LPNHE Paris

Comité de Suivi Individuel deuxième année

Lavinia Russo LPNHE - Neutrino group

Introduction and little recap

The T2K Experiment

a long-baseline oscillation neutrino experiment

Tokai To Kamioka

The T2K Experiment

a long-baseline oscillation neutrino experiment

Tokai To Kamioka

The T2K Experiment

a long-baseline oscillation neutrino experiment

The ND280 upgrade

The ND280 upgrade

- reproduce the 4π angular acceptance of the far detector (HA-TPC)

Lavinia Russo

reduce the ~400 MeV/c reconstruction momentum threshold and increase the interaction probability (SFGD)

The ND280 upgrade

- reproduce the 4π angular acceptance of the far detector (HA-TPC)

NEUTRINO group @ LPNHE is involved in:

- commissioning, operation, data taking of HA-TPC
- software development for ND280

Lavinia Russo

reduce the ~400 MeV/c reconstruction momentum threshold and increase the interaction probability (SFGD)

The ν_{β} cross section appears:

- explicitly
- implicitly in the detector efficiency
- implicitly in the migration matrix

Lavinia Russo

modelling the neutrino - nucleus cross section is crucial !

- implicitly in the migration matrix

Martini et al model implementation in GENIE MC Generator Introduction

Lavinia Russo

np

First explanation of the MiniBooNE CCQE-like σ

M. Martini, M. Ericson, G. Chanfray, J. Marteau Phys. Rev. C 80 065501 (2009)

inclusion of the multinucleon emission channel - npnh

- MiniBooNE studied CCQE-like events reconstructing just the **leptonic part**
- Genuine CCQE and npnh have the same final states if one looks at the leptonic part \bar{anly}

Many models and many MC event generators

• Main models to calculate the nuclear responses and the ν cross sections:

- Local Fermi Gas + RPA (Nieves et al, Martini et al)
- Hartree-Fock + (Continuum) RPA
- SuperScaling (SuSAv2)

• Main MC event generators for neutrino interactions:

Motivation and strategy

Up to now there is no implementation of Martini et al model in any of the MC generators

Present project : full Martini et al model implementation into GENIE MC generator

\times SuSAv2: npnh [2]

PHYSICAL REVIEW D 101, 033003 (2020)

Implementation of the SuSAv2-meson exchange current 1p1h and 2p2h models in GENIE and analysis of nuclear effects in T2K measurements

S. Dolan, 1,2,3 G. D. Megias, 1,2,4 and S. Bolognesi, 2

Lavinia Russo

Same **strategy**, approach and tools as:

+ CRPA: QE [3]

PHYSICAL REVIEW D 106, 073001 (2022)

Implementation of the continuum random phase approximation model in the GENIE generator and an analysis of nuclear effects in low-energy transfer neutrino interactions

S. Dolan^(D),^{1,*} A. Nikolakopoulos,^{2,†} O. Page^(D),³ S. Gardiner^(D),² N. Jachowicz,⁴ and V. Pandey^(D),^{2,5}

Collaborators: Stephen Dolan and Laura Munteanu @ CERN

npnh implementation total σ on ¹²C

Martini et al model implementation in GENIE MC Generator New results

npnh implementation total σ on ¹²C, ¹⁶O and ⁴⁰Ca

Lavinia Russo

MISMATCH for ¹⁶O and ⁴⁰Ca

CSI - deuxième année 13/05/25

18

CCQE implementation total σ on ¹²C, ¹⁶O and ⁴⁰Ca

Lavinia Russo

MATCHING for the 3 targets

double differential σ ϕ_{ν}^{T2K} on ¹²C CCQE and CCMEC channel

Lavinia Russo

double differential σ $E_{\nu} = 0.575 \ GeV$ on ¹²C CCQE and CCMEC channel

npnh implementation total σ on ¹²C, ¹⁶O and ⁴⁰Ca

Lavinia Russo

GREAT MATCH ! problem solved for ¹⁶O and ⁴⁰Ca

CSI - deuxième année 13/05/25

22

double differential σ $E_{\nu} = 0.575 \ GeV$ on ¹⁶O CCQE and CCMEC channel

The characterisation of the HA-TPCs of upgraded near detector of T2K Introduction

HA-TPCs perfomances

We collect data of 2 types:

cosmic muons

• beam data:

cosmic muons 0

• sand muons

muons from neutrino interactions in ND280 0

CSI - deuxième année 13/05/25

Ζ

HA-TPCs perfomances

We collect data of 2 types:

- cosmic data:
 - cosmic muons

vertical tracks

• beam data:

- cosmic muons 0
- sand muons
- muons from neutrino interactions in ND280

horizontal tracks

CSI - deuxième année 13/05/25

Ζ

The ND280 upgrade me in November 2024 data taking

becoming a TPC expert shifter @ JPARC

Lavinia Russo

event display with the fully upgraded detector

HA-TPCs perfomances

spatial resolution (SR)

- related to the momentum resolution
- ^o better SR \Rightarrow more precise momentum estimation
- requirement: manipultum gas alution $< 10\% \Rightarrow$ SR ~ 0.6 mm
- dE/dx_0 resolution MC Muon MC Electron dFo/dx is used in combination to the momentum to evaluate the likelihood of the particle being an $\mathcal{E}^{\text{Pion}}\mu^-$ or a p 700 ^o better dE/dx res \Rightarrow more reliable PID \circ requirement: dE/dx resolution < 10% 300 200 3000 paper submitted⁰soon⁵⁰ 0 momentum [MeV/c]

Lavinia Russo

I look at the performances comparing data and MC

The characterisation of the HA-TPCs of upgraded near detector of T2K New results

horizontal tracks

dE/dx [a.u.]

Lavinia Russo

• compatibility with what we expect to have in both negative and positive tracks

CSI - deuxième année 13/05/25

dE/dx resolution horizontal tracks

from dE/dx binned in p

- expected dependence on |p|
- 16% discrepancy between data and MC

spatial resolution

Beam

Lavinia Russo

Cosmic

momentum resolution

I produced 3 type of MC (at p = 1 GeV/c)

- vertical tracks (the shortest)
- diagonal tracks
- horizontal tracks (the longest) \rightarrow better momentum resolution

Lavinia Russo

Gluckstern formula

Conferences, experiences and formations de l'ED

Conferences and experiences 1st year

	aim	when	contribution
CERN	start Martini's model implementation	February 2024	:)
JPARC, Tokai - Japan	shifts + CM	March 2024	2 preliminary talks
NuSTEC summer school - CERN	XSec summer school	June 2024	:)
Neutrino 2024 - Milano	conference	June 2024	poster about Martini model implementation into GENIE
T2K workshop - CERN	CM	July 2024	plenary talk on HA-TPCs

NuSTEC 2024 summer school june 2024

Lavinia Russo

train the next generation of scientists working on neutrino-nucleus interactions

Lectures topics:

- theoretical modeling of neutrinonucleus interactions
- neutrino cross section measurements
- MC simulations
- physics at long baseline neutrino experiments

Learning methods:

- lectures
- discussion sessions
- tutorials

Neutrino 2024 my poster on the Martini et al implementation

Lavinia Russo

GENIE MC event generator

Conferences and experiences 1st year

	aim	when	contribution
CERN	start Martini's model implementation	February 2024	:)
JPARC, Tokai - Japan	shifts + CM	March 2024	2 preliminary talks
NuSTEC summer school - CERN	XSec summer school	June 2024	:)
Neutrino 2024 - Milano	conference	June 2024	poster about Martini model implementation into GENIE
T2K workshop - CERN	CM	July 2024	plenary talk on HA-TPCs

Conferences and experiences 2nd year

	aim	when	contribution
JPARC - Tokai, Japan	TPC expert shifts + CM	November 2024	2 preliminary talks
JPARC - Tokai, Japan	TPC expert shifts + CM	March 2025	1 preliminary talk
CERN	finalising Martini's model implementation	May 2025	
IRN meeting - Lyon	conference	June 2025	talk on the HA-TPC
T2K workshop - CERN	CM	July 2025	talk ?
NuFact 2025 - Liverpool	conference	September 2025	parallel talk on GENIE paper
Nulnt 2025 - Mainz	conference	Octorber 2025	poster on GENIE paper

Points de l'école doctorale organisation de PIF

- Formations scientifiques
 - o <u>initiale</u>: cours M2, initiation à un logiciel ou une technique expérimentale
 - o <u>d'approfondissement</u>: cours de l'ED, écoles d'été, cours du collège de France
- Formations d'ouverture
 - <u>découvrir d'autres domaines</u> de la physique ou d'autres sciences
- Formations transverses
 - o renforcer des <u>compétences nouvelles</u> à donner des clés pour définir son projet professionnel

Points de l'école doctorale **Organisation de PIF**

- Formations scientifiques
 - o <u>initiale</u>: cours M2, initiation à un logiciel ou une technique expérimentale
 - <u>d'approfondissement</u>: cours de l'ED, écoles d'été, cours du collège de France
- Formations d'ouverture
 - <u>découvrir d'autres domaines</u> de la physique ou d'autres sciences
- Formations transverses

Chacun doit suivre **un minimum de 90 h** de formation sur l'ensemble de sa thèse, mais il n'est pas possible de valider plus de 40h dans un des trois types de formation

Lavinia Russo

+ formation sur **l'éthique** et intégrité scientifique

+ formation science ouverte

o renforcer des compétences nouvelles à donner des clés pour définir son projet professionnel

Points de l'école doctorale ma situation

Formation	Duration
Cours de français	30 h
MOOC* intégrité scientifique	15 h
MOOC science ouverte	15 h
NuSTEC summer school	40 h
Vacations à l'UPC	24 h
_	10 h

Lavinia Russo

obligatoire

*MOOC = Massive Open Online Courses

Points de l'école doctorale ma situation

Formation	Duration
Cours de français	30 h
MOOC* intégrité scientifique	15 h
MOOC science ouverte	15 h
NuSTEC summer school	40 h
Vacations à l'UPC	24 h
	10 h

À faire :

- formation d'ouverture (10 h)
- MOOC sur intégrité scientifique (~fait)
- MOOC science ouverte (à commencer)

obligatoire

*MOOC = Massive Open Online Courses

Conclusions (1) So far in my PhD:

- Implementation of Martini's et al model in GENIE MC Generator
 - almost finalised project, we are writing a **paper**
- Data analysis and data taking of the HA-TPC of the ND280 in T2K
 - spatial resolution and dE/dx resolution, we are writing a **paper**
 - TPC expert shift at J-PARC
- Experiences and ED points
 - 24 h de vacations à UPC
 - o 60 h de formations transverses, 40h de formations scientifiques

Lavinia Russo

Conclusions (2)

Plans for the future:

- CC0 π cross section analysis:
 - o looking at the interactions in the gas of the HA-TPC and vertical TPCs.
 - project already started by Lukas Koch (still in T2K in Mainz)
- Experiences and ED points:
 - 10 h formations d'ouverture
 - attend the 2 mandatory MOOCs
- Starting writing the thesis (from the 2 on going papers)

Grazie per l'attenzione !

Backup slides

The T2K timeline

Lavinia Russo

*CP (charge, parity) violation = matter-antimatter violation

- identify the neutrino interactions without any mesons in the final state
- E_{ν} is reconstructed **assuming** the interaction is **CCQE** on a stationary nucleon with fixed nuclear binding energy only use lepton kinematics to get E_{ν}^{rec} !

$$E_{\nu}^{rec} \equiv E_{\nu}^{CCQE} = \frac{2 (m_n - E_B) E_l - (E_B^2 - 2m_n E_B^2 + 2E_{\nu})}{2 [(m_n - E_B) - E_l + p_l \cos Q_{\nu}]}$$

smearing from nuclear effects (e.g. Fermi motion) and **bias** from non CCQE backgrounds

Having a (correct) model that describes the ν - nucleus interaction is crucial !

Neutrino oscillation experiment accelerator based case

1. Neutrino beams are not monochromatic

2. Different reaction mechanism contribute

Comparison between models $d^2\sigma$ in NuWro MC generator

- Different approximations by different groups lead to different results by each group
- Models are often mixed (LFG + Martini/ Nieves/SuSA) and this can raise problems

TPC working principle

- a charged particle crosses the TPC
- it ionizes the gas the ionization electrons that drift towards the anode plane
- a 2D projection of the track on the readout plane is produced
- the drift time can be used to reconstruct the 3rd dimension
- the particles' momentum and charge can be determined based on the track curvature produced by \overrightarrow{B}

TPC working principle

- a charged particle crosses the TPC
- it ionizes the gas the ionization electrons that drift towards the anode plane
- a 2D projection of the track on the readout plane is produced
- the drift time can be used to reconstruct the 3rd dimension
- the particles' momentum and charge can be determined based on the track curvature produced by B'

 we have a neutrino interaction in ND280 • the μ crosses the detectors of ND280 (TPCs) \rightarrow we perform PID • we characterise the Φ_{ν} and the $\sigma \rightarrow$ reduce the systematics

How to get the spatial resolution?

- each track is fitted with a circle/parabola
- for each cluster in the track compute the residuals:

$$res = \sqrt{(z_{rec}^{cluster} - z^{track fit})^2 + (y_{rec}^{cluster} - y^{track})^2}$$

- ^o fill a histogram with *res* from all the tracks
- fit the histogram with a gaussian
- $^{\circ}$ SR = σ from the fit

