RADIO SIMULATIONS UPDATE

Paula Gálvez Molina¹ ^o Austin Cummings² ^o Frank Schröder¹

University of Delaware¹ ° Pennsylvania State University²

UNIVERSITY OF DELAWARE BARTOL RESEARCH INSTITUTE

analogous to

CORSIKA

alc6658@psu.edu

paulagm@udel.edu

Simulation of extensive air showers initiated by high energy cosmic ray particles

→ AireS

Code extension from respective parent software to allow for radio emission of the showers.

SIMULATION SOFTWARE

AireS

xtends

ZHAireS

PBR COLLABORATION MEETING, JUNE 5TH 2025 \circ \circ \circ 2

CORSIKA

includes

Simulation of extensive air showers initiated by high energy cosmic ray particles

analogous to

analogous to

Coreas

Code extension from respective parent software to allow for radio emission of the showers.

RASPASS

ZHAireS-RASPASS (Aires Special Primary for Atmospheric Skimming Showers). Standalone version of ZHAireS that accommodates simulations of diverse shower geometries, including downward-going, upward-going, Earth-skimming, and atmosphere-skimming showers.

SIMULATION SOFTWARE

AireS xtends **ZHAireS** xtends to

CAP01(2025)112

PBR COLLABORATION MEETING, JUNE 5TH 2025 \circ \circ \circ 2

GEOMETRY

GEOMETRY

GEOMETRY

Payload Altitude (RASPASSHEIGHT) - 36 km a.s.l

Payload Altitude (RASPASSHEIGHT) - 33 km a.s.l

Atmosphere-skimming Cosmic Ray Shower

Payload Altitude (RASPASSHEIGHT) - 33 km a.s.l

Atmosphere-skimming Cosmic Ray Shower

Local frame of reference

Payload Altitude (RASPASSHEIGHT) - 33 km a.s.l

Atmosphere-skimming Cosmic Ray Shower aka High-Altitude Horizontal Air showers (HAHA)

Local frame of reference

Payload Altitude (RASPASSHEIGHT) - 33 km a.s.l

Atmosphere-skimming Cosmic Ray Shower aka High-Altitude Horizontal Air showers (HAHA)

Local frame of reference

Zenith angle (PrimaryZenith) - less than ~96°

Payload Altitude (RASPASSHEIGHT) - 33 km a.s.l

Atmosphere-skimming Cosmic Ray Shower aka High-Altitude Horizontal Air showers (HAHA)

RASPASSDistance

Local frame of reference

Zenith angle (PrimaryZenith) - less than ~96°

paulagm@udel.edu

• Geometry of antenna positions is nontrivial and is accounted for:

33km Intersection points for $\theta = 79.5^{\circ}$

- Geometry of antenna positions is nontrivial and is accounted for:
 - Intersection of cone about shower axis with payload altitude

33km Intersection points for $\theta = 79.5^{\circ}$

- Geometry of antenna positions is nontrivial and is accounted for:
 - Intersection of cone about shower axis with payload altitude
 - Earth shadowing effects (paths which cannot reach payload) taken into account

33km Intersection points for $\theta = 79.5^{\circ}$

- Geometry of antenna positions is nontrivial and is accounted for:
 - Intersection of cone about shower axis with payload altitude
 - Earth shadowing effects (paths which cannot reach payload) taken into account
- Above horizontal showers captured

33km Intersection points for $\theta = 79.5^{\circ}$

paulagm@udel.edu

RUNNING SIMULATIONS

Running on the University of Delaware's cluster: Caviness

Cores used: 33

alc6658@psu.edu

paulagm@udel.edu

RUNNING SIMULATIONS

- Running on the University of Delaware's cluster: Caviness
- Cores used: 33

paulagm@udel.edu

Total run time for a single shower with pseudo-parallelization: 1 hour 10 minutes*

RUNNING SIMULATIONS

- Running on the University of Delaware's cluster: Caviness
- Cores used: 33

paulagm@udel.edu

Total run time for a single shower with pseudo-parallelization: 1 hour 10 minutes*

PBR COLLABORATION MEETING, JUNE 5TH 2025 • • • *Thus, with the resources available, we can run in the order of 50-100 showers daily

RUNNING SIMULATIONS

- Running on the University of Delaware's cluster: Caviness
- Cores used: 33

paulagm@udel.edu

- Total run time for a single shower with pseudo-parallelization: 1 hour 10 minutes*
- Parameter set up:
 - → Primary particle: Proton, Electron
 - \vdash Energy of primary: 1000 PeV
 - \rightarrow Zenith: 93° (Atmosphere-skimming)
 - \rightarrow Azimuth: 0
 - \rightarrow RASPASSHeight: 36000.00
 - \rightarrow RASPASSDistance: 1367862.44
 - \rightarrow Geomagnetic Field: 51.683e3 nT, -90.0°, 0.0°
 - Thinning factor: 1e-5 \square
 - TimeDomainBin 0.1 ns

RUNNING SIMULATIONS

SAMPLE SIMULATIONS

SAMPLE SIMULATIONS

Primary: Proton, Energy = 1000 PeV, θ = 93° Ran with RASPASS

SAMPLE SIMULATIONS

SAMPLE SIMULATIONS

alc6658@psu.edu paulagm@udel.edu

SAMPLE SIMULATIONS

Primary: Electron, Energy = 1000 PeV, θ = 93 ° Ran with RASPASS

Primary: Proton, Energy = 1000 PeV, θ = 93 ° Ran with RASPASS

Antenna at x = -61734.65 m, y = 0 mEx Ey Ez 205600 205800 206000 206200 206400 Antenna at x = -40048.39 m, y = 0 mEx Ey Ez 133400 133600 133800 134000 134200 Antenna at x = 0.0 m, y = 0 mEx Ey Ez 200 400 600 800 0 Time (ns)

paulagm@udel.edu

Simulate showers using the updated script for antenna placement (denser antenna pattern)

- Simulate showers using the updated script for antenna placement (denser antenna
 - pattern)

paulagm@udel.edu

Perform study to compare and validate RASPASS results with CORSIKA 7 for atmosphere-skimming showers

paulagm@udel.edu

- Simulate showers using the updated script for antenna placement (denser antenna pattern)
- Perform study to compare and validate RASPASS results with CORSIKA 7 for atmosphere-skimming showers
- Generate full set of simulations (across energy and zenith angle range). We expect to have a robust set in a couple of weeks

NEXT STEPS

paulagm@udel.edu

- Simulate showers using the updated script for antenna placement (denser antenna pattern)
- Perform study to compare and validate RASPASS results with CORSIKA 7 for atmosphere-skimming showers
- Generate full set of simulations (across energy and zenith angle range). We expect to have a robust set in a couple of weeks
- Add electronic response (e.g. Offline) to simulations

NEXT STEPS

paulagm@udel.edu

- Simulate showers using the updated script for antenna placement (denser antenna) pattern)
- Perform study to compare and validate RASPASS results with CORSIKA 7 for atmosphere-skimming showers
- Generate full set of simulations (across energy and zenith angle range). We expect to have a robust set in a couple of weeks
- Add electronic response (e.g. Offline) to simulations

Get a background for the simulations: ideally (once available) measured background from PUEO + measurements of our antennas + DAQ at a quiet location

NEXT STEPS

paulagm@udel.edu

SUMMARY

paulagm@udel.edu

- Currently using **RASPASS** for simulations, we will perform comparison study for atmosphere-skimming (zenith 90-96) showers with CORSIKA v7
- There is a script for antenna positioning that accounts for the geometry of HAHAs and Earth-shadowing effects that will be implemented next for the dataset of simulations

SUMMARY

paulagm@udel.edu

- Currently using **RASPASS** for simulations, we will perform comparison study for atmosphere-skimming (zenith 90-96) showers with CORSIKA v7
- There is a script for antenna positioning that accounts for the geometry of HAHAs and Earth-shadowing effects that will be implemented next for the dataset of simulations
- We are capable of running a full shower simulation in about an hour and produce about 50-100 showers per day.

SUMMARY

BACKUP SLIDES

Phys. Rev. D 104, 063029

Primary: Electron, Energy = 1000 PeV, θ = 93 ° Ran with RASPASS

Primary: Proton, Energy = 1000 PeV, θ = 93 ° Ran with RASPASS

2D ELECTRON INTENSITY

alc6658@psu.edu

paulagm@udel.edu