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The ATLAS detector

• Multi-purpose particle detector designed to study fundamental physics.

• Sub-detectors: Inner Detector (ID), calorimeters, Muon Spectrometer (MS), and a

complex magnetic field.

• Muon system is crucial for triggering and precise measurements, e.g. 𝑝𝑝 → 𝑊 → 𝜇𝜈.
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Why measuring the W boson mass?

• The W boson mass (𝑚𝑊) is important for

testing the SM and BSM physics

• BSM scenarios could modify 𝑚𝑊 by radiative
corrections Δ𝑟.

• In the SM, these corrections come mainly
from the top-quark and Higgs boson
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W boson production and leptonic decay
• In the SM, the W boson can decay in quarks and leptons, and its

mass is measured via the lepton channels: 𝑊 → ℓ𝜈 (ℓ= 𝑒±, 𝜇±).

• Higher-order corrections lead to a non-trivial 𝑝𝑇
𝑊 distribution

that is crucial to control.

• This channel is challenging since the neutrino escapes the
detection, and its momentum has to be inferred from other
quantities.

• In the detector we measure:

▪ The momentum of the charged lepton, 𝑝𝑇
ℓ .

▪ The hadronic recoil, 𝑢𝑇.
• We can infer:

▪ The energy of the neutrino:𝐸𝑇
𝑚𝑖𝑠𝑠

▪ The transverse mass: 𝑚𝑇
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What do we measure?

• Observables sensitive to 𝑚𝑊

▪ Lepton transverse momentum: 𝑝𝑇
ℓ

▪ Transverse mass 𝑚𝑇

• For 𝑝𝑇
ℓ, a good lepton calibration is required.

• For 𝑚𝑇, a precise calibration of 𝑢𝑇 is required.
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𝑚𝑇 = 2𝑝𝑇
ℓ𝐸𝑇

𝑚𝑖𝑠𝑠 1−cosΔ𝜙ℓ𝜈
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ATLAS and the W boson mass

• The ATLAS collaboration performed a

first 𝑚𝑊 measurement at 7TeV in 2018

(Eur.Phys.J.C 78 (2018) 2, 110)

𝑚𝑊 = 80370 ± 19 MeV

• Baseline PDF CT10

• This measurement was based on 𝜒2

minimization

• Systematics evaluated by offset method

• This talk is focused on the new ATLAS

𝑚𝑊 measurement (Eur. Phys. J. C 84

(2024) 1309).
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https://link.springer.com/article/10.1140/epjc/s10052-017-5475-4
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ATLAS 𝑚𝑊 and Γ𝑊 measurement at 7 TeV

• Motivation:
• Renalyse 7 TeV dataset with an improve statistical approach, Profile Likelihood (PLH).

• Reductions of several systematic uncertainties of 𝑚𝑊.

• First 𝚪𝑾 measurement at the LHC.

• Strategy:
• Two channels, electrons and muons, and two observables 𝑚𝑇 and 𝑝𝑇

ℓ .

• Reproduce the results in the previous measurement.

• Improvements and detailed study to the systematic uncertainties.

• PLH fit for 𝑚𝑊 and Γ𝑊.
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Improvements

• New statistical treatment based of PLH with a dedicated uncertainty

decomposition.

• New PDF sets are available.

• re-evaluated EW uncertainty defined on reco-level (2024) instead of

particle-level (2018).

• Multi-jet background re-evaluated with the final luminosity

calibration from Run 1.

• Principal Component Analysis (PCA) in certain systematics
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MC samples and event selection
Data sample: 𝑊 → 𝑒𝜈 and 𝑊 → µ𝜈 candidate events, collected in 2011 at 7 TeV with 4.6 fb−1

MC simulation: Powheg and Pythia8:  

• 𝑊 & 𝑍 production: Powheg +Pythia8 AZNLO with different PDF sets. 

• Top-related background: Powheg +Pythia8. 

• Di-boson background: Sherpa 

• Multijet background: data-driven estimation

Selection (Gev)

Charge One electron or muon

Track Combined (spectrometer + ID)

𝑝𝑇
ℓ >30

𝐸𝑇
𝑚𝑖𝑠𝑠 >30

𝑚𝑇 >60

𝑢𝑇 <30

N° candidates 1.37 × 107
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Fitting setup
• Template fits for 𝑚𝑊 and Γ𝑊.

• Two joint fits in 14 event categories with 10 bins:
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Fitting strategy
• Two fitting method:

• Numerical Profile Likelihood fit (baseline)

• Analytical 𝜒2 method for uncertainty decomposition

• PLH model:

• 𝑚𝑖 : Observed data per bin.

• 𝜈𝑖 : Total prediction per bin (signal modelling).

• Ԧ𝜃: Parameter of interest (POI).

• 𝛼: Nuisance Parameter (NP) for systematics.

• 𝑎: Global observable for NP.
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Signal model

Nominal 

prediction for 

bin−𝑖

𝜃 𝛼𝑠

𝛼𝑏

Sensitivity of 

the prediction 

to the NP

Sensitivity of 

the prediction 

to the POI

Sensitivity of 

the prediction 

to the NP

Nominal 

prediction for 

bin−𝑖

• 𝜃 :POI

• 𝛼 :NP

• Φ :Normalization factor

• S: signal

• B: background
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Uncertainty components

In profile likelihood fits, commonly the uncertainty components are evaluated via the “impacts” 

method, as follows:

1. Total uncertainty (stat. + syst.) is computed: 𝜎total. 
2. The fit is repeated removing a systematic source and the total uncertainty is computed: 

𝜎total
′ < 𝜎total. 

3. The impact of the systematic source is defined as: 𝜎syst = 𝜎total
2 − 𝜎total

′ 2

This method ignores the post-fit correlations between the NPs. 

It is incorrect in the sense that the statistical component is underestimated, and the systematics 

are overestimated. 

Impacts do not recover the total uncertainty.
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Uncertainty components via “Impacts”: Example
Consider two measurements: 

• Measurement 1: 𝜎total
1 = 1, 𝜎stat

1 = 1 and 𝜎syst
1 = 0. 

• Measurement 2: 𝜎total
2 = 1 ⊕ 𝜎syst

2 , 𝜎stat
2 = 1 and 𝜎syst

2 ∈ [0, 10].
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Uncertainty components via “Impacts”: Example

Combination unambiguous: 

𝜎total = 𝜎1
tot −2 + 𝜎2

tot −2 −1/2

𝜎total ∈ [1/ 2, 1]

Uncertainty components: 

• Impacts: 

𝜎stat = 𝜎1
stat −2 + 𝜎2

stat −2 −1/2 = 1/ 2

𝜎syst = 𝜎total
2 − 𝜎stat

2 ∈ 0,1/ 2

• Proper decomposition (BLUE): 

𝜎stat ∈ 1/ 2, 1

𝜎syst → 0 ∼ 0.35 → 0
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Analytical 𝜒2 method

• In the Gaussian limit, the likelihood has an analytical solution (Eur. Phys. J. C, vol.
84, 2024) that allows to simplify the calculations:

• This approach is particularly useful to study the uncertainty components.

• The systematic components can be properly evaluated.

• This can be generalized to non-Gaussian limits through the global shifted

observable method.
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Uncertainty components in PLH

In the Gaussian limit, the likelihood covariance can be divided in three block

matrices:
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Impact of updated 

Parton Density 

Functions

Evaluated with POWHEG

on particle-level and

transformed to reco-level

with the migration matrix
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Pre-fit and Post-fit plots

The post-fit, |𝜂| −inclusive 𝑝𝑇
ℓ , 𝑚𝑇 distributions obtained with CT18

agree with the data within the uncertainties.
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𝑚𝑊 measurement in categories
In each category, a separate fit for 𝑝𝑇

ℓ (left) and 𝑚𝑇 (right) is performed, followed by a

combined fit across all categories. Results show good compatibility.
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𝑚𝑊 combination
• The final 𝑝𝑇

ℓ −𝑚𝑇 combination is performed using the BLUE approach where the

correlation is obtained by pseudo-experiments. CT18 PDF set is chosen as baseline.

• In agreement with the SM and improvement with respect to 2017 of about 15%.

(Eur. Phys. J. C 84 (2024) 1309).
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𝑚𝑊 uncertainty components

• Final result corresponds to,

• With uncertainty decomposition,

• Using stat. only fit 𝜎stat = 6 MeV and by impacts 𝜎syst = 15 MeV which is

overestimating the current result.
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𝑚𝑊 = 80366.5 ± 9.8 stat. ± 12.5 syst. = 80366.5 ± 15.9 MeV



2018 vs 2024 comparison

• Comparison of the two 𝑚𝑊 measurement performed by ATLAS 

• PDF unc. Improved by 38%.

• QCD unc. (𝐴𝑖 + 𝑝𝑇
𝑊) improved by 47.5%

• Background reduced by 55.6%

• Among other reductions.

𝑚𝑊 [MeV] Total Stat. Syst Muon Elec. Recoil Backg. QCD EW PDF Lumi Γ𝑊
2018 80369.5 18.5 6.8 17.2 6.6 6.4 2.9 4.5 8.3 5.5 9.2 - -

2024 80366.5 15.9 9.8 12.5 5.4 6.0 2.3 2.0 4.4 5.4 5.7 1.3 0.1

Reduction (%) 14.2 - 27.3 18.2 6.3 20.7 55.6 47.5 1.8 38.0 - -
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𝑚𝑊 nuisance parameters pulls

24

NPs inducing the largest 
shift in 𝑚𝑊:

▪ Charm-induced

production for the 𝑝𝑇
𝑊

▪ Electron and muon

calibration

▪ PDF eigen vectors

▪ Missing higher-order

EW corrections



PDF dependency at 𝑠 = 7 TeV

Fits are performed for 𝑝𝑇
ℓ and 𝑚𝑇 using different PDF sets to study the 

𝑚𝑊 dependency
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Γ𝑊 measurement in categories
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In each category, a separate fit for 𝑝𝑇
ℓ (left) and 𝑚𝑇 (right) is performed, followed by a

combined fit across all categories. Results show good compatibility.



Γ𝑊 combination
• The final 𝑝𝑇

ℓ −𝑚𝑇 combination is performed using the BLUE approach where the

correlation is obtained by pseudo-experiments. CT18 PDF set is chosen as baseline.

• In agreement with the SM within 2𝜎 and is the most precise single measurement.
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• Final result corresponds to, 

Γ𝑊 = 2202 ± 32 stat. ± 34 syst. MeV = 2202 ± 47 MeV

With uncertainty decomposition,

Γ𝑊 uncertainty components

28



ATLAS current 𝑚𝑊 status

• The ATLAS collaboration prepares a new
measurement of 𝑚𝑊 using low pile-up data set at
5.02 TeV and 13 TeV.

• This dataset provides a better resolution in the
transverse mass, i.e. more sensitivity of 𝑚𝑇 to 𝑚𝑊 .

• Preliminary results show a competitive precision

compared to other experiments.

• The precise measurement of 𝑝𝑇
𝑊 and 𝑝𝑇

𝑍 was

performed using this dataset Eur. Phys. J. C 84 (2024) 1126
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Conclusions

• Profile likelihood fit improved the 𝑚𝑊 precision with respect to 2017
measurement, leading to:

• First single Γ𝑊 measurement in agreement with SM within 2𝜎

• New measurement of 𝑚𝑊 using low pile-up dataset is in progress with
preliminary results showing a competitive precision.
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𝑚𝑊 = 80366.5 ± 15.9 (± 9.8 ± 12.5) MeV

Γ𝑊 = 2202 ± 47 (±32 ± 34) MeV



BACKUP
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Nominal simulation

Component Description

Generator Powheg (v1/r1556)

Parton shower & hadronization Pythia 8 (v8.170), with AZNLO tune

Hard-process PDF CT10 (2018) or CT18 (2024 baseline)

Parton-shower PDF CTEQ6L1

FSR (final-state radiation) Photos (v2.154)

Underlying event / pile-up Simulated using Pythia 8 (A2 tune)

Tau decays Simulated in Pythia with full polarization handling

W mass and width Nominal values: 𝑚𝑊 = 80.399GeV, Γ𝑊 = 2085 MeV

Detector simulation Full Geant4 simulation with ATLAS geometry
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𝑚𝑊 fit stability
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Γ𝑊 fit stability
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Impacts of systematic in 𝑚𝑊
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Impacts of systematic in Γ𝑊
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