On the detection of nuclearite events with Mini-EUSO experiment

Rosario Pullano (Univ. Torino)

Framework

We simulate nuclearite events using the De Rujula model

Constant density

Strange matter is assumed to have the same density as nuclear matter

 $\rho_N = 3.6 \times 10^{14} \,\mathrm{g \, cm^{-3}}$

• Energy-loss mechanism

The only dissipation channel is elastic or quasi-elastic scattering with air molecules. A fraction of the energy lost in each collision is converted into light emission.

Geometric cross section

$$\sigma = egin{cases} \pi igg(rac{3\,M}{4\,\pi\,
ho_N} igg)^{rac{2}{3}}, & M \geq 1.5\,\mathrm{ng}, \ \pi imes 10^{-16}\,\mathrm{cm}^2, & M < 1.5\,\mathrm{ng}. \end{cases}$$

• Quasi-elastic "bolide" scattering

The nuclearite is small enough that it does not form an air shell: air molecules interact only with its surface, the thermal velocity of the air is negligible, and the object continues along its path with exponential deceleration.

X7 1 1 1 1 1 1	
Velocity distribution	
	$f(v) = (\pi v_{\rm vir}^2)^{-3/2} 4\pi v^2 \exp[-(v/v_{\rm vir})^2], v_{\rm vir} \simeq 250 \rm km s^{-1}$
Interaction with atmosphere	$rac{dE}{dx} = -\sigma ho_{ m atm}v^2$
Velocity loss	$[\sigma f^L]$
	$v(L) = v_0 \exp \! \left[- rac{\sigma}{M} \int_0^{-} ho_{ m atm}(x) dx ight]$
Apparent magnitude	
	$M_{\rm app} = 2.5 \ln \left[3.31 \times 10^{11} \left(\frac{1 \rm km/s}{v} \right)^3 \right] - 1.67 \ln \left(\frac{M}{1 \mu \rm g} \right) + 5 \ln \left(\frac{h}{10 \rm km} \right)$
Minimum mass for emission	$M_{ m min} = 122.5 {\left(rac{1 \ m km/s}{v} ight)}^3 \ m g$
Minimum velocity for emission	$v_{ m min} = 1{ m km/s}\left(rac{122.5{ m g}}{M} ight)^{1/3}$
Maximum emission height	$h_{ m max} = 3.3 { m km} \ln \! \left[rac{M}{122.5 (rac{1 { m km/s}}{v})^3 { m g}} ight]$

Simulation logic – key steps

• Selection of a valid (M,v)

Velocity from galactic Maxwellian distribution f(v), with v mean 250 km/s Velocity and mass compatible with the emission condition

- Maximum emission height Analytical calculation to delineate the volume of atmosphere in which the nuclearite can actually emit light.
- Random sampling of start point and direction

Starting altitude in the allowed volume Horizontal coordinates x,yx,yx,y sampled within the surface set to starting altitude Inclination angle and azimuth sampled with a specific logic

- Forward/backward dynamic integration
- FoV Check
- Pixel conversion

Event example

Study of efficiency of the trigger: first analysis

mass [g]	bkg = 0,1	bkg = 0,2	bkg = 0.5	bkg = 1	bkg = 2	bkg = 5	bkg = 10
1	9%	4%	0%	3%	0%	0%	0%
4	25%	18%	12%	5%	1%	4%	0%
16	33%	28%	29%	18%	31%	17%	11%
64	35%	50%	30%	44%	45%	22%	17%
256	37%	46%	36%	51%	53%	39%	47%
1024	44%	42%	48%	36%	59%	58%	48%
4096	31%	32%	40%	35%	45%	48%	35%
16384	29%	27%	34%	32%	41%	41%	45%
65536	30%	23%	34%	40%	41%	47%	42%
262144	28%	28%	33%	33%	36%	38%	41%
1048576	26%	28%	37%	37%	31%	39%	38%

H=15, kuL=200, knpmb=64

Check on trigger algorithm

©ESO 2024

Astronomy & Astrophysics manuscript no. output April 10, 2024

Observation of meteors from space with the Mini–EUSO detector on board the International Space Station

D. Barghini^{1,2,*}, M. Battisti^{3,4}, A. Belov^{5,6}, M. Bertaina^{2,3}, S. Bertone², F. Bisconti⁷, C. Blaksley⁸, S. Blin⁴,
K. Bolmgren⁹, G. Cambiè^{7,10}, F. Capel¹¹, M. Casolino^{7,8,10}, A. Cellino¹, I. Churilo¹², A. G. Coretti^{2,3}, M. Crisconio¹³,
C. De La Taille¹⁴, T. Ebisuzaki⁸, J. Eser¹⁵, F. Fenu¹³, G. Filippatos¹⁵, M. A. Franceschi¹⁶, C. Fuglesang⁹, D. Gardiol¹,
A. Golzio¹⁷, P. Gorodetzky⁹, F. Kajino¹⁸, H. Kasuga⁸, P. Klimov⁵, V. Kungel¹⁹, V. Kuznetsov¹², M. Manfrin^{2,3},
L. Marcelli⁷, G. Mascetti¹³, W. Marszat²⁰, M. Mignone³, H. Miyamoto^{2,3}, A. Murashov⁶, T. Napolitano¹⁶,
H. Ohmori⁸, A. Olinto¹⁵, E. Parizot⁴, P. Picozza^{7,10}, L. W. Piotrowski^{21,**}, Z. Plebaniak^{7,10,20}, G. Prèvôt⁴,
E. Reali^{7,10}, F. Reynaud², M. Ricci¹⁶, G. Romoli^{7,10}, N. Sakaki⁸, S. Sharakin⁶, K. Shinozaki²⁰, J. Szabelski²²,
Y. Takizawa⁸, V. Vagelli¹³, G. Valentini¹³, M. Vrabel²⁰, L. Wiencke¹⁹, and M. Zotov⁶

(Affiliations can be found after the references)

Received ; accepted

pixels lasting 4 consecutive GTUs

Trigger 1 (Miyamoto et al. 2019)

- Divides the PDM focal surface into 25 overlapping virtual Elementary Cells (ECs), each formed by a 2 × 2 MAPMT array.
- For every pixel, continuously computes the background mean (μ) and standard deviation (σ) over the previous 16 GTUs and sets the threshold T = μ + 3 σ .
- Scans each EC: a trigger is issused if in any area of 3x3 pixels T is exceeded in 4 consecutive GTUs
- On trigger, records a buffer of 64 GTUs before and 64 GTUs after threshold crossing.

Meteor vs Nuclearite speed

Typical meteor speed: 40 km/s \rightarrow 6 km/pix / 40 km/s = 150 ms/pix \sim 4 D3GTU/pix

Typical nuclearite speed: 250 km/s --> 6 km/pix / 250 km/s = 24 ms/pix ~ **0.6 D3GTU/pix**

Parameter kUL

• The parameter kUL (upper-limit) sets a cap on the "sigma-excess" that each pixel can contribute to the trigger:

$$\frac{\operatorname{count_{trg}} - N}{\sigma}$$

- \bullet If this value exceeds kUL, the event is discarded (or that contribution is ignored).
- In effect, kUL limits the trigger's response to overly bright events, preventing a single flash from saturating the algorithm or producing false positives.

Parameter kNpixMaxBox

- The parameter kNpixMaxBox regulates the maximum number of pixels, within a single Virtual EC (16 × 16 pixels), that can exceed the threshold simultaneously.
- If the number of above-threshold pixels in that cell exceeds kNpixMaxBox, the entire event is discarded as "too extensive" (typical of large-scale luminous phenomena such as lightning or reflections).
- This filter discriminates point-like meteors (few pixels) from larger, more diffuse optical structures.

Table 3:	Trigger	efficiency	for	detection	of	nuclearite	\mathbf{events}	without	cloud
threshold	s - Parar	neters kUI	_ =	1.00E+09	knj	pixmaxbox	= 64		

We conducted different sets of efficiency simulations for nuclearites:
--

- kUL=1e9 and kNpixMaxBox=64.
- kUL=200 and kNpixMaxBox=257.
- kUL=1e9 and kNpixMaxBox=257.

mass [g]	bkg = 0,1	bkg = 0,2	bkg = 0,5	bkg = 1	bkg = 2	$\mathbf{b}\mathbf{k}\mathbf{g}=\mathbf{b}$	bkg = 10
1	9%	4%	1%	1%	0%	0%	1%
4	26%	21%	12%	12%	1%	2%	0%
16	37%	33%	29%	16%	27%	17%	12%
64	36%	51%	28%	44%	45%	23%	17%
256	43%	47%	37%	54%	56%	44%	45%
1024	54%	57%	47%	48%	61%	58%	52%
4096	61%	58%	59%	53%	61%	59%	52%
16384	62%	55%	60%	56%	56%	61%	50%
65536	63%	49%	68%	59%	60%	66%	51%
262144	56%	70%	52%	54%	62%	64%	64%
1048576	67%	56%	63%	62%	61%	67%	60%

Table 2: Trigger efficiency for detection of nuclearite events without cloud thresholds - Parameters kUL = 200 knpixmaxbox = 257

mass [g]	bkg = 0,1	bkg = 0,2	bkg = 0,5	bkg = 1	bkg = 2	bkg = 5	bkg = 10
1	7%	5%	0%	1%	0%	1%	0%
4	22%	15%	11%	8%	1%	1%	1%
16	38%	27%	28%	15%	30%	14%	12%
64	33%	56%	27%	42%	44%	21%	21%
256	36%	45%	41%	48%	49%	42%	49%
1024	47%	41%	48%	35%	52%	54%	49%
4096	27%	36%	42%	34%	49%	46%	36%
16384	31%	33%	38%	38%	38%	42%	47%
65536	30%	30%	39%	39%	42%	46%	40%
262144	29%	23%	34%	37%	34%	37%	39%
1048576	30%	30%	40%	34%	34%	40%	41%

Table 4: Trigger efficiency for detection of nuclearite events without cloud thresholds - Parameters kUL = 1.00E+09 knpixmaxbox = 257

mass [g]	bkg = 0,1	bkg = 0,2	bkg = 0.5	bkg = 1	bkg = 2	bkg = 5	bkg = 10
1	10%	3%	1%	2%	0%	0%	1%
4	22%	20%	12%	7%	1%	1%	0%
16	36%	29%	26%	14%	30%	12%	10%
64	37%	54%	32%	44%	46%	23%	20%
256	42%	51%	40%	55%	48%	43%	47%
1024	59%	61%	47%	45%	58%	57%	48%
4096	63%	64%	59%	56%	55%	58%	52%
16384	56%	57%	58%	59%	54%	61%	50%
65536	64%	52%	68%	64%	61%	57%	50%
262144	53%	63%	47%	55%	60%	67%	62%
1048576	66%	60%	65%	61%	59%	71%	60%

- kUL=1e9 and kNpixMaxBox=64.
- kUL=200 and kNpixMaxBox=257.
- kUL=1e9 and kNpixMaxBox=257.

Heat map - Trigger efficiency for detection of nuclearite events without cloud thresholds Parameters kUI = 200 knpixmaxbox = 257

Heat map - Trigger efficiency for detection of nuclearite events without cloud thresholds Parameters kUL = 1.00E+09 knpixmaxbox = 64

Conclusion

For very large masses the counts become so high that the " σ -excess" exceeds the limit of 200 and is clipped, reducing the efficiency. By resetting $k_{\rm UL}$ to a virtually unlimited value (10⁹), this filter no longer intervenes and high-mass events are correctly triggered.

• We also studied the case with cloud threshold set (h > 15 km)

bkg = 0.5 bkg = 1bkg = 0,1bkg = 0,2bkg = 2bkg = 5bkg = 10mass [g] 0% 0% 0% 0% 0% 0% 4%1 6% 2%2%2%0% 0% 7% $\mathbf{4}$ 2%1610%24%13%6%5%1%29%18%24%25%18%17%12% $\mathbf{64}$ 28%38% 37% 24%38%43%25%256102446%39% 42%28%34%43%36%33% 41%28%47%50%4096 23%25%24%33% 25%34%34%50%37%1638429%32%31%31%18%29%34%6553621%25%26%31%23%262144 29%31%28%31%33%26%30% 31%1048576 29%

Table 5: Trigger efficiency for detection of nuclearite events with cloud thresh-

olds set to 15 km - Parameters kUL = 200 knpixmaxbox = 64

Heat map - Trigger efficiency for detection of nuclearite events with cloud thresholds set to 15 km Parameters kUL = 200 knpixmaxbox = 64

Heat map - Trigger efficiency for detection of nuclearite events with cloud thresholds set to 15 km Parameters kUL = 200 knpixmaxbox = 257

Table 6: Trigger efficiency for detection of nuclearite events with cloud thresholds set to 15 km - Parameters kUL = 200 knpixmaxbox = 257

mass [g]	bkg = 0,1	bkg = 0,2	bkg = 0,5	bkg = 1	bkg = 2	bkg = 5	bkg = 10
1	2%	0%	0%	0%	0%	0%	0%
4	8%	4%	3%	1%	1%	0%	0%
16	10%	21%	17%	8%	5%	2%	3%
64	32%	22%	26%	29%	17%	20%	12%
256	43%	26%	41%	32%	27%	36%	27%
1024	46%	32%	42%	31%	32%	41%	39%
4096	23%	30%	29%	39%	35%	45%	48%
16384	22%	29%	28%	28%	34%	47%	34%
65536	24%	28%	32%	31%	30%	26%	33%
262144	22%	22%	27%	22%	32%	24%	29%
1048576	29%	25%	36%	28%	29%	32%	29%

Table 7: Trigger efficiency for detection of nuclearite events with cloud thresholds set to 15 km - Parameters kUL = 1.00E+09 knpixmaxbox = 64

mass [g]	bkg = 0,1	bkg = 0,2	bkg = 0.5	bkg = 1	bkg = 2	bkg = 5	bkg = 10
1	1%	0%	0%	0%	0%	0%	0%
4	5%	5%	2%	3%	0%	0%	0%
16	13%	24%	14%	5%	6%	1%	4%
64	30%	22%	24%	30%	20%	20%	12%
256	52%	32%	41%	33%	28%	39%	26%
1024	57%	44%	57%	39%	41%	44%	37%
4096	36%	56%	43%	64%	39%	58%	56%
16384	52%	50%	53%	61%	50%	59%	53%
65536	57%	59%	49%	60%	51%	43%	50%
262144	52%	45%	56%	60%	64%	45%	61%
1048576	56%	59%	68%	55%	51%	53%	45%

Table 8: Trigger efficiency for detection of nuclearite events with cloud thresholds set to 15 km - Parameters kUL = 1.00E+09 knpixmaxbox = 257

mass [g]	bkg = 0,1	bkg = 0,2	bkg = 0.5	bkg = 1	bkg = 2	bkg = 5	bkg = 10
1	0%	1%	0%	0%	0%	0%	0%
4	5%	7%	4%	3%	0%	0%	0%
16	12%	24%	14%	6%	5%	3%	6%
64	30%	21%	24%	31%	18%	17%	16%
256	53%	35%	42%	33%	29%	38%	24%
1024	54%	48%	53%	39%	39%	43%	37%
4096	37%	60%	40%	61%	37%	57%	62%
16384	54%	51%	56%	64%	51%	56%	52%
65536	51%	57%	54%	61%	49%	42%	52%
262144	53%	47%	56%	61%	70%	46%	62%
1048576	57%	57%	70%	55%	56%	56%	48%

Heat map - Trigger efficiency for detection of nuclearite events with cloud thresholds set to 15 km Parameters kUL = 1.00E+09 knpixmaxbox = 257

Next step: further consideration for flux estimation

- Fraction of events in the Mini-EUSO FoV Assume trajectory events are isotropically distributed within a sphere, and model the Mini-EUSO field of view as a cone (or pyramid) inscribed in that sphere. A first, naive estimate gives theoretical fraction: 0.46704, numerical result: 0.4669.
- Fraction of sub-threshold–velocity events Compute the fraction of events whose velocity falls below the minimum required for emission. An initial estimate by integrating the Maxwellian speed distribution—yields approximately zero.
- Altitude-restricted fraction within the FoV Of the events inside the FoV, determine the fraction occurring between the cloud threshold at **15** km and the maximum emission altitude.

Flux calculation

Apply the detector's efficiency estimate to this final fraction to obtain the expected flux.

Next step: curve fit of nuclearite efficiency

- The goal is to derive a parametric fit for the efficiency so that, for any given mass and background level, we can directly estimate the corresponding efficiency.
- $\in = \in (mass, bkg)$
- The same study Dario Barghini made with meteor efficiency

Thank you