Black Hole Ergosphere

SQM-ISS: Update on the activity and ESA implementation

Zbigniew Plebaniak INFN Rome Tor Vergata

On behalf of the SQM-ISS group Big Bang cosmology S. Blin, M. Casolino, D. Pilot, F. Liberatori, A. Marcelli, L. Marcelli, E. Parizot, E. Reali, J. Szabelski et al.

The 37th JEM-EUSO meeting, June 6th 2025, APC - Paris

SQM - stable matter containing strange quarks

The idea of Strange Quark Matter (SQM) suggests that matter composed of up (u), down (d), and strange (s) quarks can form stable, large droplets due to its potentially lower energy per baryon compared to ordinary nuclear matter. The inclusion of strange quarks, reduces degeneracy pressure and creates a more energetically favorable state. This stability is theorized to occur in extreme astrophysical environments like neutron star cores or remnants from the early universe.

No new physics required

- lower Fermi energy per nucleon with quark s
- lower Z/A due to cancelation of charge
- no limits for A number (possible huge clusters of strange 'baryons')

Phase diagram of Quantum Chromodynamics (QCD) as a function of temperature T and baryon chemical potential μ . The diagram shows the transition from the hadronic (confined) phase to the quark-gluon plasma (QGP), including regions of non-CFL and CFL deconfined quark matter. The CFL phase is particularly relevant for the possible stability of SQM at high densities and low temperatures, as found in compact stars.

Two phases of SQM

Ordinary SQM (non CFL):

- Potentially produced in accelerators
- High temperature 100 300 MeV
- A_{min}: 50-300

Hole Ergosphere

- Non-stable, lifetime ~10⁻²³s
- Charge: Z between 0.1A and 8A^{1/3}

Colour-Flavour-Locked SQM:

- Produced in neutron stars
- Low temperature, few MeV
- A_{min}: 10-50
- Stable, lifetime infinite
- Charge: Z~0.3A^{2/3} Madsen PRL 87 (2001) 172003
- **CLF** is the highest-density phase of three-flavor colored matter within the SM

Charged strangelets should give detectable signal in scintillators

Source:

https://www.slideserve.com/russ/strangelets-and-nuclearites-an-overview

Astrophysical implications of SQM

SQM potentially produced in:

- Big bang
- Neutron stars, collisions
- Quark (strange) stars
- LHC (ALICE), RHIC (STAR)

SQM matter is a good candidate for DM!!!

SQM / MACROS detection

Direct (live)

- PAMELA (2006-2016)
- AMS-02 (2011-now)
- SQM-ISS (proposed/under construction

Indirect (atmospheric)

- Mini-EUSO
- DIMS

Direct ("dead/dying")

- Moon soil
- Earth soil
- Mica tracks
 - Impact craters
 - Seismometers

Mini-EUSO - meteors and nuclearites

Black Hole Ergosph

- Intensity range: magnitudes ranging from +7 (limiting magnitude) to approximately -3.
- Dataset: 24,000 meteors recorded during 40 observation sessions.
- Duration: Typical durations ranged from 0.5 to 2.25 seconds.
- Only three potential interstellar meteors with 85 ± 15 km/s, 87 ± 33 km/s and 98 ± 21 km/s

Observation of meteors from space with the Mini-EUSO detector on board the International Space Station A&A, 687, A304 (2024) For more details see poster by L. Marcelli, 15.05, 22:14

DIMS, F. Kajino, Konan University

Payload for Antimatter Matter Exploration and Light-nuclei Astrophysics

- No evidence of Strange Quark Matter was detected by PAMELA
- Strict upper limit for SQM flux was set at 10⁻⁸ cm⁻²s⁻¹sr⁻¹ for particles with masses around 10⁻⁸g
- SQM is extremely rare or undetectable with current experimental sensitivity
- Detection of high-A particles is challenging due to their low Z/A ratios

Lunar seismometers and soil mass spectrometry

Apollo seismometers, 28 events Nakamura, Frohlich, Icarus 185 (2006) 21–28

Lunar seismometers and soil mass spectrometry

To produce the observed monthly periodicity, the Moon's interior must have properties that stop SQM, or SQM nuggets must have certain yet-unknown properties that prevent them from passing through the Moon. For example, if SQM nuggets possess a density much lower than 10^{14} g/cm³, this lower density might increase their cross section and allow them to penetrate the crust but be stopped in the mantle.

Zoology of slow compact objects

10⁴⁵ mass (GeV) 10³⁹ Magnetic quark nugget Six flavour dark matter 10³³ SQM 10²⁷ Axion quark nugget Electroweak symmetric Daemons dark matter balls 10²¹ 10¹⁵ Fermi balls 10⁹ Magnetic QBalls 10³ monopole Cosmic rays 1 1 1 1 1 10^{-3} 10^{-1} 10^{-5} 10^{-2} 10-4 ν (β) Earth Low Earth bound Solar-system particles orbit Galaxy-bound particles bound particles

SQM-ISS proposal submitted in 2022

Black Hole Ergosphere

eesa	Start Activity	Explore Help			Q Search	Log In	Register
	🖌 Draft	✓ Qualification	✓ Evaluation	✓ Selected			
		IDEA: 1-20					
		rch for Stra on board t	-				
		Stat					
с	ampaign: Reserve pool	s of Science Activities fo	r ISS: A SciSpacE Anno	uncement of Oppo	ortunity		
	k Hole Ergosphere	SQM-	ISS				

SQM-ISS observational approach

Search for Strange Quark Matter and Nuclearites on Board the International Space Station (SQM-ISS): A Future Detector to Search for Massive, Non-Relativistic Objects in Space

Massimo Bianchi¹, Francesca Bisconti¹, Carl Blaksley², Valerio Bocci³, Marco Casolino ^{1,2,4,*} Francesco Di Clemente 50, Alessandro Drago 50, Christer Fuglesang 60, Francesco Iacoangeli 30, Massimiliano Lattanzi⁷, Alessandro Marcelli¹⁰, Laura Marcelli^{4,*0}, Paolo Natoli⁵, Etienne Parizot⁸, Piergiorgio Picozza¹, Lech Wiktor Piotrowski ⁹⁽⁶⁾, Zbigniew Plebaniak ^{1,4}⁽⁶⁾, Enzo Reali ¹⁽⁶⁾, Marco Ricci ¹⁰⁽⁶⁾, Alessandro Rizzo 110, Gabriele Rizzo 120 and Jacek Szabelski 13

- ¹ Physics Department, Università degli Studi di Roma Tor Vergata, 00133 Rome, Italy; bianchi@roma2.infn.it (M.B.); francesca.bisconti@roma2.infn.it (F.B.); alessandro.marcelli@roma2.infn.it (A.M.); picozza@roma2.infn.it (P.P.); zbigniew.plebaniak@roma2.infn.it (Z.P.); reali@roma2.infn.it (E.R.)
- RIKEN, Wako 351-0198, Japan; saishokukenbi@gmail.com
- INFN (National Institute for Nuclear Physics), Structure of Rome, 00133 Rome, Italy; valerio.bocci@roma1.infn.it (V.B.); francesco.iacoangeli@roma1.infn.it (F.L)
- INFN (National Institute for Nuclear Physics), Structure of Rome Tor Vergata, 00133 Rome, Italy Department of Physics and Earth Sciences, Università degli Studi di Ferrara, 44122 Ferrara, Italy;
- francesco.diclemente@unife.it (F.D.C.); drago@fe.infn.it (A.D.); paolo.natoli@fe.infn.it (P.N.)
- KTH Royal Institute of Technology, 11428 Stockholm, Sweden; cfug@kth.se
- INFN (National Institute for Nuclear Physics), Structure of Ferrara, 44122 Ferrara, Italy; lattanzi@fe.infn.it
- APC (Laboratoire Astroparticule & Cosmologie), Univ Paris Diderot, CNRS/IN2P3, CEA/Irfu, Obs. de Paris, Sorbonne Paris Cité, 75013 Paris, France; parizot@apc.in2p3.fr
- Faculty of Physics, University of Warsaw, 00-927 Warsaw, Poland; lech-wiktor.piotrowski@fuw.edu.pl ¹⁰ INFN (National Institute for Nuclear Physics), National Laboratories of Frascati, 00044 Frascati, Italy; marco.ricci@lnf.infn.it
- ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Radioprotection Institute (IRP), 00196 Rome, Italy; alessandro.rizzo@enea.it
- Longviews S.r.l., 00134 Rome, Italy; gabrief@gmail.com
- Stefan Batory Academy of Applied Sciences, Stefana Batorego 64C, 96-100 Skierniewice, Poland; jxszabel@gmail.com
- Correspondence: marco.casolino@roma2.infn.it (M.C.); laura.marcelli@roma2.infn.it (L.M.)

Abstract: SQM-ISS is a detector that will search from the International Space Station for massive particles possibly present among the cosmic rays. Among them, we mention strange quark matter, Q-Balls, lumps of fermionic exotic compact stars, Primordial Black Holes, mirror matter, Fermi balls, etc. These compact, dense objects would be much heavier than normal nuclei, have velocities of galaxybound systems, and would be deeply penetrating. The detector is based on a stack of scintillator and piezoelectric elements which can provide information on both the charge state and mass, with the additional timing information allowing to determine the speed of the particle, searching for particles with velocities of the order of galactic rotation speed (v ≤ 250 km/s). In this work, we describe the apparatus and its observational capabilities.

Keywords: strange quark matter; SQM; ISS; space detector

check for

Citation: Bianchi, M.; Bisconti, F.; Blaksley, C.; Bocci, V.; Casolino, M.; Di Clemente, F.; Drago, A.; Fuglesang, C.; Iacoangeli, F.; Lattanzi, M.; et al. Search for Strange Ouark Matter and Nuclearites on Board the International Space Station (SOM-ISS): A Future Detector to Search for Massive. Non-Relativistic Objects in Space. Sensors 2024, 24, 5090. https:// doi.org/10.3390/s24165090

Academic Editor: Ismael Martel Bravo Received: 6 June 2024

Revised: 22 July 2024 Accepted: 1 August 2024 Published: 6 August 2024

SQM-ISS - block and the functional schemes

Black Hole Freospher

SQM-ISS Work Breakdown Structure

Black Hole Ergosphere

SQM-ISS laboratory model in preparation

Black Hole Ergosphere

- Geometrical factor: 111cm²sr for 4 plates, 154cm²sr for three plates coincidence
- Each scintillator plate is read by 10 SiPMs, two per strip
- ToF window between 2.5 25 µs for particles at SEECHO, NEACHO, and GESCO
- Power consumption ~35W
- Minimal charge Z≥4 to eliminate background, low energy protons (e.g. SAA)

Scintillating detector and Time of Flight - first tests

« Timing science » ?

Single ns required for SQM

Particle ID of SQM : 3 quarks: 1 up, 1 down et 1 strange : m_{up}=1 MeV

m_{down}=1 MeV m_{strange}=150 MeV

Consider like a neutral particle

Charge deposit in plastic by SQM ?

S.Blin, E.Parizot, D.Pailot APC

Scintillating detector and Time of Flight - first tests of laboratory model

ToF characteristic

- One scintillating plate will be divided into 4 bars (10 cm long, 2SiPM) - 4x5x2 = 40 SiPMs
- SiPMs: Hamamatsu C15524
- CAEN N842 CFD module
- TDC board: xHPTDC8-PCIe by Cronologic with ~20ps resolution
- Scintillator: EJ-208

DC8-PCIe Guide

Black Hole Frøospher

Black Hole Frøospher

Black Hole Frøospher

Constant Fraction Discriminator

- CAEN N842 used in laboratory model
- Not sensitive to the amplitude in defined range
- Gives timing of the signals with similar shapes
- May be problematic if the signal amplitude has high variability
- In flight model we can use Mesytec MCFD-16, Twin_Peaks_CFD1 or similar module for integration

Black Hole Ergospher

ToF - delayed signal

Black Hole Froosphere

SQM-ISS piezoelectric detector

Black Hole Frgosphere

Detection of PBHs - work by F. Liberatori and M. Casolino

Primordial black holes (PBHs), hypothetical black holes formed from high-density fluctuations in the early universe, remain unconfirmed, but the **SQM-ISS** detector is designed to capture their gravitational signals and could potentially detect them via piezoelectric channel

$$a_{\min} = \frac{5 \text{ mV}}{S} = \frac{5 \text{ mV}}{100 \text{ mV}/g} = 0.05 \text{ } g \approx 0.49 \text{ m/s}^2.$$
$$a(z) = \frac{F_z}{M} = -\text{sign}(z) \frac{2Gm_{bh}}{R^2} \left(1 - \frac{z}{\sqrt{R^2 + z^2}}\right) \qquad a(z) \ge a_{\min}$$

The minimum acceleration of **0.49 m/s²** is related to **minimal measurable mass of PBH** of **5 x 10⁶ kg**

- We have already produced elements of the lab model. We expect the flight within 2 years
- The ToF solutions already tested with resolution <2ns. Piezoelectric part and front-end electronic should be designed by the end of 2025
- The project is interdisciplinary, considering the diversity of hypotheses about the existence of objects it may detect
- We are finalizing **System Requirements and Activity Requirements** documentation

Thank you for your attention

Black Hole Ergosphere

Backup slides

Pong cosmology

SQM predictions are strongly model dependent

J. Madsen, 1995, https://arxiv.org/pdf/hep-ph/9502242

J. Madsen, 2001, https://arxiv.org/pdf/hep-ph/0108036