will therefore develop a detailed mod- 
el for this component,  using the backwards evolution 
formalism, an approach orthogonal to presently avail- 
able models. In particular, this allows a quite efficient 
implementation in terms of  computer algorithms for 
event generation. Together with the other components 
above, this model has been implemented within the 
framework of  the Lund Monte Carlo [2,3]. We pres- 
ent some first results here, to illustrate the methods 
and problems. 

A fast hadron may be viewed as a cloud of  quasi- 
real partons. At each instant, an individual parton can 
initiate a cascade, branching into a number of  partons. 
These partons do not have enough energy to be on 
mass-shell (M 2 < 0), and thus only live for a ffmite 
time before reassembling. In a hard interaction be- 
tween two incoming hadrons, when two partons scat- 
ter to highPT,  also the other partons in the two re- 
lated cascades are provided with the necessary energy 
to live indefinitely. The correct description for this 
transfer of  energy is obviously given by the various 
2 ~ N  hard scattering matrix elements, where 2 stands 

0370-2693/85/$ 03.30 © Elsevier Science Publishers B.V. 
(North-Holland Physics Publishing Division) 

Fig. 1. Schematic picture of spacelike shower evolution, with 
hard scattering partons 1 and 2 and emitted timelike partons 
4, 6 and 8. 

for the two initiators of  the cascades a n d N  for the 
final parton multiplicity. In practice, matrix elements 
can only be calculated for small values of  N, and one 
has to resort to approximate schemes, such as the 
leading logarithmic approximation (see e.g. ref. [4]). 
In particular, for subsequent Monte Carlo applications, 
it is convenient to imagine that the partons on the two 
branches which leads from the two initiators to the 
hard scattering (7 ~ 3 -~ 1 and 5 ~ 2 in fig. 1) have in- 
creasing spacelike virtualities, Q2 = _ M2 > 0, adjust- 
ed such that the partons on all other branches (8, 4 
and 6 in fig. 1) may haveM 2/> 0, these latter partons 
are in the following referred to as the timelike ones. 
Then the momentum transfer given by the central 
2 ~ 2 hard scattering subprocess is enough to ensure 
that all partons may end up on mass shell. Except for 
the two hard scatterers, the partons continue essential- 
ly along the direction of  the respective hadron they 
belonged to, although occasionally they may have large 
transverse momenta and give rise to separately visible 
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We present a new Monte Carlo simulation scheme for jet evolution in perturbative QCD 
which takes into account the results of recent analyses of soft-gluon interference. Therefore, this 
scheme accounts correctly not only for the leading collinear singularities, as in previous schemes, 
but also for leading infrared singularities, In this first paper we study the basic features of gluon jet 
evolution such as: (i) the interference effects and the corresponding depletion of the parton 
distributions in the soft region; (ii) the approach to asymptopia; (iii) the efficiency of colour 
screening (preconfinement), which has been questioned recently by Bjorken. 

I. Introduction 

Quantum chromodynamics (QCD) is considered a good candidate for a theory of 
strong interactions but the difficulty of reliable calculations makes the necessary 
tests and predictions rather scarce. Asymptotic freedom suggests a domain of 
phenomena (hard scattering processes) in which perturbation theory leads to reliable 
results. For instance, in e+e-  collisions at high energy Q, there are techniques which, 
in the perturbative expansion of inclusive distributions for off-shell partons (quarks 
and gluons), allow one to sum the contributions of all leading collinear singularities, 
i.e. all leading-logarithmic terms of the type [as(Q2)ln(Q2/QZ)]L Here Q0 is the 
off-shell mass of emitted partons, which provides the cut-off for the collinear 
singularities and is such that the perturbative expansion is still justified, i.e. 

< 

* On leave from the Cavendish Laboratory, University of Cambridge and Emmanuel College, Cam- 
bridge, UK. 
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M O N T E  CARLO SIMULATION OF GENERAL HARD PROCESSES 
WITH COHERENT QCD RADIATION* 
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In tins paper we extend our previous work on the simulation of coherent soft-gluon radiation 
to hard colhsions that involve incoming as well as outgoing coloured partons Existing simulations 
correctly sum the leading colllnear singularities for imtml- and final-state radlahon, and in some 
cases the leading infrared contributions from outgoing partons, but  not those for incoming (or the 
interference between incoming and outgoing) Asymptotically, however, the leading infrared and 
colhnear contributions are comparable, the bulk of gluon emission occurring in the soft region 
Furthermore,  a correct treatment of leading infrared terms is necessary for the inclusive cancella- 
tion of singularities in the Sudakov form factor We show how such a treatment may be 
formulated m terms of an angular ordering procedure applicable to all hard processes We then 
describe a new Monte Carlo program winch incorporates this procedure, together with other new 
features such as azimuthal correlations due to gluon polarization and interference The program is 
designed as a general-purpose event generator, simulating hard lepton-lepton, lep ton-hadron  and 
h a d r o n - h a d r o n  scattering in a single package Slmulatmn of soft hadromc colhslons and underly- 
ing events is also included We present the predictions of the program for a wide variety of 
processes, and compare them with analytical results and experimental data 

1. Introduction 

The coherence [1,2] of soft hadronlc radiation in hard processes is one of the 
most characteristic features of perturbative QCD. It emerges from the study [3-5] of 
the leading infrared singularities of the theory which, together with the analysis of 
leading collinear singularities [6], completes the description of the dominant asymp- 
totic behavlour of parton distributions. 

Coherence is intrinsically a quantum phenomenon, arlsmg from the interference 
of soft-gluon amplitudes, which is present even in physical gauges. It involves the 
bulk of the radiation, since a gluon is considered soft whenever its energy ts small 

* Research supported in part by the U K  Science and Engineering Research Council and m part by the 
I tahan Mamstero della Pubbhca Istruzlone 
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Birth of Pythia

Birth of Herwig (with elements of NLL for global observables)

[ca. 800 papers on the subject of event generators ……………………………….………………………….……]

General principles for a NLL parton shower  
 (formulated for e+e-, many extensions will follow)

General principles for NNLL parton showers
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Parton showering with higher-logarithmic accuracy for soft emissions
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5IPhT, Université Paris-Saclay, CNRS UMR 3681, CEA Saclay, F-91191 Gif-sur-Yvette, France

The accuracy of parton-shower simulations is often a limiting factor in the interpretation of data
from high-energy colliders. We present the first formulation of parton showers with accuracy one or-
der beyond state-of-the-art next-to-leading logarithms, for classes of observable that are dominantly
sensitive to low-energy (soft) emissions, specifically non-global observables and subjet multiplici-
ties. This represents a major step towards general next-to-next-to-leading logarithmic accuracy for
parton showers.

Parton showers simulate the repeated branching of
quarks and gluons (partons) from a high momentum scale
down to the non-perturbative scale of Quantum Chromo-
dynamics (QCD). They are one of the core components
of the general-purpose Monte Carlo event-simulation pro-
grams that are used in almost every experimental and
phenomenological study involving high-energy particle
colliders, such as CERN’s Large Hadron Collider (LHC).
Parton-shower accuracy is critical at colliders, both be-
cause it limits the interpretation of data and because of
the increasing importance of showers in training powerful
machine-learning based data-analysis methods.

In the past few years it has become clear that it is
instructive to relate the question of parton-shower ac-
curacy to a shower’s ability to reproduce results from
the field of resummation, which sums dominant (loga-
rithmically enhanced) terms in perturbation theory to
all orders in the strong coupling, ↵s. Given a logarithm
L of some large ratio of momentum scales, resumma-
tion accounts for terms ↵n

s Ln+1�p, NpLL in a leading-
logarithmic counting for L ⇠ 1/↵s, or ↵n

s L2n�p, NpDL
in a double-logarithmic counting, for L ⇠ 1/

p
↵s.

Several groups have recently proposed parton showers
designed to achieve next-to-leading logarithmic (NLL)
and next-to-double logarithmic (NDL) accuracy for vary-
ing sets of observables [1–10]. A core underlying require-
ment is the condition that a shower should accurately re-
produce the tree-level matrix elements for configurations
with any number of low-energy (“soft”) and/or collinear
particles, as long as these particles are well separated in
logarithmic phase space [2, 11, 12].

In this letter we shall demonstrate a first major step
towards the next order in resummation in a full parton
shower, concentrating on the sector of phase space in-
volving soft partons. This sector is connected with two
important aspects of LHC simulations, namely the total
number of particles produced, and the presence of soft
QCD radiation around leptons and photons (“isolation”),
which is critical in their experimental identification in a
wide range of LHC analyses. The corresponding areas
of resummation theory, for subjet multiplicity [13–15]

and so-called non-global logarithms [16–42], have seen
extensive recent developments towards higher accuracy
in their own right, with several groups working either
on next-to-next-to-double logarithmic (NNDL) accuracy,
↵n

s L2n�2, for multiplicity [43, 44] or next-to-single log-
arithmic (NSL) accuracy, ↵n

s Ln�1, for non-global loga-
rithms [45–48].

To achieve NSL/NNDL accuracy for soft-dominated
observables, a crucial new ingredient is that the shower
should obtain the correct matrix element even when there
are pairs of soft particles that are commensurate in en-
ergy and in angle with respect to their emitter. Sev-
eral groups have worked on incorporating higher-order
soft/collinear matrix elements into parton showers [49–
58]. Our approach will be distinct in two respects: firstly,
that it is in the context of a full shower that is already
NLL accurate, which is crucial to ensure that the cor-
rectness of any higher-order matrix element is not broken
by recoil e↵ects from subsequent shower emissions; and
secondly in that we will be able to demonstrate the log-
arithmic accuracy for concrete observables through com-
parisons to known resummations.

We will work in the context of the “PanGlobal” fam-
ily of parton showers, concentrating on the final-state
case [2]. As is common for parton showers, it organises
particles into colour dipoles [59], a picture based on the
limit of a large number of colours Nc. Such showers iter-
ate 2 ! 3 splitting of colour dipoles, each splitting thus
adding one particle to the ensemble, and typically break-
ing the original dipole into two dipoles. The splittings are
performed sequentially in some ordering variable, v, for
example in decreasing transverse momentum kt. Given
a dipole composed of particles with momenta p̃i and p̃j ,
the basic kinematic map for producing a new particle k
is

p̄k = akp̃i + bkp̃j + k? , (1a)

p̄i = (1 � ak)p̃i , (1b)

p̄j = (1 � bk)p̃j . (1c)

followed by a readjustment involving all particles so as to
conserve momentum [60], § 1. For the original PanGlobal

ar
X

iv
:2

30
7.

11
14

2v
2 

 [h
ep

-p
h]

  2
0 

O
ct

 2
02

3

slide from Pier Monni

Gregory Soyez Towards accuracy in parton showers W -mass 2025 29 / 29



Backup



Different ordering variables...

... can lead to different emission orderings

kt (transv. mom.) ordering

a

b

kta > ktb
⇒ a emitted before b

q (virtuality) ordering

a

b

qb > qs
⇒ b emitted before a

Gregory Soyez Towards accuracy in parton showers W -mass 2025 1 / 18



Lund-plane representation: transverse recoil boundaries

log kt η = − log tan(θ/2)

E k
≤
1
2
m qq̄

q sideq̄ side

a

q
recoilsq̄

re
co
ils

g
recoils

Expected

standard dipole
shower

e.g. Pythia8/Dire

PanLocal

gluon a radiated at scale
kta and angle θa

gluon b radiated at scale
ktb ≤ kta

Expected

a takes recoil iff θab < θa
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Lund-plane representation: transverse recoil boundaries

log kt η = − log tan(θ/2)

E k
≤
1
2
m qq̄

q sideq̄ side

a

q
recoilsq̄

re
co
ils

g
recoils

Expected

standard dipole
shower

e.g. Pythia8/Dire

PanLocal

gluon a radiated at scale
kta and angle θa

gluon b radiated at scale
ktb ≤ kta

Expected

a takes recoil iff θab < θa

standard dipole shower

decided in dipole frame:
a takes recoil if

θ
(dip)
bg < θ

(dip)
bq

WRONG!

Gregory Soyez Towards accuracy in parton showers W -mass 2025 2 / 18



Lund-plane representation: transverse recoil boundaries

log kt η = − log tan(θ/2)

E k
≤
1
2
m qq̄

q sideq̄ side

a

q
recoilsq̄

re
co
ils

g
recoils

Expected
standard dipole

shower
e.g. Pythia8/Dire

PanLocal

gluon a radiated at scale
kta and angle θa

gluon b radiated at scale
ktb ≤ kta

Expected

a takes recoil iff θab < θa

PanLocal (step 1)

decided in event frame:
a takes recoil if

θbg < θbq

better but still WRONG!
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Lund-plane representation: PanLocal evolution variable

log kt η = − log tan(θ/2)

E k
≤
1
2
m qq̄

q sideq̄ side

a b

b aa b

kt ordering

ktb recoil from q: OK

kt ordering

ktb recoil from a: not OK

v ∝ kte
−β|η| ordering

ktb recoil from q: OK

commensurate kt emissions generated from central to forward rapidities

⇒ no recoil issue
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Lund-plane representation: PanLocal evolution variable

log kt η = − log tan(θ/2)
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q sideq̄ side
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a b

kt ordering
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kt ordering

ktb recoil from a: not OK

v ∝ kte
−β|η| ordering
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Lund-plane representation: PanLocal evolution variable

log kt η = − log tan(θ/2)

E k
≤
1
2
m qq̄

q sideq̄ side

a bb a

a b

kt ordering

ktb recoil from q: OK

kt ordering

ktb recoil from a: not OK

v ∝ kte
−β|η| ordering

ktb recoil from q: OK

commensurate kt emissions generated from central to forward rapidities

⇒ no recoil issue
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Kinematic maps

PanLocal (local ⊥ recoil)

pk = ak p̃i + bk p̃j + k⊥
pi = ai p̃i + bi p̃j − k⊥
pj = aj p̃i + bj p̃j

PanGlobal (global ⊥ recoil)

pk = r(ak p̃i + bk p̃j)

pi = r(1− ak)p̃i

pj = r(1− bk)p̃j

with r so as to conserve event Q2

+ transverse boost to conserve event Qµ.

Evolution variable v (v ≈ k⊥θβ)
Auxiliary variable(s): η̄, ϕ
(η̄ ≡ rapidity in event frame) Define:

|k⊥| = ρ v eβ|η̃| ρ =
(
2p̃i .Q p̃j .Q
Q2 p̃i .p̃j

)β/2

ak =

√
p̃j .Q

2p̃i .Q p̃i .p̃j
|k⊥| e+η̃,

bk =
√

p̃i .Q
2p̃j .Q p̃i .p̃j

|k⊥| e−η̃,

Gregory Soyez Towards accuracy in parton showers W -mass 2025 4 / 18



A striking example

▶ Look at angle ∆ψ12 between two
hardest “emissions” in jet
(defined through Lund declusterings)

▶ quite large NLL deviations
in current dipole showers

▶ differences between
quark and gluon jets

▶ PanScales showers (here PanGlobal)
get the correct NLL

▶ ML could “wrongly/correctly” learn this

∆ψ12
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t2
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hardest “emissions” in jet
(defined through Lund declusterings)

▶ quite large NLL deviations
in current dipole showers

▶ differences between
quark and gluon jets

▶ PanScales showers (here PanGlobal)
get the correct NLL

▶ ML could “wrongly/correctly” learn this
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0.3 < kt2/kt1 < 0.5
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NLL
Dire(v1), quark
Dire(v1), gluon
PanGlobal( = 0)
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Beyond large Nc

Beyond
large Nc

(collinear
& soft)
spin cor-
relations

hadronic
collisions

Physics:

Keep track of the CF–CA/2 transitions

CA

CF CA

CF

CA

First generate assuming CA(/2), then
correct in one of 2 ways:

segment
factor 2CF/CA if in quark segment
OK in the angular-ordered limit

NODS
(soft) qq̄g matrix-element correction
also OK for 2 emissions at ∼ angles

Fixed-order tests:

0

2

C
FF
E

q g1

0

2

0

2

se
g
m
e
n
t

q g1

0

2

0

2

N
O
D
S

q g1

0 5 10
0

2

5 10 15

0.70

0.75

0.80

0.85

0.90

0.95

1.00

0.3

0.2

0.1

0.0

0.1

0.2

0.3

PS

LC

PS FC

FC

as in pythia

WRONG
similar to
recoi earlier

perform as
expected
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Beyond large Nc

Beyond
large Nc

(collinear
& soft)
spin cor-
relations

hadronic
collisions

Physics:

Keep track of the CF–CA/2 transitions

CA

CF CA

CF

CA

First generate assuming CA(/2), then
correct in one of 2 ways:

segment
factor 2CF/CA if in quark segment
OK in the angular-ordered limit

NODS
(soft) qq̄g matrix-element correction
also OK for 2 emissions at ∼ angles

All-order tests:

0.0 0.05
M = 1

S = 1

Thrust
M = 1

2

S = 1
2

FC1
2

M = 0

S = 0

FC1

BW

BT

y23

Dipole
Pythia8

0.0 0.05

PanLocal
( = 1

2 ,dip.)

0.0 0.05

PanLocal
( = 1

2 ,ant.)

0.0 0.05

PanGlobal
( = 0)

0.0 0.05
lim

s 0 [ln PS / ln NLL 1]  for = 1
2

PanGlobal
( = 1

2 )

s
{0

.0
02

5,
0.

00
5,

0.
01

},
 sy

st
=0

.0
03

%
, 

=
18

LL accuracy tests  CFFE method

-0.1 0.0
M = 1

S = 1

Thrust
M = 1

2

S = 1
2

FC1
2

M = 0

S = 0

FC1

BW

BT

y23

Dipole
Pythia8

-0.1 0.0

PanLocal
( = 1

2 ,dip.)

-0.1 0.0

PanLocal
( = 1

2 ,ant.)

-0.1 0.0

PanGlobal
( = 0)

-0.1 0.0
lim

s 0 [ PS / NLL 1 ]  for = 1
2

PanGlobal
( = 1

2 )

s
{0

.0
02

5,
0.

00
5,

0.
01

},
 sy

st
=0

.1
%

, 
=

18

NLL accuracy tests  NODS method

as in pythia

LL
failures

NLL OK
at full Nc

Non-global logs: large-Nc + (full-Nc at O(α2
s ))
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Hadronic collisions

Beyond
large Nc

(collinear
& soft)
spin cor-
relations

hadronic
collisions

Physics:

hadron collision
⇒ initial-state radiation

Consider Drell-Yan

existing showers have the same
recoil issue as for final state
earlier emission takes recoil instead of the Z

fix is essentially the same
(modulo kinematic differences)

includes colour and spin

so far limited to colour singlet
production

Tests:

explicit
test of
DGLAP

10 7

10 6

10 5

10 4

10 3

10 2

10 1

f i(
x)

= di=d

10 7

10 6

10 5

10 4

10 3

10 2

10 1

= di=g

10 7

10 6

10 5

10 4

10 3

10 2

10 1

= di d, g 

10 3 10 2 10 1 100

x

0.990

0.995

1.000

1.005

1.010

ra
tio

Dipole-kt (local)
 s /mZ = 1000, yZ = 0

sL = 0.5
10 3 10 2 10 1 100

x

Dipole-kt (local)
 s /mZ = 1000, yZ = 0

sL = 0.5
10 3 10 2 10 1 100

x

Dipole-kt (local)
 s /mZ = 1000, yZ = 0

sL = 0.5

+ usual tests: Z -boson pt , event shapes

0.4 0.3 0.2 0.1 0.0
= sln ptZ/mZ
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0.80

0.85
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0.95
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1.05
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0
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(

,
s)/
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,
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pp Z, s /mZ=5, yZ = 0

NLL test for ptZ, extrapolation s 0

Dipole-kt(local)
Dipole-kt(global)
PanGlobal( PS=0)
PanGlobal( PS=0.5)
PanLocal( PS=0.5, antenna)
PanLocal( PS=0.5, dipole)

-0.1 0.0
Mj, 1

Sj, 1

Sp, 1

Mj, 1
2

Sj, 1
2

Sp, 1
2

Mj, 0

Sj, 0

Sp, 0

Dipole-kt
(local IF)

-0.1 0.0

Dipole-kt
(global IF)

-0.1 0.0

PanLocal
( PS = 0.5,dip.)

-0.1 0.0

PanLocal
( PS = 0.5,ant.)

-0.1 0.0

PanGlobal
( PS = 0)

-0.1 0.0
lim

s 0
[ PS / NLL 1 ]  for = sL = 0.5

PanGlobal
( PS = 0.5)

s
{1

.5
62

5,
3.

12
5,

6.
25

}×
10

3 , 
=

18
, N

OD
S

NLL accuracy tests - pp Z

+ multiplicity, non-globals, beyond large-Nc , spin
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Matching within PanScales

Matching = exact fixed-order generator + parton shower resumming logs

Physics

Focus on e+e− collisions. We want

✓ exact qq̄g (O(αs)) distributions

✓ maintain NLL accuracy

Benefit: “NNDL” accuracy for event shapes(∗)

Σ(L) = h1(αSL
2)︸ ︷︷ ︸

DL

+
√
αsh2(αsL

2)︸ ︷︷ ︸
NDL

+αsh3(αsL
2)︸ ︷︷ ︸

NNDL

+ . . .

Implementation

Several possibilities:

simple multiplicative matching (accept

first emission with probability Pexact/Pshower)

MC@NLO-like matching

POWHEG-like matching (with β scaling

and careful veto to avoid double-counting when

switching from POWHEG to the shower)

(∗) Note: NkLL expands lnΣ(αsL, αS ) for “exponentiating” observables; NkDL directly expands Σ(αsL2, αs)
alternative viewpoint: NkLL takes the limit αsL ∼ cst with αs ≪ 1; NkDL takes the limit αsL2 ∼ cst with αs ≪ 1
practical implication: NLL requires an arbitrary number of single-logs ((αsL)n); NDL requires only one ((αsL)(αsL2)n)
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Accuracy tests

0.00

0.05
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0.30

1/
d

/d
O

SDz > 0.25, SD=0 lnkt/Q, s = 2 TeV

PanLocal ( PS = 1
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mult.+PanLocal ( PS = 1
2 )

Powheg +no-veto+PanLocal ( PS = 1
2 )
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PG
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no matching

wrong matching
(no veto)

correct
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visible effect at large kt (right)

spurious effect if not careful

“correct” matching OK everywhere

2 0
C-parameter

Thrust
max u = 1

i

u = 1
i

FC1
2

max u = 1
2

i

u = 1
2

i

FC1
max u = 0

i

u = 0
i

BW

BT

y23

PanLocal
( PS = 1

2 ,dip.)

2 0

PanLocal
( PS = 1

2 ,ant.)

2 0

PanGlobal
( PS = 0)

2 0

PanGlobal
( PS = 1

2 )

* qq, sL2 = 1.296 (no matching)

lim
s 0

PS NNDL
s DL

s
=

0.
1

N
2
,N

{3
,4

,6
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 li
ne

ar

no matching ⇒ wrong NNDL

with matching ⇒ OK at NNDL
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Accuracy tests
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Extra double-soft results: matrix-element tests

0.2

0.4

0.6

0.8

1.0

1.2

1 2(
sC

A
)2 |M

(k
1,

k 2
)|2

PGsdf
= 0

ab = 2
-12 < ln kt1 < -11
1 < y1 < 3
ln kt2

kt1
> -1

s = 0.1(fixed)
CA = 2CF = 3

double-soft matrix-element tests

double-soft ME
shower (no double-soft)

shower (with double-soft)

-8 -6 -4 -2 0 2 4 6 8
y21
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1.2

1.4

1.6
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double-soft
 correction

   shower(DS)
double-soft ME

10 4
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0.01
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1 2(
sC

A
)2 |M

(k
1,

k 2
)|2

qg1g2q

double-soft ME
             shower
(no double-soft)

                shower
(with double-soft)

qg2g1q

PGsdf
= 0

ab = 2
-12 < ln kt1 < -11
1 < y1 < 3
ln kt2

kt1
> -1

s = 0.1(fixed)
CA = 2CF = 3

-3 -2 -1 0 1 2 3
y21

10 5

10 4

10 3

0.01

0.1

1 2(
sC

A
)2 |M

(k
1,

k 2
)|2

qq1q2q

-3 -2 -1 0 1 2 3
y21

qq2q1q

colour flow and flavour separation

Correct reproduction of the double-soft matrix elements
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Extra double-soft results: multiplicity, δK

0 1 2 3 4 5
= sL2

1.2
1.0
0.8
0.6
0.4
0.2
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0.2

lim s
0N

PS
N

NN
DL

sN
DL

no double-soft

NLO 2-jet matching
CA = 2CF = 8

3

PGsdf
= 0

PG = 0
PG = 1

2

0 1 2 3 4 5
= sL2

with double-soft

NLO 2-jet matching
CA = 2CF = 8

3

PGsdf
= 0

PG = 0
PG = 1

2

NNDL accuracy tests: Lund multiplicity

Reproduces NNDL multiplicity

0.3 0.2 0.1
= sln Emax

Q
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NS
L(P

G
=

1 2
)
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f
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ref: PGsdf
= 0 with double-soft

|y| < 1, 2-jet NLO matching, CA=2CF=3, nf = 5

Energy in a slice: PG = 1
2

no double-soft
double-soft (only real)
double-soft (real + K)

Requires the correct KCMW

prescription
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Extra double-soft results: multiplicity, δK

10 100
Eslice [GeV]

0.00
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0.15
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d
dl

nE
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 [G
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1 ]
e + e  jets, s = 2 TeV

NODS, 0.5 < x R < 2
CF = 4

3 , CA = 3, nf = 5
2-jet NLO matching

slice, |y| < 0.5

no double-soft

PGsdf
= 0

PG = 0

PG = 1
2

10 100
Eslice [GeV]

e + e  jets, s = 2 TeV
NODS, 0.5 < x R < 2

CF = 4
3 , CA = 3, nf = 5

2-jet NLO matching

slice, |y| < 0.5

double-soft

PGsdf
= 0

PG = 0

PG = 1
2

No large shift of central value but large reduction of the uncertainty estimates
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Example #1: Z -boson transverse momentum

0.00

0.02

0.04

0.06

0.08

0.10
1/

(p
tZ

<
m

Z
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)d
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p t
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1 ] pp, s=13.6 TeV, Toy PDFs

Born: dd Z, yZ = 0

PanGlobal( PS=0) [NLL]
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PanGlobal( PS=0) [NLL]
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PanGlobal( PS=0.5) [NLL]
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PanLocal( PS=0.5,dip.) [NLL]
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(
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=
0)

PanLocal( PS=0.5,ant.) [NLL]
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Dipole-kt(global) [LL]
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ptZ [GeV]
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cc
u
ra
te

d
ip
o
le

(∼
py
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P
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S
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s
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Uncertainties:

renormalisation scale variation:
for NLL-accurate showers include compensation term to

maintain 2-loop running for soft emissions

factorisation scale variations (note: use of toy PDFs)

term associated with lack of matching for kt ∼ MZ

for LL showers: a term associated with spurious
recoil for commensurate kt ’s

Observations: Differences are relatively small except

at very small kt for dipole-kt (esp. w global recoil)

NLL brings significant uncertainty reduction
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Example #2: ∆ψ12

Drell-Yan, MZ = 91.1876 GeV

0 /4 /2 3 /4
| 12|

0.20

0.25

0.30

0.35

0.40

0.45

0.50

1/
N

 d
N

/d
|

12
|

pp, s = 13.6 TeV, Toy PDFs, anti-kt(R = 0.4)
Born: dd Z, MZ = 91.1876 GeV, yZ = 0
20 < pt1 < 30 GeV, 0.3 < pt2/pt1 < 0.5, ymax = 2.5, | y12| > 1.5

PanGlobal( PS=0) [NLL]
PanGlobal( PS=0.5) [NLL]

PanLocal( PS=0.5,dip.) [NLL]
PanLocal( PS=0.5,ant.) [NLL]

Dipole-kt(global)  [LL] 
Dipole-kt(local)  [LL] 

dipole-kt
(local)[LL]

dipole-kt
(global)[LL]

PanScales
[NLL]

Dipole-kt with global recoil (LL)
quite off

All others [local dipole-kt(LL) and
PanScales(NLL)] similar
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Example #2: ∆ψ12

Drell-Yan, MZ = 91.1876 GeV
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pp, s = 13.6 TeV, Toy PDFs, anti-kt(R = 0.4)
Born: dd Z, MZ = 91.1876 GeV, yZ = 0
20 < pt1 < 30 GeV, 0.3 < pt2/pt1 < 0.5, ymax = 2.5, | y12| > 1.5

PanGlobal( PS=0) [NLL]
PanGlobal( PS=0.5) [NLL]

PanLocal( PS=0.5,dip.) [NLL]
PanLocal( PS=0.5,ant.) [NLL]

Dipole-kt(global)  [LL] 
Dipole-kt(local)  [LL] 

dipole-kt
(local)[LL]

dipole-kt
(global)[LL]

PanScales
[NLL]

Dipole-kt with global recoil (LL)
quite off

All others [local dipole-kt(LL) and
PanScales(NLL)] similar

Drell-Yan, MZ ′ = 500 GeV
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N

 d
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pp, s = 13.6 TeV, Toy PDFs, anti-kt(R = 0.4)
Born: dd Z, MZ = 0.5 TeV, yZ = 0
20 < pt1 < 30 GeV, 0.3 < pt2/pt1 < 0.5, ymax = 2.5, | y12| > 1.5

PanGlobal( PS=0) [NLL]
PanGlobal( PS=0.5) [NLL]

PanLocal( PS=0.5,dip.) [NLL]
PanLocal( PS=0.5,ant.) [NLL]

Dipole-kt(global)  [LL] 
Dipole-kt(local)  [LL] 

At higher scale:
dipole-kt(LL) ̸= PanScales(NLL)

DANGER: false sense of control from
lower-energy info!
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Log counting for LL Event shapes

vcut

Soft-collinear:
O(αsL

2) + 1-ℓ αs

In the soft-collinear approx

vcut ≈ kte
−β|η|

(here β = 0)
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Log counting for NLL Event shapes

∫
-

Soft-coll: 2-ℓ αs +
O(α2

sL
2) R-V (CMW)

Hard collinear (virtual)
(from αsL)

Soft large-angle
(virtual)=0

Multiple real emissions
(from α2

sL
2)
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Log counting for NNLL Event shapes

∫
- +

Soft-coll: 3-ℓ αs +
O(α3

sL
2) R-V (CMW)

Hard collinear (virtual)
O(α2

sL) corrections
Multiple reals:

O(α2
sL) double-soft

New O(αs)
contributions

Freedon to reshuffle terms between different contributions

Example: double-soft
k1, k2 emission

Typical approach:
- define a massless k1+2 with same k⊥, η, ϕ as k1 + k2
- express the Sudakov using k1+2

- treat k1+2 → k1 + k2 as real double-soft correction
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Shower Sudakov drifts

The shower does not take the same prescription:
- generate a first emission k̃1
- generate a second branching k̃1 → k1, k2 (with correct k1, k2 matrix element)

∆K2

∆
K

1

∆
B
2

NNLL shapes magic trick

NNLL: enoug to get (soft-coll) average drift
between k̃1 and k1+2 (in k⊥ and y)!
−→ defines ∆K2, ∆K1 and ∆B2

Sumrules

For shapes, only
∫
dy∆K1 (∝ ⟨y⟩drift) matters

For exclusive observables (E in slice) full differential
∆K1 needed ⇒ powerful check

Same for triple-coll. region (not yet in PanScales)
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