Non-perturbative effects on the q_T spectrum of the Z boson

Valerio Bertone

IRFU, CEA, Université Paris-Saclay

June 30, 2025, GDR workshop on W mass, Orsay

Drell-Yan production

Inclusive production of a lepton pair in *pp* collisions:

Relevant scales:

 $Q=\sqrt{q^2}\,,\qquad q_T\,,\qquad Q\gg\Lambda_{
m QCD}$

Drell-Yan production

Inclusive production of a lepton pair in *pp* collisions:

- Regime 1: $q_T \approx Q$
 - **•** There must be real **hard radiation** to generate large q_T .
 - **Insensitivity** to intrinsic transverse momentum of partons ($k_T \approx \Lambda_{QCD}$).
 - Soft radiation under control, collinear radiation resumed via DGLAP.

3

Drell-Yan production

Inclusive production of a lepton pair in *pp* collisions:

- Regime 2: $q_T \ll Q$
 - Hard radiation inhibited, only **soft and/or collinear radiation** allowed.
 - Sensitivity to parton **intrinsic transverse momentum** (when $q_T \approx \Lambda_{QCD}$).
 - Soft and collinear radiation resummed via TMD evolution and matching.⁴

Factorisations

• The two regimes obey two different factorisation theorems:

• for $q_T \simeq Q$ collinear factorisation at *fixed perturbative order* is appropriate:

$$\left(\frac{d\sigma}{dq_T}\right)_{\text{f.o.}} = \int_{x_1}^1 \frac{dy_1}{y_1} \int_{x_2}^1 \frac{dy_2}{y_2} f_1(y_1,\mu) f_2(y_2,\mu) \frac{d\hat{\sigma}}{dq_T} \left(\frac{x_1}{y_1},\frac{x_2}{y_2},\mu,Q\right)$$

for q_T « Q transverse-momentum-dependent (TMD) factorisation at *fixed logarithmic order* is appropriate:

$$\left(\frac{d\sigma}{dq_T}\right)_{\rm res.}$$

$$= \sigma_0 H(Q,\mu) \int d^2 k_{T1} d^2 k_{T2} F_1(x_1,k_{T1},\mu,\zeta_1) F_2(x_2,k_{T2},\mu,\zeta_2) \delta^{(2)}(q_T-k_{T1}-k_{T2})$$

$$= \sigma_0 H(Q,\mu) \int_0^\infty db_T \, b_T J_0(b_T q_T) F_1(x_1, b_T, \mu, \zeta_1) F_2(x_2, b_T, \mu, \zeta_2)$$

• Collinear and TMD factorisations can be **matched** to produce accurate results over the full $q_{\rm T}$ spectrum.

Resummation formalisms

Different formulations of the q_T spectrum valid for $q_T \ll Q$ and $q_T \gg \Lambda_{\text{QCD}}$:

$$egin{aligned} \left(rac{d\sigma}{dq_T}
ight)_{ ext{res.}} \propto \left\{egin{aligned} e^{2S}\left[f_1\otimes \mathcal{H}\otimes f_2
ight] &: q_T ext{ resum.} \ H imes B_1 imes B_2 imes S &: ext{SCET} &+ \mathcal{O}\left[\left(rac{\Lambda_{ ext{QCD}}}{q_T}
ight)^n, \left(rac{q_T}{Q}
ight)^n, \left(rac{q_T}{Q}
ight)^n
ight]
ight\}
ight\}
ight\}$$

- All of them **resum** large $\ln(q_T/Q)$.
- *Mequivalent* for *factorising* processes (such as inclusive Drell-Yan).
- Dictionary:

$$\mathcal{H} = HC_1C_2$$

- f_i : Collinear PDFs
- F_i : TMD PDFs

$$F_i = \sqrt{S} imes B_i$$

 $F_i = e^S C_i \otimes f_i$

TMD, q_T resummation, SCET

Including $O(q_T/Q)$ corrections

- Accurate predictions for all $q_T \gg \Lambda_{\text{QCD}}$ can be obtained by **matching**:
 - *different* **recipes** for the matching exist.

$$\left(\frac{d\sigma}{dq_T}\right)_{\text{match.}} = \left(\frac{d\sigma}{dq_T}\right)_{\text{res.}} + \left(\frac{d\sigma}{dq_T}\right)_{\text{f.o.}} - \left(\frac{d\sigma}{dq_T}\right)_{\text{d.c.}}$$

In order for the matching to actually take place one needs:

$$\left(\frac{d\sigma}{dq_T}\right)_{\text{res.}} \xrightarrow{\text{f.o.}} \left(\frac{d\sigma}{dq_T}\right)_{\text{d.c.}} \xleftarrow{q_T \ll Q} \left(\frac{d\sigma}{dq_T}\right)_{\text{f.o.}}$$

Fixed-order and double-counting terms obey **collinear factorisation**:

$$\left(\frac{d\sigma}{dq_T}\right)_{\text{f.o./d.c}} = \int_0^1 dx_1 \int_0^1 dx_2 f_1(x_1, Q) f_2(x_2, Q) \left(\frac{d\hat{\sigma}}{dq_T}\right)_{\text{f.o./d.c}}$$

- **Prescriptions** to avoid integrating over the **Landau pole** introduce power corrections $O(\Lambda_{\text{QCD}}/q_T)$ of **non-perturbative origin**.
 - *d*ifferent prescriptions distribute these corrections differently.
- To see this, one can use a **dispersive** approach [Bogolyubov, Shirkov; Dokshitzer, Marchesini, Webber]:

- In the context of the resummation of logs of q_T , dispersive approaches have never been (seriously) considered.
- More popular approaches to the *regularisation* of the Landau pole are:
- 1) The **cutoff** method that leads to corrections that scale as $(\Lambda_{\rm QCD}/q_T)^{\alpha}$. In *direct space* (k_T) it amounts to:

 $\alpha_s(k_{\rm T}) \rightarrow \alpha_s(\max[k_{\rm T,cutoff}, k_{\rm T}]), \quad k_{\rm T,cutoff} \gg \Lambda_{\rm QCD}$

In *impact-parameter space* (b_T) it is typically implemented by means of the socalled **b***-**prescription**: 1.2 $b_{max} = 1$ $b_{max} = 1$

$$\alpha_{s}\left(\frac{2e^{-\gamma_{\rm E}}}{b_{\rm T}}\right) \rightarrow \alpha_{s}\left(\frac{2e^{-\gamma_{\rm E}}}{b_{*}(b_{\rm T})}\right) \qquad \stackrel{1}{\underset{\stackrel{\frown}{\scriptscriptstyle \Box}}{\stackrel{\circ}{\scriptscriptstyle \Box}}} \qquad \stackrel{1}{\underset{\stackrel{\frown}{\scriptscriptstyle \Box}}{\stackrel{\circ}} \qquad \stackrel{1}{\underset{\stackrel{\frown}{\scriptscriptstyle \Box}}{\stackrel{\circ}}} \qquad \stackrel{1}{\underset{\stackrel{\frown}{\scriptscriptstyle \Box}}{\stackrel{\circ}{\scriptscriptstyle \Box}}} \qquad \stackrel{1}{\underset{\stackrel{\frown}{\scriptscriptstyle \Box}}{\stackrel{\circ}} \qquad \stackrel{1}{\underset{\stackrel{\frown}{\scriptscriptstyle \Box}}{\stackrel{\circ}}} \qquad \stackrel{1}{\underset{\stackrel{\frown}{\scriptscriptstyle \Box}}{\stackrel{\circ}} \qquad \stackrel{1}{\underset{\stackrel{\frown}{\scriptscriptstyle \Box}}{\stackrel{\circ}} \qquad \stackrel{1}{\underset{\stackrel{\frown}{\scriptscriptstyle \Box}}{\stackrel{\circ}}} \qquad \stackrel{1}{\underset{\stackrel{\frown}{\scriptscriptstyle \Box}}{\stackrel{\circ}} \qquad \stackrel{1}{\underset{\stackrel{\bullet}{\scriptscriptstyle \Box}}{\stackrel{\bullet}} \qquad \stackrel{1}{\underset{\scriptscriptstyle \Box}}{\stackrel{\bullet}} \qquad \stackrel{1}{\underset{\scriptscriptstyle \Box}}{\stackrel{\bullet}} \qquad \stackrel{1}{\underset{\scriptscriptstyle \Box}}{\stackrel{1}} \qquad \stackrel{1}{\underset{\bullet}}{\stackrel{\bullet}} \qquad \stackrel{1}{\underset{\scriptscriptstyle \Box}}{\stackrel{\bullet}} \qquad \stackrel{1}{\underset{\scriptscriptstyle \Box}}{\stackrel{\bullet}} \qquad \stackrel{1}{\underset{\scriptscriptstyle \Box}}{\stackrel{\bullet}} \qquad \stackrel{1}{\underset{\scriptscriptstyle \Box}}{\stackrel{\bullet}} \quad \stackrel{1}{\underset{\scriptscriptstyle \Box}}{\stackrel{1}} \qquad \stackrel{1}{\underset{\scriptscriptstyle \bullet}}{\stackrel{1}} \qquad \stackrel{1}{\underset{\bullet}}{\stackrel{1}} \qquad \stackrel{1}{\underset{\scriptscriptstyle \bullet}}{\stackrel{1}} \quad \stackrel{1}{\underset{\scriptscriptstyle \bullet}}{\stackrel{1}} \quad \stackrel{1}{\underset{\circ}}{\stackrel{1}} \quad \stackrel{1}{\underset{\scriptscriptstyle \bullet}}{\stackrel{1}} \quad \stackrel{1}{\underset{\scriptscriptstyle \bullet}} \quad \stackrel{1}{\underset{\scriptscriptstyle \bullet}}{\stackrel{1}} \quad \stackrel{1}{\underset{\scriptscriptstyle \bullet}} \quad \stackrel{1}{\underset{\scriptstyle \bullet}} \quad \stackrel{1}{\underset{\scriptscriptstyle \bullet}} \quad \stackrel{1}{\underset{\scriptscriptstyle$$

- Within the context of the b_* prescription, **different recipes** exist:
 - Replace $b_T \rightarrow b_*(b_T)$ everywhere in the calculation (including where it is not strictly needed to regulate the Landau pole) \Rightarrow **Global** b_* **prescription**
 - Replace $b_T \rightarrow b_*(b_T)$ only where strictly need to regulate the Landau pole (*i.e.* in the running of α_s and PDFs) \Rightarrow **Local** b_* **prescription**

 $exp[-\beta q_T/\Lambda_{QCD}]$, relegating them to smaller values of q_T .

17

Including $\mathcal{O}(\Lambda_{\text{QCD}}/q_T)$ corrections

TMD factorisation is particularly suited to parametrise $\mathcal{O}(\Lambda_{QCD}/q_T)$ (non-perturbative) corrections: **Purely Non-perturbative** perturbative

$$F_{i}(x, b_{T}; \mu, \zeta) = \left[\frac{F_{i}(x, b_{T}; \mu, \zeta)}{F_{i}(x, b_{*}(b_{T}); \mu, \zeta)}\right] F_{i}(x, b_{*}(b_{T}); \mu, \zeta) \equiv f_{\mathrm{NP}}^{(i)}(x, b_{T}; \zeta) F_{i}(x, b_{*}(b_{T}); \mu, \zeta)$$

- Properties of f_{NP} :
 - it has to go to **one** as b_T goes to zero: reproduce the perturbative regime,
 - it has to got to **zero** as b_T becomes large: mimic the Sudakov suppression,
 - it does *not* depend on μ (ren. scale) but only on ζ (rapidity scale),
 - *it is generally flavour dependent*,
 - the ζ scaling is predictable, and flavour and x independent (Collins-Soper kernel).
- **Important**: f_{NP} is *not universal* as it depends on the specific b_* or, more in general, on the strategy used to regularise the Landau pole.

Including $O(\Lambda_{QCD}/q_T)$ corrections

• Without loss of generality, f_{NP} can be parametrised as:

$$f_{ ext{NP}}^{(i)}(x,b_T;\zeta) = \exp\left[-g_i(x,b_T) - g_K(b_T)\ln\left(rac{\zeta}{Q_0^2}
ight)
ight]$$

Given the properties above, there is not a huge latitude in defining f_{NP} :

- **•** both g_i and g_K have to go to zero as b_T tends to zero, and become large as b_T becomes large:
 - $f_{\rm NP}$ can be sensibly different from one only for $b_T^{-1} \leq \Lambda_{\rm QCD}^{-1} (k_T \leq \Lambda_{\rm QCD})$.
- g_K (non-perturbative contribution to the Collins-Soper kernel) can be determined faithfully having a **large lever arm** in $\zeta \propto Q$:
 - both low and high invariant-mass data necessary.
 - **Lattice** simulations available.

Collis-Soper kernel

[2504.04625]

Importance of the x-dependence

• However f_{NP} cannot be too simple either!

- In [JHEP 07 (2020) 117] a fit of an *x*-dependent f_{NP} to a set 353 DY data points was done, obtaining a χ^2 per data point (χ^2/N_{dat}) equal to **1.02**:
- A gaussian, *x*-independent f_{NP} was also tested:

$$f_{\mathrm{NP}}^{\mathrm{DWS}}(b_T,\zeta) = \exp\left[-\frac{1}{2}\left(g_1 + g_2\ln\left(\frac{\zeta}{2Q_0^2}\right)\right)b_T^2\right]$$

• This f_{NP} was used to fit the full data set as well as a subset in which rapidity-dependent data (from ATLAS) was excluded:

	Full dataset	No y -differential data
Global $\chi^2/N_{\rm dat}$	1.339	0.895

Gaussian ansatz is insufficient to describe data accurately.
Deterioration largely due to the rapidity-dependent data.

Relevance of $f_{\rm NP}$ **at high-energies**

- In order to assess the relevance of $f_{\rm NP}$ for the description of data at highenergy colliders (Tevatron and LHC), compute the χ^2 of predictions:
 - 1) setting $f_{\rm NP} = 1$,
 - 2) using a fit for f_{NP} (e.g. MAP22 [JHEP 10 (2022) 127]).
- The theoretical accuracy is N³LL.
- The χ^2 accounts for all systematic uncertainties (correlated and uncorrelated) and for collinear PDF uncertainties (MSHT2020).
- A cut $q_T/Q < [q_T/Q]_{max} = 0.15$ is enforced to ensure to be in the resummation region,

Relevance of f_{NP} **at high-energies**

Experiment	Observable	$\sqrt{s} \; [\text{GeV}]$	$Q \; [{ m GeV}]$	y	Lepton cuts
CDF Run I	$d\sigma/d m{q}_T $	1800	66 - 116	Inclusive	-
CDF Run II	$d\sigma/d m{q}_T $	1960	66 - 116	Inclusive	-
D0 Run I	$d\sigma/d m{q}_T $	1800	75 - 105	Inclusive	-
D0 Run II	$(1/\sigma) d\sigma/d oldsymbol{q}_T $	1960	70 - 110	Inclusive	-
D0 Run II (μ)	$(1/\sigma)d\sigma/d m{q}_T $	1960	65 - 115	y < 1.7	$\begin{array}{c} p_{T\ell} > 15 \text{ GeV} \\ \eta_{\ell} < 1.7 \end{array}$
LHCb 7 TeV	$d\sigma/d oldsymbol{q}_T $	7000	60 - 120	2 < y < 4.5	$\begin{array}{l} p_{T\ell} > 20 \ \text{GeV} \\ 2 < \eta_{\ell} < 4.5 \end{array}$
LHCb 8 TeV	$d\sigma/d oldsymbol{q}_T $	8000	60 - 120	2 < y < 4.5	$\begin{array}{l} p_{T\ell} > 20 \ \text{GeV} \\ 2 < \eta_{\ell} < 4.5 \end{array}$
LHCb 13 TeV	$d\sigma/d oldsymbol{q}_T $	13000	60 - 120	2 < y < 4.5	$\begin{array}{l} p_{T\ell} > 20 \ \text{GeV} \\ 2 < \eta_{\ell} < 4.5 \end{array}$
CMS 7 TeV	$(1/\sigma)d\sigma/d oldsymbol{q}_T $	7000	60 - 120	y < 2.1	$\begin{array}{c} p_{T\ell} > 20 \mathrm{GeV} \\ \eta_{\ell} < 2.1 \end{array}$
CMS 8 TeV	$(1/\sigma)d\sigma/d m{q}_T $	8000	60 - 120	y < 2.1	$\begin{array}{c} p_{T\ell} > 15 \text{ GeV} \\ \eta_{\ell} < 2.1 \end{array}$
CMS 13 TeV	$d\sigma/d oldsymbol{q}_T $	13000	76 - 106	$\begin{split} y < 0.4 \\ 0.4 < y < 0.8 \\ 0.8 < y < 1.2 \\ 1.2 < y < 1.6 \\ 1.6 < y < 2.4 \end{split}$	$p_{T\ell} > 25 \text{ GeV}$ $ \eta_{\ell} < 2.4$
ATLAS 7 TeV	$(1/\sigma)d\sigma/d oldsymbol{q}_T $	7000	66 - 116	$\begin{array}{c c} y < 1 \\ 1 < y < 2 \\ 2 < y < 2.4 \end{array}$	$\begin{array}{c} p_{T\ell} > 20 \ \mathrm{GeV} \\ \eta_\ell < 2.4 \end{array}$
ATLAS 8 TeV on-peak	$(1/\sigma)d\sigma/d oldsymbol{q}_T $	8000	66 - 116	$\begin{split} y < 0.4 \\ 0.4 < y < 0.8 \\ 0.8 < y < 1.2 \\ 1.2 < y < 1.6 \\ 1.6 < y < 2 \\ 2 < y < 2.4 \end{split}$	$\begin{array}{l} p_{T\ell} > 20 \ \mathrm{GeV} \\ \eta_\ell < 2.4 \end{array}$
ATLAS 8 TeV off-peak	$(1/\sigma)d\sigma/d m{q}_T $	8000	46 - 66 116 - 150	y < 2.4	$\begin{array}{c} p_{T\ell} > 20 \text{ GeV} \\ \eta_{\ell} < 2.4 \end{array}$
ATLAS 13 TeV	$(1/\sigma) d\sigma/d m{q}_T $	13000	66 - 113	y < 2.5	$ \begin{array}{c} p_{T\ell} > 27 { m GeV} \ \eta_\ell < 2.5 \end{array} $

23

Relevance of f_{NP} **at high-energies**

Heavy-quark masses/thresholds

- Usually, the resummation of logs of q_T does not account for the finiteness of heavy-quark (charm and bottom) masses m_h :
 - a fully consistent calculation accounting for heavy-quark masses is hard to achieve,
 - bowever these affects are expected to be relevant when $q_T \leq m_h$.
- Indeed, most of the calculations are performed in the **massless** scheme.
- The massless scheme introduces an explicit dependence of the relevant quantities on the number of active flavours n_f :
 - a partial account of heavy-quark mass effects can be achieved by **varying** n_f at the heavy-quark thresholds depending on the scale at which each quantity is computed.
 - For example:

$$F^{(4)}(\mu) = e^{S^{(4)}(\mu,m_h)} e^{S^{(3)}(m_h,\mu_b)} [C^{(3)} \otimes f^{(3)}](\mu_b)\,, \ \ \mu_b < m_h < \mu_b$$

where $\mu_b = b_0/b_T$ with b_T to be integrated over.

Heavy-quark masses/thresholds

TMDs and the strong coupling

A recent paper [2203.05394], has demonstrated a *strong* sensitivity of the low- $q_{\rm T}$ Drell-Yan spectrum to $\alpha_s (\alpha_s(M_Z) = 0.1191^{+0.0013}_{-0.0016})$.

Importantly, this work has required a determination of the nonperturbative component of TMDs.

Work based of Tevatron (CDF) data ⇒ huge potential of the LHC (see [ATLAS CONF Note]).

Conclusions

- Non perturbative effects that scale like a power of Λ_{QCD}/q_T are sizeable at small q_T , which is the domain of resummation,
 - necessary to describe the first bins in $q_{\rm T}$ of high-energy data,
- **TMD factorisation** is just one of the possible ways to resum large logs of $q_{\rm T}$, but it is particularly suited to study non-perturbative effects.
- Within TMD factorisation, different **extractions from data** of these effects as encoded in f_{NP} exist (not discussed in detail here).
- In doing so, several aspects have to be considered:
 - regularisation, parameterisation of f_{NP} , flavour dependence, (heavy quarks), etc.
- All of them have to be accounted for to achieve reliable predictions for the $Z q_{T}$, which affects the precision of the *W* mass determination.

Collis-Soper kernel

Collis-Soper kernel

Perturbative convergence

Flavour dependence of $f_{\rm NP}$

For each TMD use a **Gaussian ansatz**:

$$f_{\rm NP}(b_T,\zeta) = \exp\left[-\frac{g_a}{b_T^2} - g_K b_T^2 \ln\left(\frac{\zeta}{Q_0^2}\right)\right]$$

1 flavour-independent set with $g_a = 0.4 \ {
m GeV^2}$, [Guzzi, Nadolsky, Wang (2014)]

50 flavour-dependent sets with $\{g_{u_v}, g_{d_v}, g_{u_s}, g_{d_s}, g_s\}, g_a \in [0.2, 0.6]$ GeV²,

 δ keep g_K fixed. [Bacchetta, Delcarro, Pisano, Radici, Signori (2017)]

Bacchetta, Bozzi, Radici, Ritzmann, Signori PLB 788, 542 (2019)

"Z-equivalent" sets

Bacchetta, Bozzi, Radici, Ritzmann, Signori PLB 788, 542 (2019)

Impact on m_W

• Take the "Z-equivalent" *flavour-dependent* parameter sets and compute *low-statistics* (135M) m_T, p_T^l, p_T^{ν} distributions

➡ pseudodata

• Take the *flavour-independent* parameter set and compute *high-statistics* (750M) m_T, p_T^l, p_T^ν distributions for 30 different values of M_W

➡ templates

perform the template fit procedure and compute the shifts induced by flavour effects

- <u>transverse mass</u>: zero or few MeV shifts, generally favouring lower values for W-(preferred by EW fit)
- lepton pt: quite important shifts (envelope up to 15 MeV)
- •<u>neutrino pt</u>: same order of magnitude (or bigger) as lepton pt

		ΔM_{W^+}			ΔM_{W^-}		
Set	m_T	$p_{T\ell}$	$p_{T\nu}$	m_T	$p_{T\ell}$	$p_{T\nu}$	
1	0	-1	-2	-2	3	-3	
2	0	-6	0	-2	0	-5	
3	-1	9	0	-2	4	-10	
4	0	0	-2	-2	-4	-10	
5	0	4	1	-1	-3	-6	
6	1	0	2	-1	4	-4	
7	2	-1	2	-1	0	-8	
8	0	2	8	1	7	8	
9	0	4	-3	-1	0	7	

	4	ΔM_{W^+}			Δ	M_W	·
Set	$\ m_T$	$p_{T\ell}$	$p_{T\nu}$		m_T	$p_{T\ell}$	$p_{T\nu}$
1	-1	-5	7	Π	-1	-3	8
2	-1	-15	6		0	5	10
3	-1	1	8		-1	-7	5
4	-1	-15	6		0	-4	5
5	-1	-4	6		-1	-7	5
6	-1	-5	7		0	2	9
7	-1	-15	6		-1	-6	5
8	-1	0	8		0	3	10
9	-1	-7	7		0	4	10

TABLE I: ATLAS 7 TeV

TABLE II: LHCb 13 TeV

Set	u_v	d_v	u_s	d_s	s
1	0.34	0.26	0.46	0.59	0.32
2	0.34	0.46	0.56	0.32	0.51
3	0.55	0.34	0.33	0.55	0.30
4	0.53	0.49	0.37	0.22	0.52
5	0.42	0.38	0.29	0.57	0.27
6	0.40	0.52	0.46	0.54	0.21
7	0.22	0.21	0.40	0.46	0.49
8	0.53	0.31	0.59	0.54	0.33
9	0.46	0.46	0.58	0.40	0.28

Statistical uncertainty: 2.5 MeV

Bacchetta, Bozzi, Radici, Ritzmann, Signori PLB 788, 542 (2019)

TMD factorisation

- TMD factorisation introduces two independent scales:
 - **\bullet** the **renormalisation scale** μ , originating from the UV renormalisation,
 - **i** the **rapidity scale** ζ , originating from the cancellation of rapidity divergences.
- The respective **evolution equations** are:

$$\frac{\partial \ln F}{\partial \ln \sqrt{\zeta}} = K(\mu_0) - \int_{\mu_0}^{\mu} \frac{d\mu'}{\mu'} \gamma_K(\alpha_s(\mu'))$$

$$\frac{\partial \ln F}{\partial \ln \mu} = \gamma_F(\alpha_s(\mu)) - \gamma_K(\alpha_s(\mu)) \ln \frac{\sqrt{\zeta}}{\mu}$$

• At small $b_{\rm T}$, TMDs can be matched onto collinear distributions:

$$F(\mu,\zeta) = C(\mu,\zeta) \otimes f(\mu)$$

 $\mu_b = b_0 / b_{\rm T}$

The solution final is:

$$F(\mu,\zeta) = \exp\left\{K(\mu_0)\ln\frac{\sqrt{\zeta}}{\sqrt{\zeta_0}} + \int_{\mu_0}^{\mu}\frac{d\mu'}{\mu'}\left[\gamma_F(\alpha_s(\mu')) - \gamma_K(\alpha_s(\mu'))\ln\frac{\sqrt{\zeta}}{\mu'}\right]\right\}C(\mu_0,\zeta_0)\otimes f(\mu_0)$$

Anomalous dims. and matching funcs. **perturbatively** computable. ³⁸

TMD factorisation

Final expression:

 $F_{f/P}(x, \mathbf{b}_T; \mu, \zeta)$ $\sum C_{f/j}(x, b_{\mathbb{R}}; \mu_b, \mu_b^2) \otimes f_{j/P}(x, \mu_b)$: A $\begin{cases} K(b_{\mathfrak{F}};\mu_b) \ln \frac{\sqrt{\zeta}}{\mu_b} + \int_{\mu}^{\mu} \frac{d\mu'}{\mu'} \left| \gamma_F - \gamma_K \ln \frac{\sqrt{\zeta}}{\mu'} \right| \end{cases}$: *B* exp $\exp\left\{\frac{g_{j/P}(x,b_T) + g_K(b_T) \ln \frac{\sqrt{\zeta_F}}{\sqrt{\zeta_F}}\right\}$: C \times matching onto the collinear region at $b_{\rm T} \ll 1/\Lambda_{\rm QCD}$, \bigcirc factorises as hard (perturbative) and longitudinal (i.e. \bigcirc CS and RGE evolution,

- collinear, non-perturbative).
 - avoid the Landau pole,
 - $f_{\rm NP}$ accounts for the introduction of b_* ,
 - $f_{\rm NP}$ is non-perturbative thus **fit** to data.

39

• evolution in μ and ζ ,

operturbative.

Logarithmic counting

 $\left(\frac{d\sigma}{dq_T}\right)_{\text{res.}} \stackrel{\text{TMD}}{=} \sigma_0 H(Q) \int d^2 \mathbf{b}_T e^{i\mathbf{b}_T \cdot \mathbf{q}_T} F_1(x_1, \mathbf{b}_T, Q, Q^2) F_2(x_2, \mathbf{b}_T, Q, Q^2)$

$$F_{i} = \sum_{j} \left(\frac{C_{i/j}}{\beta} \otimes f_{j} \right) \exp \left\{ K \ln \frac{\sqrt{\zeta}}{\mu_{b}} + \int_{\mu_{b}}^{\mu} \frac{d\mu'}{\mu'} \left[\gamma_{F} - \gamma_{K} \ln \frac{\sqrt{\zeta}}{\mu'} \right] \right\}$$

Accuracy	γĸ	γF	K	C _{f/j}	H	FFs/PDFs/ α_s
LL	$lpha_s$	-	_	1	1	-
NLL	α_s^2	α_s	α_s	1	1	LO
NLL'	α_s^2	α_s	α_s	$lpha_s$	$lpha_s$	LO
N ² LL	$\alpha_s{}^3$	α_s^2	α_s^2	$lpha_s$	$lpha_s$	NLO
N ² LL'	$\alpha_s{}^3$	α_s^2	α_s^2	α_s^2	α_s^2	NLO
N ³ LL	$\alpha_s{}^4$	$\alpha_s{}^3$	$\alpha_s{}^3$	α_s^2	α_s^2	NNLO
N ³ LL'	α_s^4	$\alpha_s{}^3$	$\alpha_s{}^3$	$\alpha_s{}^3$	$\alpha_s{}^3$	NNLO

Monte Carlo method for the experimental error propagation.

41

MAPTMD 2022 *Dataset*

- 🍯 DY data:
 - fixed-target low-energy DY,
 - 🍯 RHIC data,
 - LHC and Tevatron data,
 - selection cut $q_{\rm T}$ / Q < 0.2,
 - 🍯 484 data points.
- 🍯 SIDIS data:
 - HERMES and COMPASS,
 - $\mathbf{\Phi} P_{hT}|_{\text{max}} = \min[\min[0.2Q, 0.5zQ] + 0.3 \text{ GeV}, zQ]$

🍯 1547 points.

Experiment	$N_{\rm dat}$	Observable	\sqrt{s} [GeV]	$Q \; [\text{GeV}]$	$y ext{ or } x_F$	Lepton cuts	Ref.
E605	50	$Ed^{3}\sigma/d^{3}q$	38.8	7 - 18	$x_{F} = 0.1$	-	[55]
E772	53	$Ed^{3}\sigma/d^{3}q$	38.8	5 - 15	$0.1 < x_F < 0.3$	-	[51]
$E288 \ 200 \ GeV$	30	$Ed^{3}\sigma/d^{3}q$	19.4	4 - 9	y = 0.40	-	[56]
E288 300 GeV	39	$Ed^{3}\sigma/d^{3}q$	23.8	4 - 12	y = 0.21	-	[56]
$\rm E288~400~GeV$	61	$Ed^{3}\sigma/d^{3}q$	27.4	5 - 14	y = 0.03	-	[56]
STAR 510	7	$d\sigma/d m{q}_T $	510	73 - 114	y < 1	$\begin{array}{c} p_{T\ell} > 25 \ \mathrm{GeV} \\ \eta_\ell < 1 \end{array}$	-
PHENIX200	2	$d\sigma/d m{q}_T $	200	4.8 - 8.2	1.2 < y < 2.2	-	[52]
CDF Run I	25	$d\sigma/d m{q}_T $	1800	66 - 116	Inclusive	-	[57]
CDF Run II	26	$d\sigma/d m{q}_T $	1960	66 - 116	Inclusive	-	[58]
D0 Run I	12	$d\sigma/d m{q}_T $	1800	75 - 105	Inclusive	-	[59]
D0 Run II	5	$(1/\sigma)d\sigma/d m{q}_T $	1960	70 - 110	Inclusive	-	[60]
D0 Run II (μ)	3	$(1/\sigma)d\sigma/d m{q}_T $	1960	65 - 115	y < 1.7	$p_{T\ell} > 15 \text{ GeV} \\ \eta_{\ell} < 1.7$	[61]
LHCb 7 TeV	7	$d\sigma/d m{q}_T $	7000	60 - 120	2 < y < 4.5	$\begin{array}{l} p_{T\ell} > 20 \ \mathrm{GeV} \\ 2 < \eta_\ell < 4.5 \end{array}$	[62]
LHCb 8 TeV	7	$d\sigma/d m{q}_T $	8000	60 - 120	2 < y < 4.5	$\begin{array}{l} p_{T\ell} > 20 \ \mathrm{GeV} \\ 2 < \eta_\ell < 4.5 \end{array}$	[63]
LHCb 13 TeV	7	$d\sigma/d m{q}_T $	13000	60 - 120	2 < y < 4.5	$\begin{array}{l} p_{T\ell} > 20 \ {\rm GeV} \\ 2 < \eta_{\ell} < 4.5 \end{array}$	[64]
CMS 7 TeV	4	$(1/\sigma)d\sigma/d \boldsymbol{q}_T $	7000	60 - 120	y < 2.1	$\begin{array}{c} p_{T\ell} > 20 \ \text{GeV} \\ \eta_{\ell} < 2.1 \end{array}$	[65]
CMS 8 TeV	4	$(1/\sigma)d\sigma/d \boldsymbol{q}_T $	8000	60 - 120	y < 2.1	$\begin{array}{c} p_{T\ell} > 15 \ \text{GeV} \\ \eta_{\ell} < 2.1 \end{array}$	[66]
CMS 13 TeV	70	$d\sigma/d oldsymbol{q}_T $	13000	76 - 106	$\begin{aligned} y &< 0.4\\ 0.4 &< y &< 0.8\\ 0.8 &< y &< 1.2\\ 1.2 &< y &< 1.6\\ 1.6 &< y &< 2.4 \end{aligned}$	$\begin{array}{l} p_{T\ell} > 25 \ \mathrm{GeV} \\ \eta_{\ell} < 2.4 \end{array}$	[53]
ATLAS 7 TeV	6 6 6	$(1/\sigma)d\sigma/d m{q}_T $	7000	66 - 116	y < 1 1 < y < 2 2 < y < 2.4	$\begin{array}{c} p_{T\ell} > 20 \ \mathrm{GeV} \\ \eta_\ell < 2.4 \end{array}$	[67]
ATLAS 8 TeV on-peak	6 6 6 6 6	$(1/\sigma)d\sigma/d m{q}_T $	8000	66 - 116	$\begin{aligned} y &< 0.4 \\ 0.4 &< y &< 0.8 \\ 0.8 &< y &< 1.2 \\ 1.2 &< y &< 1.6 \\ 1.6 &< y &< 2 \\ 2 &< y &< 2.4 \end{aligned}$	$p_{T\ell} > 20 \text{ GeV}$ $ \eta_{\ell} < 2.4$	[68]
ATLAS 8 TeV off-peak	4 8	$(1/\sigma)d\sigma/d \boldsymbol{q}_T $	8000	46 - 66 116 - 150	y < 2.4	$\begin{array}{c} p_{T\ell} > 20 \ \mathrm{GeV} \\ \eta_{\ell} < 2.4 \end{array}$	[68]
ATLAS 13 TeV	6	$(1/\sigma)d\sigma/d \boldsymbol{q}_T $	13000	66 - 113	y < 2.5	$ p_{T\ell} > 27 \text{ GeV} \eta_{\ell} < 2.5$	[54]
Total	484						
	Experiment E605 E772 E288 200 GeV E288 300 GeV E288 400 GeV STAR 510 PHENIX200 CDF Run I D0 Run I D0 Run II D0 Run II (μ) LHCb 7 TeV LHCb 13 TeV CMS 7 TeV CMS 8 TeV ATLAS 7 TeV ATLAS 8 TeV ATLAS 8 TeV ATLAS 13 TeV	Experiment N _{dat} E605 50 E772 53 E288 200 GeV 30 E288 300 GeV 39 E288 300 GeV 39 E288 400 GeV 61 STAR 510 7 PHENIX200 2 CDF Run I 25 CDF Run II 26 D0 Run II 12 D0 Run II 5 D0 Run II (μ) 3 LHCb 7 TeV 7 LHCb 8 TeV 7 CMS 7 TeV 4 CMS 8 TeV 4 CMS 13 TeV 70 ATLAS 7 TeV 6 ATLAS 8 TeV 6 ATLAS 8 TeV 6 ATLAS 13 TeV 6 ATLAS 13 TeV 6	Experiment N_{dat} Observable E605 50 $Ed^3\sigma/d^3q$ E772 53 $Ed^3\sigma/d^3q$ E288 200 GeV 30 $Ed^3\sigma/d^3q$ E288 300 GeV 39 $Ed^3\sigma/d^3q$ E288 400 GeV 61 $Ed^3\sigma/d^3q$ STAR 510 7 $d\sigma/d q_T $ PHENIX200 2 $d\sigma/d q_T $ CDF Run I 25 $d\sigma/d q_T $ D0 Run I 12 $d\sigma/d q_T $ D0 Run II 5 $(1/\sigma)d\sigma/d q_T $ D0 Run II (μ) 3 $(1/\sigma)d\sigma/d q_T $ LHCb 7 TeV 7 $d\sigma/d q_T $ LHCb 7 TeV 7 $d\sigma/d q_T $ CMS 7 TeV 4 $(1/\sigma)d\sigma/d q_T $ CMS 13 TeV 70 $d\sigma/d q_T $ G 6 6 ATLAS 7 TeV 6 $(1/\sigma)d\sigma/d q_T $ ATLAS 8 TeV 6 6 6 6 6 ATLAS 8 TeV 6 $(1/\sigma)d\sigma/d q_T $ ATLAS 13 TeV 6	Experiment N_{dat} Observable \sqrt{s} [GeV] E605 50 $Ed^3\sigma/d^3q$ 38.8 E772 53 $Ed^3\sigma/d^3q$ 38.8 E288 200 GeV 30 $Ed^3\sigma/d^3q$ 23.8 E288 300 GeV 39 $Ed^3\sigma/d^3q$ 23.8 E288 400 GeV 61 $Ed^3\sigma/d^3q$ 27.4 STAR 510 7 $d\sigma/d q_T $ 510 PHENIX200 2 $d\sigma/d q_T $ 1800 CDF Run I 25 $d\sigma/d q_T $ 1800 CDF Run II 26 $d\sigma/d q_T $ 1960 D0 Run II 12 $d\sigma/d q_T $ 1960 D0 Run II 5 $(1/\sigma)d\sigma/d q_T $ 1960 LHCb 7 TeV 7 $d\sigma/d q_T $ 1960 LHCb 8 TeV 7 $d\sigma/d q_T $ 8000 CMS 7 TeV 4 $(1/\sigma)d\sigma/d q_T $ 7000 CMS 13 TeV 70 $d\sigma/d q_T $ 8000 CMS 13 TeV 6 $(1/\sigma)d\sigma/d q_T $ 8000 ATL	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$

Experiment	$N_{\rm dat}$	Observable	Channels	$Q \; [\text{GeV}]$	x	z	Phase space cuts	Ref.
HERMES	344	$M(x,z, oldsymbol{P}_{hT} ,Q)$	$\begin{array}{c} p \rightarrow \pi^+ \\ p \rightarrow \pi^- \\ p \rightarrow K^+ \\ p \rightarrow K^- \\ d \rightarrow \pi^+ \\ d \rightarrow \pi^- \\ d \rightarrow K^+ \\ d \rightarrow K^- \end{array}$	$1 - \sqrt{15}$	0.023 < x < 0.6 (6 bins)	0.1 < z < 1.1 (8 bins)	$W^2 > 10 \text{ GeV}^2$ 0.1 < y < 0.85	[46]
COMPASS	1203	$M(x, z, \boldsymbol{P}_{hT}^2, Q)$	$\begin{array}{c} d \to h^+ \\ d \to h^- \end{array}$	1 - 9 (5 bins)	0.003 < x < 0.4 (8 bins)	0.2 < z < 0.8 (4 bins)	$W^2 > 25 \ { m GeV}^2$ 0.1 < y < 0.9	[72]
Total	1547							

MAPTMD 2022

Kinematic coverage

MAPTMD 2022

Fit quality

	$N^{3}LL^{-}$					
Data set	$N_{\rm dat}$	χ^2_D	χ^2_λ	χ^2_0		
CDF Run I	25	0.45	0.09	0.54		
CDF Run II	26	0.995	0.004	1.0		
D0 Run I	12	0.67	0.01	0.68		
D0 Run II	5	0.89	0.21	1.10		
D0 Run II (μ)	3	3.96	0.28	4.2		
Tevatron total	71	0.87	0.06	0.93		
LHCb 7 TeV	7	1.24	0.49	1.73		
LHCb 8 TeV	7	0.78	0.36	1.14		
LHCb 13 TeV	7	1.42	0.06	1.48		
$LHCb \ total$	21	1.15	0.3	1.45		
ATLAS 7 TeV	18	6.43	0.92	7.35		
ATLAS 8 TeV	48	3.7	0.32	4.02		
ATLAS 13 TeV	6	5.9	0.5	6.4		
$ATLAS \ total$	72	4.56	0.48	5.05		
CMS 7 TeV	4	2.21	0.10	2.31		
CMS 8 TeV	4	1.938	0.001	1.94		
$CMS \ 13 \ TeV$	70	0.36	0.02	0.37		
CMS total	78	0.53	0.02	0.55		
PHENIX 200	2	2.21	0.88	3.08		
STAR 510	7	1.05	0.10	1.15		
DY collider total	251	1.86	0.2	2.06		

$E288 \ 200 \ GeV$	30	0.35	0.19	0.54
E288 300 GeV	39	0.33	0.09	0.42
E288 400 GeV	61	0.5	0.11	0.61
E772	53	1.52	1.03	2.56
E605	50	1.26	0.44	1.7
DY fixed-target total	233	0.85	0.4	1.24
HERMES $(p \to \pi^+)$	45	0.86	0.42	1.28
HERMES $(p \to \pi^-)$	45	0.61	0.31	0.92
HERMES $(p \to K^+)$	45	0.49	0.04	0.53
HERMES $(p \to K^-)$	37	0.18	0.13	0.31
HERMES $(d \rightarrow \pi^+)$	41	0.68	0.45	1.13
HERMES $(d \rightarrow \pi^-)$	45	0.63	0.35	0.97
HERMES $(d \to K^+)$	45	0.2	0.02	0.22
HERMES $(d \to K^-)$	41	0.14	0.08	0.22
$HERMES \ total$	344	0.48	0.23	0.71
COMPASS $(d \rightarrow h^+)$	602	0.55	0.31	0.86
COMPASS $(d \rightarrow h^-)$	601	0.68	0.3	0.98
$COMPASS \ total$	1203	0.62	0.3	0.92
SIDIS total	1547	0.59	0.28	0.87
Total	2031	0.77	0.29	1.06

MAPTMD 2022

Correlation between fit parameters

MAPTMD 2022 *Fit quality: DY*

MAPTMD 2022 *Fit quality: DY at LHCb*

Perturbative convergence

	NLL'	NNLL	NNLL'	N ³ LL
Global χ^2	1126	571	379	360
				S 1

Perturbative convergence

