The Giant Radio Array for Neutrino Detection (GRAND) Claire Guépin (CG), Laboratoire Univers et Particules de Montpellier On behalf of the GRAND collaboration

GRAND Concept

10'000s radio antennas over 10'000s km2 in several sub-arrays at favorable sites worldwide
scalable, cheap, robust radio antennas, ideal for giant arrays

Expected performances

What do we need for UHE neutrino astronomy?

- excellent sensitivity
- sub-degree angular resolution
- wide instantaneous field of view

 10^{-10}

 10^{6}

 10^{7}

 10^{8}

Neutrino energy $E_{\nu}[\text{GeV}]$

Guépin, KK, Oikonomou, 2023

 10^{9}

 10^{10}

3

Radio signals at our detectors

Experience: LOPES, LOFAR, AERA, CODALEMA, TREND, AugerPrime Radio...

Footprint

- Emission ~ point-like around shower max.
- Spherical wavefront
- Emission in few deg. cone around shower axis
- "Cherenkov ring": around 1° at highest frequencies

Traces & Pulses

- Frequency range : 50-200 MHz
- Transient pulses, duration: <~ 100ns
- Amplitude of detectable signals at unit level: $> 3-5 \sigma$ above stationary Galactic background
- Amplitude scales linearly with particle energy
- Detection energy threshold with 5 units: 10^{16.5} eV

GRAND Challenges

Low-complexity, robust, low-cost detection units

- Low noise system
- Robust for desert environments & temperature fluctuations
- Simple deployment for large numbers

Autonomous triggering on radio signals

- Ultra-dominant noise: ideal quiet sites
- New electronics development necessary: high sampling rate & autonomous triggering
- Identification of signals + R&D NUTRIG
- Online processing for lower data rate
- Previous successful efforts in other contexts: ANITA, TREND

Reconstruction of shower parameters

- Different physics, asymmetries, ground reflections... for very inclined air-showers (B field effects Chiche et al. 2023, Guelfand et al. 2024)
- New reconstruction methods to develop & test (Decoene et al. 2022...)

Data volume & transfer: low-rate, low-power

- Huge data volume (~10 kBy/trigger)
 - GP300 (nominal) rate: L1 trigger: 1 kHz, L2 trigger: 10 Hz
 - NUTRIG target: L1 trigger: 100 Hz, L2: 1 Hz
- Offline treatment reduction to few infos (trigger time, amplitude, polar)...
 - -> to implement online

2023-2024: turning point for GRAND

Cross-calibration

Prototypes set-up

GRAND Coll. in prep.

Common set-up

- Same overall components
- Antenna arms: response differ due to mechanical structure
- Front-End Board: ADC 500MS/s,14 bits, FPGA + 4 CPUs
- Trigger algorithm: unbiased trigger, 10 s, 20 Hz mode
- Common data format

Testing robustness to environments

- GRAND@Auger: humidity, noise level (LNA), constraints: mechanical struct., power
- GRANDProto300: stability, coincident trigger
- Firmware (transient trigger) different

Prototypes: GRAND@Auger

GRAND Coll. in prep.

Cross-calibration with Auger detectors:

1 coincident event/day expected

10 antennas deployed:

Auger mechanical structure + infrastructure

- Hardware tests: set-up stability
- Firmware tests, trigger / transient detection

Layout GRAND@Auger

Prototypes: GRANDProto300

GRAND Coll. in prep.

GRAND detection concept validation:

Autonomous triggering & inclined EAS reconstruction

65 antennas deployed

- Hardware tests: long-term stability, self-made noise control, LNA optimization
- Firmware tests, trigger / transient detection
- Cosmic ray search

- Clean spectra for all antenna arms [30 - 250 MHz]
- Peaky lines from airplanes, FM, etc.
- Galactic noise + instrumental noise

slide by Sei Kato Vietnam 2024

First set of reconstructed events

GRANDProto300

offline coincidence search from beacon

- spherical wave front model (SWF)
- 171 events reconstructed /173 pulses emitted in time window
- 10 m std deviation on Northing/Westing positions

Conclusions:

- Trigger system works: L1 for GP300, L1 + L3 for GRAND@Auger
- GPS timing works

L2 L3 100 Hz 1 kHz FLT-0 FLT-1 SLT on FPGA on CPU on central DAQ Template fitting Crude reconstruction Threshold trigger on trace/wavelet vs CNN with FLT-1 data

online coincidence search at central DAQ (L3)

- 3 consistent independent analysis (Analytic PWF, PWF/SWF)
- azimuth and zenith consistent with direction of village, towards ground

For more detail:

Mitra et al., PoS(ICRC2023)236, Duan et al., PoS(ICRC2023)298, Ma et al., PoS(ICRC2023)304, Chen et al., PoS(ICRC2023)1023, Xuet al., PoS(ICRC2023)1024, Chiche et al., PoS(ARENA2024)059, Kotera et al., arXiv:2408.16316v2

Cosmic-ray (CR) event search

slide by J. Lavoisier

11

CR events search: first candidates

90

PRELIMINARY

slide by J. Lavoisier

Reconstruction efforts

Realistic simulation libraries: GRAND "Data Challenge 2"

- > 200,000 simulations: raw/hardware like, ADC/Efield traces
- Traces: 4.096 us, downsampled to 500Mhz, with saturation
- Antenna response and RF chain included
- Jitter: 22uV/m Gaussian noise, 5 ns Gaussian smeared "trigger" time, "Amplitude Calibration" gaussian smeared 7.5%

Electric field reconstruction

- E-field reconstruction with CNN
- Direction reconstruction based on polarization
- De-noising of E-field/ADC using ML

Inclined Air Shower Reconstruction

- Plane Wave Front (PWF): fast timing & direction reconstruction (analytical, with error calc.)
- Fitting (empirical and Physics informed) of Angular Distribution Function (ADF)
- Empirical fitting of lateral distribution function
- GNN for EAS studies

For more detail:

Decoene et al., Astroparticle Physics145, 102779 (2023) Chiche et al., PRL 132, 231001 (2024) Guelfand et al JCAP 5, 055 (2024) Alvarez-Muniz et al., arXiv:1810.09994 (2018) Macias et al., Pos(ARENA2024)062 Benoit-Lévy et al., JINST19(4), P04006 (2024)

Software pipeline: GRANDlib

Python offline software package for the GRAND collaboration: tool to manage and analyze data

GRAND Coll. 2024

https://github.com/grand-mother/grand

- User friendly tool. No need to install ROOT
- Modules for coordinate systems, topography and geomagnetism
- Includes galactic noise and RF chain parameters
- Standard code for signal processing
- Tools to store data in a standard file format and manage them
- Refer to grand/examples for example scripts

Perspectives: HERON

• 24 phased stations ("BEACON-type")

- 70 km linear along mountain, altitude 1000 m
- each station contains: 24 compact radio antennas
- station surface: ~100 m2 each
- separation between stations: ~ 3 km

• 360 standalone antennas ("GRAND-type")

- altitudes between 500 m and 1500
- R&D for GRAND: external trigger plugged on autonomous GRAND systems & interferometry

The GRAND Collaboration

130 members, 14 countries: Argentina, Belgium, Brazil, China, Czech Republic, Denmark, France, Germany, Greece, Japan, Netherlands, Norway, Poland, USA

18 Member & Associate Institutes represented at the Board

- Hellenic Open University (HOU)
 - Institut d'astrophysique de Paris (IAP)
 - Institute of Physics of the Czech Academy of Sciences (FZU)
 - Inter-University Institute for High Energy at Vrije Universiteit Brussel (IIHE-VUB)
 - Karlsruhe Institute of Technology (KIT)
 - Laboratoire de Physique Nucléaire et des Hautes Energies (LPNHE)
 - Laboratoire Univers et Particules de Montpellier (LUPM)
 - Radboud University
 - University of Warsaw
 - Nanjing University
 - National Astronomical Observatories, Chinese Academy of Sciences (NAOC)
 - Purple Mountain Observatory (PMO)
 - Xidian University
 - Pennsylvania State University (PSU)
 - San Francisco State University (SFSU)
 - Universidade Federal do Rio de Janeiro (UFRJ)

Nanjing Collaboration Meeting @ Purple Mountain Observatory, May 2024