

Joint Experiment Missions-Extreme Universe Space Observatory

The Mini-EUSO telescope on board the International Space Station: mission results in view of UHECR measurements from space

M. Bertaina – Univ. & INFN Torino for the JEM-EUSO Collaboration for ICRC2025, Geneva

x100 light in JEM-EUSO from point-like sources

J. Adams et al. Astrop. Phys. 44 (2013) 76, S. Abe et al., Eur. Phys. J. C (2023) 83:1028

K. Shinozaki

Mini-EUSO end-to-end calibration @ λ = 400 nm

150

2 140

\$ 130

120

Mini-EUSO measurements over the globe

UV maps – South America

Ver de Mar Santiago San Luis PROVINCE SAN LUIS Nervolice MENDOZA PROVINCE MENDOZA ME

137 sessions performed, only available data till session 44

L. Marcelli et al. Data in Brief 48 (2023) 109105

Change with

Europe maps

Fishing boats and AC modulation

50 Hz modulation over an Indonesian city

Moonless conditions

Moon Phases

45[°]N 0 0 18[°]N 45[°]S

M. Casolino et al.: Remote Sensing of Environment 284 (2023) 113336 ArXiv: 2212.02353

Analyzed sessions: 5 - 19

11

Mini-EUSO EAS trigger probability

S. Abe et al., Eur. Phys. J. C (2023) 83:1028

Combining bckg distrib. and efficiency curves: the integrated exposure curve

Overall experimental confirmation of JEM-EUSO duty cycle

M. Bertaina, UHECR2022

Generalization of the results

• The Moon plays an important role on the background (higher Moon phase means brighter background and longer time with the Moon above the horizon). What would be the impact on a detector working 24/7?

The ratio of the two distributions gives us a conversion factor

Duty cycle expected for a space-based detector

Accumulated exposure by Mini-EUSO

Extrapolating to all good recorded data the expected cumulated exposure for UHECRs is **~6000 L** at the highest energies. This exposure is comparable to the one collected so far by UHECR experiments using the fluorescence technique.

If Mini-EUSO would have operated continously in the past ~5 years it would have accumulated the exposure collected so far by ground-based experiments.

Land vs ocean - differences

The ISS spend ~70.7% of the time over the sea, 29.3% over land. So we can weight the two distribution by a factor (70.7/66.1) for the ocean and (29.3/33.9) for the continents. The results is shown in **blue**, while in **black** the sum without the corrections factors

Repeated ground flashers

M. Battisti/M. Bertaina ICRC2023

M. Battisti

18

UHECRs in JEM-EUSO & ground flashers in Mini-EUSO

Proof of the detection principle of UHECRs from space with signals in Mini-EUSO comparable to those expected in JEM-EUSO

UHECRs in M-EUSO & ground flashers in Mini-EUSO

Scaling factor M/JEM-EUSO: (0.12°/0.074°)x(4.5/4)^{2.5} = 2.2

Proof of the detection principle of UHECRs from space with signals in Mini-EUSO comparable to those expected in M-EUSO

Short Light Transients (SLT) lightcurves

Map of the flasher (108/561) & SLT events

Mini-EUSO – non repetitive 'EAS-like' signal

Focal plane view and lightcurve of the detected signal

• Cosmic ray simulations. Top: focal plane view. Bottom: lightcurves. Left: Zenith angle = 50°. Right: Zenith angle = 80°

ELVES:

37 ELVES detected so far (<1/2 dataset received) mostly in the equatorial region

ELVES:

Meteors:

Mini-EUSO is making the first systematic detection & study from space

~24 k candidates

D. Barghini et al. A&A, 687, A304 (2024) https://doi.org/10.1051/0004-6361/202449236

Cumulative flux density distribution

Comparison of the cumulative flux density distribution of meteoroids computed thanks to the observations of meteors by the Mini-EUSO telescope, resulting from the application of different methods to compute the pre-atmospheric mass of the meteoroid from the intensity of the observed meteor and consisting of different formulations of the luminous efficiency as a function of the pre-atmospheric speed V ∞ , according to the literature. These are: (a) Robertson & Ayers (1968); (b) Verniani (1973); (c) Ceplecha & McCrosky (1976); (d) Halliday et al. (1996), (e) Hill et al. (2005); and (f) Weryk & Brown (2013). In each panel, coloured squares plot the results of Mini-EUSO for mass bins associated with an overall trigger efficiency $\epsilon > 20\%$ and the thick coloured line reports the result of a linear fit in the log-log space. For panel a, the linear fit is made against the whole range of masses, while for panels b-f it is made against the half interval of larger masses and extended to the whole range in order to enhance its visibility. The fitted value of the mass index s for each case

MACROscopic dark matter

"As a complementary effort, experiments with sufficient exposure (> 5 x 10⁵ km² sr yr) are needed to search for Lorentz-invariance violation (LIV), SHDM, and other BSM physics at the Cosmic and Energy Frontiers, and to identify UHECR sources at the highest energies." from SNOWMASS 2021

MACRO candidates in Mini-EUSO searched as fast moving `meteors'

CONCLUSIONS

- Mini-EUSO on ISS for already 5 years.
- Mini-EUSO observes events of different nature showing the broader impact of an UHECR detector in space.
- It proves that it is possible with larger detectors to perform UHECR observation from space.
- Preliminary results indicate that measurements are in agreement with predictions from simulations.

