

Mechanical Group Report

Paris 2025

Thursday, June 5th 2025

Engineers: Paul Degarate, Neville Dewitt Pierrat, William Finch, Derek Lapp, Josh Moses, Ben Stillwell

Students: Levi Barr-On, Julia Burton-Heibges, Trenton Frederik, Auston Froid, Conrad Shay, Luke Wanner

Faculty: Austin Cummings, Johannes Eser, George Filappatos, Tobias Heibges, Eric Mayotte*, **Stephen Meyer, Tom Paul, Lawrence Weincke**

- > Very near to the design completion → Moving from design phase to construction phase
- > Procurement has already started on some components
 - Mirror cell components are already underway
 - Ready for a large procurement order for Gondola and Telescope
 - 50% Tariffs on AI may cause problems as they were not accounted for in the original budget
 - \rightarrow In effect, as of yesterday...
- > On schedule, but the timeline is tight → It will be a very busy fall

Summary

> Last chance for any major design change requests passes after this meeting

Outline

- >> New Figures for Conferences
 - Payload
 - Telescope
- > Mechanical Design Status
 - Gondola
 - Telescope
 - Mirror Assembly
 - Radio Frame and Mast
- > FEA and Testing Status
 - Gondola and Telescope
 - Radio Mast
 - Bonded Joints
 - Mirror Assembly
- > Timeline and Outlook

Payload

Payload Scaled

PBR Telescope

Primary Mirror Assembly

- Gondola
- Telescope
- Mirror Assembly
- Radio Frame and Mast
- Payload

PBR Gondola

Engineer: Ben Stillwell Univerisity of Chicago

PBR Gondola

RIAL	QTY.
75-T6	9
75-T6	2
75-T6	4
04	8
51-T6	2
75-T6	2
75-T6	4
75-T6	2
75-T6	2
75-T6	2
F CHI	CAGO
RADIO	(PBR)
AME	911 - 18. I
	REV
SM	WIP

PBR Deck Components

SIP (Support Instrumentation Package)

- ► TRDSS
- Iridium
- Starlink
- Science Stack
- Insulation needs to be determined

Ballast Hopper

- Only 1 Hopper on PBR
- 600 lbs Balast Max
- Mounted at CoM
- Weight metered from below

Currently a carbon copy of SPB2

PBR Main Solar Array

> Single side (no skirt) confirmed as rotator is considered qualified

See Julia's talk for details on power system

PBR Backup CSBF Solar Array

Backup CSBF Solar Array

- > 5 panels in total
- For control of the Payload if the rotator fails
- If needed balloon mission terminates

01

See Julia's talk for details on power system

Rotator

Good progress is being made

See Lawrence's Talk for Details

PBR Telescope

Telescope Structure and Darkbox

Engineer: Paul Degarate Halley Tech Engineering

Engineer: William Yitz Finch Colorado School of Mines

Telescope Frame

Telescope Structural comlete!

- Full frame in place with Fasteners, gussets, and major interfaces.
- > Feature complete with:
 - Movable Ekit shelf
 - Dark box paneling
 - Shutters
 - ACP mounting
- > Optically, we are hitting Takky's prescription
- Still only have the large blocky stand in the camera shelf
 - With up-to-date designs of FC and CC mechanics, we can make the shelf
 - Planing for CC FC separately adjustable ± 2.5 cm toward / away from the mirror

Telescope Frame

Telescope Structural comlete!

- > Full frame in place with Fasteners, gussets, and major interfaces.
- > Feature complete with:
 - Movable Ekit shelf
 - Dark box paneling
 - Shutters
 - ACP mounting
- > Optically, we are hitting Takky's prescription
- Still only have the large blocky stand in the camera shelf
 - With up-to-date designs of FC and CC mechanics, we can make the shelf
 - Planning for CC FC separately adjustable ± 2.5 cm toward / away from the mirror

Telescope Darkbox

- **Conceptual Darkbox is finished.**
- > Paneled design slotting into aluminum bracing.
- Panels likely needing removal during
 integration are planned to use quick release
 bolts + regular bolts (installed for flight)
- The rear box is designed to maintain access to the mirror cells after the rear darkbox frame is installed by removing panels.

Telescope Darkbox

- **Conceptual Darkbox is finished.**
- > Paneled design slotting into aluminum bracing.
- Panels likely needing removal during
 integration are planned to use quick release
 bolts + regular bolts (installed for flight)
- The rear box is designed to maintain access to the mirror cells after the rear darkbox frame is installed by removing panels.

Telescope Darkbox Layers

Dark box to be constructed out of multi-layer panels consisting of:

- >> 6.7 mil Mylar: 24 m^2 → 5.7 kg
- > Titan RF for EMI shielding 24 m^2
 - ~2 kg (Verified by company as 80g/m^2)
 - A Second layer is a possibility if needed
 - Need a good way to ensure a conductive connection to the AI Frame.
- > -100°— 200°C RTV to bond Mylar / Titan RF
- ≫ ¾-inch thick Foamular 400 polystyrene foam
- > Musou black for internal reflectance ~ 1kg

Total weight ~20kg (44 lbs)

Telescope Darkbox Layers

Dark box to be constructed out of multi-layer panels consisting of:

- > 6.7 mil Mylar: 24 m^2 → 5.7 kg
- > Titan RF for EMI shielding 24 m^2
 - ~2 kg (Verified by company as 80g/m^2)
 - A Second layer is a possibility if needed
 - Need a good way to ensure a conductive connection to the AI Frame.
- > -100°— 200°C RTV to bond Mylar / Titan RF
- > 3/4-inch thick Foamular 400 polystyrene foam
- > Musou black for internal reflectance ~ 1kg

Total weight ~20kg (44 lbs)

Hook and Loop and Conductive Thread

> Conductive thread and hook-and-loop are being considered to provide a conductive bond between the **Faraday fabric of panels and the Aluminum Frame**

DuraGrip[®] Brand - 2" - Electrically Conductive Hook

Be the first to review this product

Not eligible for Free Shipping Part Number#: DG20ELCH IN STOCK

DuraGrip[®] brand Electrically Conductive Hook is coated in liquid silver to optimize conductivity. With resistivity of 1.8 Ohms per square inch, this product produces 0.8 Ohms of resistivity during closure (when mated with Loop) and is great for anti-static applications, such as clean room environments or electronic assembly plants, where workers may be tethered in order to ground them. The military also has use for this material, using it to shield tents and other equipment from outside radio frequencies.

- Sold by the yard, 10 yard minimum
- Silver coating produces 0.8 Ohms resistivity during closure
- Ideal for RF/EMI shielding and grounding straps
- Life of around 5,000 cycles

Primary Mirror Assembly Engineer: William Yitz Finch Cotopaxi Engineering / Colorado School of Mines

- > Mirror:
 - 11mm thick Borosilicate glass, 18 lbs per segment, RoC 1660 mm
- > Glue Bond:
 - Epoxy Bond of the mirror cell and pads
- > 2.5 cm Kovar Glue Pads:
 - Kovar has the same thermal properties as the mirror glass
 - 9 pads per mirror cell
- > Flexure Assembly
 - 6061 Al springs to absorb thermal loads
- > Whipple Tree
 - Aluminum the assembly to map pads to the glass and evenly distribute loads
- > Aiming and Frame Mounting
 - Aluminum assembly for precision alignment of mirrors

- > Mirror:
 - 11mm thick Borosilicate glass, 18 lbs per segment, RoC 1660 mm
- > Glue Bond:
 - Epoxy Bond of the mirror cell and pads
- > 2.5 cm Kovar Glue Pads:
 - Kovar has the same thermal properties as the mirror glass
 - 9 pads per mirror cell
- > Flexure Assembly
 - 6061 AI springs to absorb thermal loads
- > Whipple Tree
 - Aluminum the assembly to map pads to the glass and evenly distribute loads
- >> Aiming and Frame Mounting
 - Aluminum assembly for precision alignment of mirrors

- > Mirror:
 - 11mm thick Borosilicate glass, 18 lbs per segment, RoC 1660 mm
- > Glue Bond:
 - Epoxy Bond of the mirror cell and pads
- > 2.5 cm Kovar Glue Pads:
 - Kovar has the same thermal properties as the mirror glass
 - 9 pads per mirror cell
- > Flexure Assembly
 - 6061 AI springs to absorb thermal loads
- > Whipple Tree
 - Aluminum the assembly to map pads to the glass and evenly distribute loads
- >> Aiming and Frame Mounting
 - Aluminum assembly for precision alignment of mirrors

- > Mirror:
 - 11mm thick Borosilicate glass, 18 lbs per segment, RoC 1660 mm
- > Glue Bond:
 - Epoxy Bond of the mirror cell and pads
- > 2.5 cm Kovar Glue Pads:
 - Kovar has the same thermal properties as the mirror glass
 - 9 pads per mirror cell
- > Flexure Assembly
 - 6061 AI springs to absorb thermal loads
- > Whipple Tree
 - Aluminum the assembly to map pads to the glass and evenly distribute loads
- >> Aiming and Frame Mounting
 - Aluminum assembly for precision alignment of mirrors

- > Mirror:
 - 11mm thick Borosilicate glass, 18 lbs per segment, RoC 1660 mm
- > Glue Bond:
 - Epoxy Bond of the mirror cell and pads
- > 2.5 cm Kovar Glue Pads:
 - Kovar has the same thermal properties as the mirror glass
 - 9 pads per mirror cell
- > Flexure Assembly
 - 6061 AI springs to absorb thermal loads
- > Whipple Tree
 - Aluminum the assembly to map pads to the glass and evenly distribute loads
- >> Aiming and Frame Mounting
 - Aluminum assembly for precision alignment of mirrors

- > Mirror:
 - 11mm thick Borosilicate glass, 18 lbs per segment, RoC 1660 mm
- > Glue Bond:
 - Epoxy Bond of the mirror cell and pads
- > 2.5 cm Kovar Glue Pads:
 - Kovar has the same thermal properties as the mirror glass
 - 9 pads per mirror cell
- > Flexure Assembly
 - 6061 AI springs to absorb thermal loads
- > Whipple Tree
 - Aluminum the assembly to map pads to the glass and evenly distribute loads

> Aiming and Frame Mounting

 Aluminum assembly for precision alignment of mirrors

Mirrors Delivered by Olomouc

- > All 18 Mirrors arrived safely at Mines
 - 2 prototypes + 16 production (9 Top, 9 Mid)
- > Full Surface inspection of Prototypes
- Production mirrors were inspected to ensure they were undamaged in transit
- Solution Boxes large enough to ship mirrors to NZ with full Whipple-Tree and mating assembly

																	Mirror shape			Nominal d	limensions								
																		A [mm]	B [mm]	C [mm]	D [mm]	E [mm]	F [mm]						
																	TOP	596.83	503.98	555.44	555.44	772.79	772.77						
									1659.8								MID	627.70	599.94	500.97	500.97	783.32	783.31						
18ks (9+9)									ROC = 1659	.8 mm +-2	2.5 mm			Rmin>80%	6														
														Refle	ectance 300-	600nm			Di	imension difere	ence from nomin	nal	-	pozn			Dimer	nsions	
	Т	М	After CNC	After polishing	After coating	After measurir	ng In box	shipped	ROC [mm] hickr	ess in c	orners [mm	SF D95 [mm]2	l min R [%]	max R [%]	mean R [%]		A [mm]	B [mm]	C [mm]	D [mm]	E [mm]	F [mm]		A [mm]	B [mm]	C [mm]	D [mm]	E [mm]
PM30	М	М	1	1	1	1	1	0	1659.0 -0	.80 ####	#####	#### ####	1.1	83.3	91.2	88.6	М	-0.80	-0.34	-0.37	-0.17	0.08	-0.11		626.9	599.6	500.6	500.8	783.4
PM31	М	М	1	1	1	1	1	1	1659.0	0.8 ###	#####	#### ####	2.2	82.8	91.3	88.0	М	0.20	0.36	0.03	-0.27	-0.02	-0.01	shipped	627.9	600.3	501.0	500.7	783.3
PT32	Т	Т	1	1	1	1	1	1	1659.0	-0.8 ####	#####	#### ####	1.5	84.3	91.8	89.4	Т	-0.93	1.42	1.36	0.76	-0.49	-0.97	shipped	595.9	505.4	556.8	556.2	772.3
PT33	Т	Т	1	1	1	1	1	0	1661.0	.20 ####	#####	#### ####	1.4	82.7	90.9	88.2	Т	-1.13	-0.08	1.36	1.76	-0.59	-0.67		595.7	503.9	556.8	557.2	772.2
PT34	Ŧ	Ŧ	4	4	4	4	0	Q	1662.0	20 ####	#####	##### #####	1.2	83.0	91.4	88.0		-1.83	-0.98	0.56	0.96	-0.79	-0.97	2x zaštípnuto hrana X+	595.0	503.0	556.0	556.4	772.0
PM35	М	М	1	1	1	1	1	0	1661.0 1	.20 ###	#####	#### ####	2.0	82.7	90.8	87.8	М	0.20	-0.04	-0.27	-0.27	-0.12	-0.01		627.9	599.9	500.7	500.7	783.2
PM36	М	М	1	1	1	1	1	0	1662.0 2	.20 ###	#####	#### ####	2.0	83.1	91.3	88.2	М	-0.60	0.06	-0.67	-0.57	-0.02	-0.01		627.1	600.0	500.3	500.4	783.3
PT37	Т	Т	1	1	1	1	1	0	1660.0	.20 ###	#####	#### ####	1.1	82.5	90.6	87.3	Т	-0.83	1.22	0.56	0.16	-0.79	-0.57		596.0	505.2	556.0	555.6	772.0
PT38	Ŧ	Ŧ	4	4	4	4	Q	Q	1661.0 1	.20 ####	<i>####</i>	##### #####	2.0	82.8	90.8	87.7		- 0.83	-0.28	1.46	-0.24	-0.69	-0.77		596.0	503.7	556.9	555.2	772.1
PM39	М	М	1	1	1	1	1	0	1660.0	.20 ###	#####	#### ####	2.4	83.1	91.5	88.3	М	-0.30	0.16	-0.37	-0.17	0.18	0.19		627.4	600.1	500.6	500.8	783.5
PT40	T	T	1	1	1	1	1	0	1659.0 -0	.80 ###	<i>####</i>	#### ####	1.3	82.5	90.6	87.5	T	-0.43	-0.98	0.36	1.36	-0.79	-0.57		596.4	503.0	555.8	556.8	772.0
PM41	M	M	1	1	1	1	1	0	1660.0	.20 ###	<i>####</i>	#### ####	1.2	83.0	91.3	87.8	М	-0.10	0.06	-0.17	-0.07	0.18	0.19		627.6	600.0	500.8	500.9	783.5
PT42	T	T	1	1	1	1	1	0	1660.0	.20 ###	#####	#### ####	1.4	83.2	91.6	88.5	T	-1.83	-0.98	0.56	0.96	-0.79	-0.97		595.0	503.0	556.0	556.4	772.0
PM43	M	M	1	1	1	1	1	0	1660.0	.20 ###	##### 	#### #### 	1.7	83.2	91.4	88.3	M	-0.10	0.06	-0.67	0.03	0.28	0.29		627.6	600.0	500.3	501.0	783.6
P144	<u> </u>	1	1	1	1	1	1	0	1660.0	.20 ###	##### 	#### #### 	1.3	82.7	90.6	87.2		-0.63	-0.58	0.76	1.76	-0.49	-0.37		596.2	503.4	556.2	557.2	772.3
PM45	M	M 	1	1	1	1	1	0	1660.0	.20 ###	# #### 	#### #### 	1.4	82.3	90.1	87.3	M	-0.40	0.86	-0.37	-0.47	-0.22	-0.01		627.3	600.8	500.6	500.5	783.1
P146		1	1	1	1	1	1	0	1658.0 -1	.80 ###	* ####	#### #### 	1.3	82.7	90.0	87.2	T	-0.83	0.72	1.76	1.56	-0.39	-0.57		596.0	504.7	557.2	557.0	772.4
PM47	<u>₩</u>	1	+	+	+	+		•	1660.0	20 ####	• *****	***** *****	1.4	82.9	90.5	87.5		-0.20	0.36	-0.37	0.03	0.08	0.09	rysky na tunkoni plose	627.5	600.3	500.6	501.0	783.4
P148	<u>.</u>		1	1	1	1	1	0	1658.0 -1	.80 ###	+ ####	#### #### ####	1.7	83.1	90.4	87.4		-0.13	-0.18	1.76	1.76	-0.39	-0.37		596.7	503.8	557.2	557.2	7/2.4
PM49	M -	M T	1	1	1	1	1	0	1659.0 -0	.80 ###	* #####	#### ##### ####	1.3	83.2	90.6	87.8	<u>м</u> т	-0.10	0.76	0.03	0.03	0.08	0.09		627.6	500.7	501.0	501.0	783.4
P150	-	I	1	1	1	1	1	0	1658.0 -1	.80 ###1	* ####	#### ####	1.3	83.2	90.4	87.6		-0.23	-0.78	1.36	0.96	-0.49	-0.37		596.6	503.2	556.8	556.4	112.3
					+		+ +				╉╌╌╂																		t'
						<u> </u>	+				╉╌╌╂										<u> </u>								t'
																													

> Measurements of all 18 mirrors provided

- RoC + Sizes all within spec
- Size varies ±1.5mm
- 6mm inter-mirror gaps, which means choosing which mirror to use where is nontrivial
- > Mirror reflectivity is same as SPB2
- > All data on Mech Wiki

Mirrors Measurments

F [mm]	
783.2	
783.3	
771.8	
772.1	
771.8	
783.3	
783.3	
772.2	
772.0	
783.5	
772.2	
783.5	
771.8	
783.6	
772.4	
783.3	
772.2	
783.4	
772.4	
783.4	
772.4	

Mirror Gluing Procedure Conrad Shay, Luke Wanner, Viktoria Kungel

- > PBR Gluing procedure largely follows SPB2 procedure developed by Viktoria, with some significant changes
 - Revision of the priming procedure
 - Glue quantity is higher and metered by weight
 - Thickness not controlled by the spacer
- > Results in very high bond strengths
 - No glue bond failures under 400 lbs (181 kg)
 - Demonstrably now stronger than the glass
- > Mirror Gluing stand is under development to port the single pad gluing procedure to the full mirror procedure
 - Will use the actual Whipple tree that will live with the mirror as the template
 - Will test to ensure accurate, strong bonding

RI Frame and Mast

Engineer: Neville DeWitt Pieratt Firebrand Engineering

FIREBRAND ENGINEERING

RI Antenna, Frame, and Mast

Design Requirements:

- Antenna separation from telescope: 0.5 m minimum
- RF transparent materials
- Metallic fasteners and brackets permitted if <10cm and not in antenna LOS</p>
- Alignment tolerance with telescope: ±1°
- Panel size: 60" x 62" (1.52 m x 1.57 m)
- Weight limit: 150 lbs total
- Survive 8G shock load with 1.25 safety factor
- Survive 15kt wind gust at launch conditions
- ► Temperature range: -70°C to +100°C
- Survive UV exposure for 100 days
- Target cost: \$10k

Calculated Figures of Merit

Figure	Value
Assembly Weight	147 lbs*
Ultimate Design Load	3300 lbf
Ultimate Safety Factor –	2.8
8G shock load	
Required Safety Factor –	1.25
8G shock load	

*Excludes cables and electronics

RI Clearance from Telescope

> Telescope Clearance:

- 0.5 m from the nearest Aluminum member
- Telescope nearest angle 41.4°

> Shutter Clearance:

- When open Al shutter edge: 51.5°
- Can shorten shutter or use fibrglass frame

RI Mast: Materials

> Frame Members:

- Mainly Fiberglass L-Bar up to 12'
- G10 ideal composite, but only 3' max
- Glass Fiber Reinforced Vinyl-Ester (GFRV) chosen as a G10 replacement
 - → Pultex 1625 Series Thermoset Vinyl Ester Class 1 FR composite, manufactured by Creative Pultrusions, Inc → Precut, formed, drilled, and UV-white coated
- More than strong enough at 100°C
- Testing needed to confirm performance @ -70°C \rightarrow Will be performed at a Testing lab

\succ Joints and fasteners

- Steel bolts (not behind or in front of RI)
- Aluminum blocking for telescope mounting
- G10 Plate as gussets to reinforce Joints near RI

RI Mast: Materials

>> Frame Members:

- Mainly Fiberglass L-Bar up to 12'
- G10 ideal composite, but only 3' max
- Glass Fiber Reinforced Vinyl-Ester (GFRV) chosen as a G10 replacement
 - → Pultex 1625 Series Thermoset Vinyl Ester Class 1 FR
 composite, manufactured by Creative Pultrusions, Inc
 → Precut, formed, drilled, and UV-white coated
- More than strong enough at 100°C
- Testing needed to confirm performance @ -70°C
 → Will be performed at a Testing lab
- >> Joints and fasteners
 - Steel bolts (not behind or in front of RI)
 - Aluminum blocking for telescope mounting
 - G10 Plate as gussets to reinforce Joints near RI

RI Antenna and Frame

>> Antenna

- Antenna Substrate: FR4 ~0.51 mm
- Antenna printed in Copper
- Gold-plated feedthroughs to electronics

> Frame

- Frame of FR4 blocking incorporated into the Antenna assembly
- Antenna structure is 2 layers of FR4 with an infill of 0.5 in Aramid honeycomb
- Safety strapping to the FR4 frame planned via a slot cut into the FR4 front plate.

Payload

Launch Configuration

For launch, the payload will be pointed downward, and we will use the "Wideshort" launch configuration:

- > The Radio Frame is too wide to fit in the tall configuration when pointed to Hz
- This configuration provides the highest ground clearance
- Since the Radio is pointed down, it has a very low wind cross-section at ground level
 - During ascent, it has a higher crosssection to vertical wind loads.

- Gondola and Telescope
- Radio Mast
- Bonded Joints
- Mirror Assembly

NASA mechanical requirements

The strength of the gondola system shall be demonstrated by showing a positive margin of safety (MS) for individual components and assembly interfaces for the given loading environment when the factors of safety given in Table 3 are applied.

The margins of safety are determined by multiplying the design limit load (or stress) by the appropriate factor of safety and comparing it to either the yield or ultimate material allowable strength as shown in the following equations:

TYPE OF HARDWARE	DESIGN FACTOR OF SAFETY						
	Yield	Ultimate	Proof Test				
Metallic Structures							
Flight Structure - metallic only	1.25	1.4	N/A				
Preloaded Joints	1.25	1.4	N/A				
Fasteners	1.25	1.4	N/A				
Welds	N/A	1.5	1.2				
Suspension Systems							
Wire Rope Cables, Slings, Cable assemblies, Shackles, Turnbuckles, etc.	N/A	1.4	*				
Soft-body Structures							
Slings, Webbing	N/A	2.0	*				
Composite Flight Structure							
Uniform Material	N/A	1.5	1.2				
Bonded Joints/Inserts	N/A	2.0	1.2				
Stability/Buckling							
Stability/Buckling - metallic only	N/A	1.4	N/A				
Stability/Buckling - composite	N/A	1.5	N/A				
Pressure Vessel Systems	Ref: GSFC-STD-8009, ANSI/AIAA S-080A-2018						
*: based upon NASA review of GP hard	lware						

$$MS_u = \frac{P_u}{FS_u P} - 1$$

$$MS_y = \frac{P_y}{FS_y P} - 1$$

where

FS_u	is the ultimate Factor of Safety
FSy	is the yield Factor of Safety
P	is the limit load (or stress) calculated in the analysis
Pu	is the load (or stress) at which material failure will occur
Py	is the load (or stress) at which material yielding will occur
MSu	is the Margin of Safety against ultimate failure
MSy	is the Margin of Safety against material yielding

At pre-loaded interfaces, the analysis shall show positive margins for all components which comprise the interface - fittings, bolts, rivets, etc., when subjected to the loads given in Section 3.3 and the margins given in Section 3.4. Fitting analysis of critical components shall meet Section 4.4.2, Certification of Fasteners.

Payload Loading model

Total mass = maximum allowable payload mass ٠

= CSBF MPV of 5500 lb - 915 lb (min) above pin = 4585 lb Modelled subsystem masses are greater than estimated values for those components to reflect MPV.

- Analysis mass = 4585 lb flight rigging (95 lb) = 4490 lb ≈ **4500 lb** •

Payload Load Cases and FEA

Payload FEA Results

> Plot Reading

- 6061 yeild + 1.25 SF @ 26.4 ksi Orange
- 7075 yeild + 1.25 SF @ 55.2 ksi Red
- Some artifact stress (usually max) not usually significant if isolated and far from significant stresses

> Interpretation

- Gondola requires 7075 Al but has a good margin with its use
- 6061 would hit yeild so if used members would need to be thickened
- The telescope and rotator are more than strong enough to bear loads.

Rotator FEA Results

> Some trouble with the rotator

- Teeth on the gear may fail under acceleration as low as 3.6g
- Only a few teeth would fail, but rotation would be gone
- Some NASA concerns on a cascading failure of more and more teeth being removed, causing catastrophic failure.
- Solutions are not yet known. Maybe steel gearing?

See Lawrence's talk for more details

RI Frame and Mast: Strength and Testing

Table 2: Design Limit Loads

	Design Lim	it Loads (DL	L) G's			
Structural Flight Hardware	Vertical	45 Deg	Horizontal	Calculated Figures of Merit		
	0	8 4		Figure	Value	
Table 3:	Design Factors of	Assembly Weight	147 lbs			
				Ultimate Design Load	3300 lbf	
TYPE OF HARDWARE	DESIGN	FACTOR OF SA	FETY	Ultimate Safety Factor –	2.8	
	Yield	Ultimate	Proof Test	8G shock load		
				Required Safety Factor –	1.25	
Composite Flight Structure			·	8G shock load		
Uniform Material	N/A	1.5	1.2			

- > Bearing Failure at joints determines overall strength → Strength per bolt: G10 1100lbs, GFRV 200lbs
- > Addressed with G10 Gussets, Aluminum blocking
- > Samples will be professionally tested at high/low temperatures
- > Safety straps to be added anyway

> Mirror:

- 11mm thick Borosilicate glass, 18 lbs per segment, RoC 1660 mm
- > Glue Bond:
 - Epoxy Bond of the mirror cell and pads
- > 2.5 cm Kovar Glue Pads:
 - Kovar has the same thermal properties as the mirror glass
 - 9 pads per mirror cell
- > Flexure Assembly
 - 6061 Al springs to absorb thermal loads
- > Whipple Tree
 - Aluminum the assembly to map pads to the glass and evenly distribute loads
- > Aiming and Frame Mounting
 - Aluminum assembly for precision alignment of mirrors

Bonded Joint Requirements

Table 2: Design Limit Loads

	Design Limit Loads (DLL) G's							
Structural Flight Hardware	Vertical	45 Deg	Horizontal					
	8	4	4					

Table 3: Design Factors of Safety

TYPE OF HARDWARE	DESIG	N FACTOR OF SA	F SAFETY		
	Yield	Ultimate	Proof Test		

Composite Flight Structure		g.	r
Uniform Material	N/A	1.5	1.2
Bonded Joints/Inserts	N/A	2.0	1.2
Stability/Ruckling			

Figure 6: Three configurations of load cases that need to be tested

EUSO-SPB2 Telescope Temperatures

Mirrors Glued at ~25°C Flight as cold as -50°C

→ Glue bond must also handle load from $\Delta T = -75^{\circ}C$

Bonded Joint FEA @ 8G / -100°C ΔT

Tensile

Max Single Pad 45.7 lbs

Tensile

Shear

Max Single Pad 41.4 lbs

Majority of Pad Force is Shear

NASA requires 8G with SF of 2.0 Pads must bear 45.7 lbs * 2.0 = 91.4 lbs

Bonded Joint Testing Setups

(a) sketch of lever arm setup

lever arm.

Figure 9: Lever arm testing setup

(a) Shear testing stand. Allows parallel force on the glue pad while protecting the glass piece.

(b) Tensile testing stand. The foam was used to soften the load and lead bags were used to counterweight the pulling of the cable.

Figure 8: Diagram of Pully System

Bonded Joint Tests Tensile

Cold Longterm

NO BOND FAILURES UNDER 399 lbs → **MSu** = 3.37

Shear

Question on Proof Testing

Table 2: Design Limit Loads

	Design Limit Loads (DLL) G's							
Structural Flight Hardware	Vertical	45 Deg	Horizontal					
	8	4	4					

Table 3: Design Factors of Safety

TYPE OF HARDWARE	DESIC	FETY	
	Yield	Ultimate	Proof Test

Composite Flight Structure			, ,
Uniform Material	N/A	1.5	1.2
Bonded Joints/Inserts	N/A	2.0	1.2
Stability/Ruckling			

Figure 6: Three configurations of load cases that need to be tested

- > Proof Test would require pulling of pads at 55 lbs
 - No Glue bond failures under 400 lbs thus far (MSp = 6.25)
- > Proof Test requires a high degree of mirror handling
 - Increases the possibility of damage to the reflective surface
 - Provides the possibility of weakening glass around pad without failing proof test
- > Question:
 - Is repeatability as done in SPB2 testing a viable alternative for PBR?
 - If yes, how many pads are needed and in what configuration
 - 58 Pads already tested with no bond failures under 400 lbs
 - Will easily surpass 80 pads while finishing 45° and cycling tests

Resolved: NASA Eng/Saftey "Testing already described is sufficient"

Mirror Movement/Distortion: Hz to Nadir > Mirrors aligned and PSF known only in Hz configuration

- - For practical reasons, it is the only option for assembly
 - Very difficult to measure PSF at Nadir configuration
- > The primary mech constraint on the telescope is stiffness
 - Stiffness requires more AI than yield strength
 - Satisfying stiffness req essentially guarantees strength
- > Stiffness Req limits opportunities for lightening Tel
 - 7000 Series AI: Yield 400 MPa, Young's Mod 71 GPa
 - 6000 Series AI: Yield 240 MPa, Young's Mod 69 GPa
- > Mirror deflection (Mirror Assy only) under rotation from Hz to Nadir
 - Top Row → 0.025 to 0.1 mm
 - Mid row highest in corners \rightarrow 0.025 to 0.1 mm
 - Effect on RoC → Negligible

Movement of ACP and Camera not yet known

Mirror Distortion Estimate: -70°C ΔT

- > PSF will depend on Temperature due to thermal contraction
- > Mirrors aligned and PSF known only at ~20°C \rightarrow Mirrors will be as cold as -50°C
 - For practical reasons, it is the only option for assembly
 - No current plan to measure PSF at low temperatures
 - Maybe possible (very difficult) if important → NSF Ice Core Facility
- > Glass distortion minor @ $\Delta T = -70^{\circ}C$
 - $\Delta RoC \simeq -0.4$ mm ignoring AI frame effects
- > Aluminum distortion is more significant
 - Much harder to extract as it depends on the final design
 - Change in a full AI sphere $\Delta RoC \simeq -2.6$ mm

PSF Destortion TODO: Temp + Pointing with Full telescope

- > Need to extract the movement of optical components for $\Delta T = -100^{\circ}C$ and pointing $0^{\circ} \rightarrow -90^{\circ}$ and $0^{\circ} \rightarrow +15^{\circ}$
 - $0^{\circ} \rightarrow -90^{\circ}$ for UHECR measurement
 - $0^{\circ} \rightarrow +15^{\circ}$ for potential stellar alignment studies
- > Approach: SolidWorks + G4/Offline or Zemax
 - Once the design is complete measure the position changes of ACP, Camera and Mirror Segments with Solidworks
 - Extract size changes of ACP and Mirror segments
 - Feed to ZeMax or G4 in offline to get effects
- > Hope to set up for fast turnaround as design tweaks difficult at this late stage

Month	Opto-Mechanical	Gondola / Carts	Rotator /Shutter	Radio Frame/Mast
Jan	 Aiming Assembly Design Complete Fabrication of Whipple Trees for tests 	•Ballast hopper load cell solution •Gondola design polishing	•Procurement	•
Feb MIC	• Telescope Design Complete •Preliminary FEA	•Gondola Design Complete •Preliminary FEA	 Preliminary Rotator Design 	 Preliminary Mast Design Preliminary Frame Design
Mar	 Design Iteration using NASA Feedback Finish Flight Pad and flexure tests 	•Design Iteration using NASA Feedback •Procurement LLT and Solar Power	•Design Iteration •Thermal Vac Testing of Primary Components	 Design Iteration using Feedbac Finalization of interface
April ORDM	•Final Telescope Design & FEA •Glue Testing Doc Ready	 Final Gondola Design & FEA Preliminary Cart Design 	•Final Rotator Design & FEA	 Radio Mast Design Ready Radio Frame Design Ready
May BTC	•Final Mass Estimate •Procurement •Fabrication Start	 •Final Mass Estimate •Procurement •Cart Design / Ground Support Design 	•Final Mass Estimate •Software Hardware/Testing •Balloon Tech Conference	•Final Mast Estimate •Antenna and electronics integr design
June	Procurement Fabrication	ProcurementCart / Ground Support Design		•Procurement
July	•Mirror Frame Ready with T/M mirrors •Optical Characterization Start	•Gondola Fabrication Start	•Software Hardware/Testing	•Prototype Frame
Aug		•Gondola Fabrication	•	Fabrication and Assembly
Sept	 •Telescope Structural Frame Fabrication •Optical Characterization 	•Cart / Ground Support Design		 Prototype Frame to Penn
Oct	 Finalization of Camera Shelf Finalization of Cable routing 	 Gondola Assembly Cart / Ground Support Design Finalized 	•Software Hardware/Testing	Mast Espringtion 8 Accomply
Nov		 Gondola Assembly Cart / Ground Support procurement 	•Assembly	TVIAST FADICATION & ASSEMDLY
Dec Pre-Int	Telescope Structural assembly complete Optical characterization ongoing Ready for integration	 Gondola Assembly Complete Disassembly for shipping begins Ship to Mines for integration 	 Rotator Components Assembled Rotator Testing Ongoing Ready for integration 	 Radio Frame Ready for Antenn Radio Mast Assembled Ready for integration

Timeline Chicago

Timeline Today

Month	Telescope and Mirror Assemblies	Gondola / Carts	Rotator /Shutter	Radio Frame/Mast
May ORDM	 Preliminary Telescope Design & FEA Preliminary Glue Testing Doc Ready 	 Preliminary Gondola Design & FEA Preliminary Cart Design 	Preliminary Rotator Design & FEA	 Preliminary Mast Design Read Preliminary Frame Design Read
June Paris	 Finish Glue Testing Prototype Whipple Tree Fabrication starts Design Complete 	 Firm Mass Estimate Gondola Procurement Start Cart Design / Ground Support Design 	 Sort out the Gear strength issue Finish the design of test stand 	 Final Concept Firm Mass Estimate Prototype / Sample Procuremer
July	 Optical FEA Work Start Mirror Glue Bench Fabrication Flexure Mechanical Testing Prototype Mirror Glue-up 	 Procurement Cart Design Gondola Design Finalization 	 Test bench fabrication Rotator component procurrement 	 Materials Testing and Validation Prototype Antenna Testing @ Peresting # Peresting #
Aug	 Optical FEA Finish Telescope and Mirror Assembly Finalization Mirror Assembly Fabrication 	 Procurement Cart Design Continues Gondola Fabrication Start 	Rotator component procurrementTesting organization	RI Frame and Mast Finalization
Sept	 Location of CoM Mirror Gluing Telescope Structural Frame Fabrication Start 	ProcurementGondola Fabrication continues	 Rotator component procurement Fabrication Software testing 	Antenna Procurement
Oct	 Design of Camera Shelf Final FEA Final Mass / CoM Estimation 	 Cart Design Continues Final FEA 	 Test setup fabrication finish Software testing 	 Antenna Testing @ Penn Final FEA
Nov	 Hanging of Mirrors Installation of ACP Optical Characterization Start 	 Gondola Assembly Cart Design Finalized Cart Procurement Start @ Mines 	 Hardware testing at BEMCO Design Finalization Final Procurement 	 Final Mast Procurement @ Mine Final Antenna Test @ Penn Ship Antenna to Mines
Dec Japan	 Assembly Cart Design Finalization Telescope Structural assembly ongoing Optical characterization ongoing 	 Final Mass Estimate Cart Procurement Finish @ Mines Cart Assembly @ Mines 	 Rotator Assembly Full Assembly Testing Final FEA 	 Trial RI assembly RI disassembly
Jan Pre-Int	 Telescope Structural assembly complete PSF characterization Cart Fabrication 	 Gondola Test Assembly Complete Disassembly for shipping begins Ship to Mines for integration 	Rotator AssemblyFull Assembly Testing	
Feb	 Absolute Calibration Dark box fabrication Camera Shelf fabrication 	Receiving at MinesAssembly start	Ready for integration	 Sitting in the corner???
March BTC	Telescope Integration	 Assembly Continues Gondola Installation on Trailer 	Integration on Gondola / Telescope	

У
dy
nt
enn
S

- > Very near to the design completion → Moving from design phase to construction phase
- > Procurement has already started on some components
 - Mirror cell components are already underway
 - Ready for a large procurement order for Gondola and Telescope
 - 50% Tariffs on AI may cause problems as they were not accounted for in the original budget
 - \rightarrow In effect, as of yesterday...
- > On schedule, but the timeline is tight → It will be a very busy fall

Summary

> Last chance for any major design change requests passes after this meeting

RI Mast: Pultex GFRV

Material values, Pultex 1625

		Value @	Va
Strength mode	Symbol	25° C (psi)	10 (ps
LW Tensile	ScxxT	37500	
LW Compressive	ScxxC	37500	
CW Tensile	ScyyT	8000	
CW Compressive	ScyyC	20000	
In-plane shear	ScxyS	7000	
Through-plane shear	SczzS	6000	
Geometry	Symbol		Va
Bolt hole diameter	d		
Laminate thickness	t_c		
Edge distance (min)	е		va
Laminate width	W		

1.75

0.250

Calculated Figures of Merit

Figure	Value
Assembly Weight	147 lbs
Ultimate Design Load	3300 lbf
Ultimate Safety Factor –	2.8
8G shock load	
Required Safety Factor –	1.25
8G shock load	

Requirements - Gondola Frame

The gondola structure has been designed in accordance with NASA document 820-PG-8700.0.1, "Gondola Structural Design Requirements."

TYPE OF HARDWARE	DESIGN FACTOR OF SAFETY					
	Yield	Ultimate	Proof Test			
Metallic Structures						
Flight Structure - metallic only	1.25	1.4	N/A			
Preloaded Joints	1.25	1.4	N/A			
Fasteners	1.25	1.4	N/A			
Welds	N/A	1.5	1.2			
Suspension Systems		•				
Wire Rope Cables, Slings, Cable assemblies, Shackles, Turnbuckles, etc.	N/A	1.4	*			
Soft-body Structures						
Slings, Webbing	N/A	2.0	*			
Composite Flight Structure		·				
Uniform Material	N/A	1.5	1.2			
Bonded Joints/Inserts	N/A	2.0	1.2			
Stability/Buckling						
Stability/Buckling - metallic only	N/A	1.4	N/A			
Stability/Buckling - composite	N/A	1.5	N/A			
Pressure Vessel Systems	Ref: GSFC-ST	D-8009, ANSI/AIAA	S-080A-2018			
*: based upon NASA review of GP hard	ware					

The strength of the gondola system shall be demonstrated by showing a positive margin of safety (MS) for individual components and assembly interfaces for the given loading environment when the factors of safety given in Table 3 are applied.

The margins of safety are determined by multiplying the design limit load (or stress) by the appropriate factor of safety and comparing it to either the yield or ultimate material allowable strength as shown in the following equations:

At pre-loaded interfaces, the analysis shall show positive margins for all components which comprise the interface - fittings, bolts, rivets, etc., when subjected to the loads given in Section 3.3 and the margins given in Section 3.4. Fitting analysis of critical components shall meet Section 4.4.2, Certification @BFasteners.

$$MS_u = \frac{P_u}{FS_u P} - 1$$

and

$$MS_y = \frac{P_y}{FS_y P} - 1$$

where

FS_u	is the ultimate Factor of Safety
FSy	is the yield Factor of Safety
P	is the limit load (or stress) calculated in the analysis
Pu	is the load (or stress) at which material failure will occur
Py	is the load (or stress) at which material yielding will occur
MSu	is the Margin of Safety against ultimate failure
MSy	is the Margin of Safety against material yielding

Backup: Bonded Tests

Bonded Joint Testing: Tensile

Date	Test ID	Test Type	Pad Type	Temp (C)	Duration	Weight (lbs)	Pass/Fail	Comments
09/26/24	tf-t-01	To Failure	AL-HG	20	N/A	295.5	PASS	Mech Failure
09/26/24	tf-t-02	To Failure	AL-HG	20	N/A	300 +	PASS	
09/26/24	tf-t-03	To Failure	AL-FG	20	N/A	300 +	PASS	
09/26/24	tf-t-04	To Failure	AL-FG	20	N/A	300 +	PASS	
11/09/24	tf-t-05	To Failure	KV-Flat	20	N/A	425.5	PASS	Over 400
11/09/24	tf-t-06	To Failure	KV-Flat	20	N/A	412.5	PASS	Over 400
11/09/24	tf-t-07	To Failure	KV-Flat	20	N/A	300 +	PASS	Mech Failure
11/09/24	tf-t-08	To Failure	KV-Flat	20	N/A	422	PASS	Over 400
11/09/24	tf-t-09	To Failure	KV-Flat	20	N/A	503	PASS	Over 400
11/09/24	tf-t-10	To Failure	KV-Flat	20	N/A	506	PASS	Over 400
02/04/24	tf-t-11	To Failure	KV-Flat	35	N/A	399	PASS	Bond Failure
02/04/24	tf-t-12	To Failure	KV-Flat	35	N/A	415	PASS	Bond Failure
02/04/24	tf-t-13	To Failure	KV-Flat	35	N/A	430*	PASS	Over 400
02/04/24	tf-t-14	To Failure	KV-Flat	35	N/A	427.5^{*}	PASS	Over 400
02/04/24	tf-t-15	To Failure	KV-Flat	35	N/A	433*	PASS	Over 400
02/04/24	tf-t-16	To Failure	KV-Flat	35	N/A	450*	PASS	Over 400
04/01/25	lt1-t-01	Long Term	KV-Flat	-60	$20 \min$	175	Inconclusive	Glass Failure
04/01/25	lt1-t-02	Long Term	KV-Flat	-60	$20 \min$	175	PASS	
04/28/25	lt1-t-03	Long Term	KV-Flat	-60	Overnight	175	PASS	
04/28/25	lt1-t-04	Long Term	KV-Flat	-60	N/A	175	Inconclusive	Glass Failure
04/28/25	lt1-t-05	Long Term	KV-Flat	-60	N/A	150	Inconclusive	Glass Failure
04/28/25	lt1-t-06	Long Term	KV-Flat	-60	Overnight	150	PASS	
05/08/25	lt2-t-07	Long Term	KV-Flat	-60	Overnight	150	PASS	
05/08/25	lt2-t-08	Long Term	KV-Flat	-60	Overnight	150	PASS	
05/08/25	lt2-t-09	Long Term	KV-Flat	-60	$20 \min$	150	PASS	
05/08/25	lt2-t-10	Long Term	KV-Flat	-60	$20 \min$	150	PASS	
05/08/25	lt2-t-11	Long Term	KV-Flat	-60	Overnight	150	PASS	
05/09/25	lt2-t-12	Long Term	KV-Flat	-60	$20 \min$	150	PASS	

Table 7: Tensile Test Results (Excluding Summer Tests and Flat Pads on Curved Glass), Sorted by Temperature. The lt2 test ID represents pads that were tested using the improved fridge testing procedure.

NO BOND FAILURES UNDER 399 lbs → MSu = 3.37

ech Failure

ver 400 ver 400 ech Failure ver 400 ver 400 ver 400 ond Failure ond Failure ver 400 ver 400

lass Failure

Figure 12: To-failure tests in the tensile configuration. For the to failure tests, a pass is considered if the glue bond does not break before passing the required strength given by the red dashed line. Loads where glue bonds failed are marked in red. Other breakages (mechanical or glass) are marked in black.

the glue bond does not break a any point in the test duration or during loading or unloading. Failure of the glass due to testing method or during loading/unloading is considered an inconclusive test.

Bonded Joint Testing: Shear

Date	Test ID	Test Type	Pad Type	Temp (C)	Duration	Weight (lbs)	Pass/Fail	Com
10/03/24	tf-s-01	To Failure	AL-HG	20	N/A	300*	PASS	Med
10/03/24	tf-s-02	To Failure	AL-HG	20	N/A	400*	PASS	Med
10/03/24	tf-s-03	To Failure	AL-FG	20	N/A	603*	PASS	
10/16/24	tf-s-04	To Failure	AL-Flat	20	N/A	311*	PASS	Med
10/16/24	tf-s-05	To Failure	AL-Flat	20	N/A	400*	PASS	Over
10/16/24	tf-s-06	To Failure	AL-Flat	20	N/A	400*	PASS	Over
10/16/24	tf-s-07	To Failure	AL-Flat	20	N/A	400*	PASS	Over
10/16/24	tf-s-08	To Failure	AL-Flat	20	N/A	400*	PASS	Over
10/16/24	tf-s-09	To Failure	AL-Flat	20	N/A	400*	PASS	Over
10/16/24	tf-s-10	To Failure	KV-Flat	20	N/A	305.5	PASS	Glas
10/16/24	tf-s-11	To Failure	KV-Flat	20	N/A	400*	PASS	Over
10/16/24	tf-s-12	To Failure	KV-Flat	20	N/A	400*	PASS	Over
10/16/24	tf-s-13	To Failure	KV-Flat	20	N/A	400*	PASS	Over
10/16/24	tf-s-14	To Failure	KV-Flat	20	N/A	400*	PASS	Over
10/16/24	tf-s-15	To Failure	KV-Flat	20	N/A	400*	PASS	Over
11/15/24	tf-s-16	To Failure	KV-Flat	35	N/A	425^{*}	PASS	Over
11/15/24	tf-s-17	To Failure	KV-Flat	35	N/A	401	PASS	Bon
11/15/24	tf-s-18	To Failure	KV-Flat	35	N/A	427.5	PASS	Bon
11/15/24	tf-s-19	To Failure	KV-Flat	35	N/A	433*	PASS	Glas
11/15/24	tf-s-20	To Failure	KV-Flat	35	N/A	420*	PASS	Bon
11/15/24	tf-s-21	To Failure	KV-Flat	35	N/A	450*	PASS	Over
11/22/24	lt1-s-04	Long Term	KV-Flat	20	Overnight	200	PASS	Left
11/22/24	lt1-s-05	Long Term	KV-Flat	20	Overnight	200	PASS	Left
02/18/25	lt1-s-01	Long Term	KV-Flat	-60	Overnight	200	PASS	Left
02/18/25	lt1-s-02	Long Term	KV-Flat	-60	Overnight	200	PASS	Left
02/18/25	lt1-s-03	Long Term	KV-Flat	-60	N/A	200	Inconclusive	Glas
05/12/25	lt2-s-06	Long Term	KV-Flat	-60	Overnight	150	PASS	Left
05/13/25	lt2-s-07	Long Term	KV-Flat	-60	$20 \min$	150	PASS	20 n
05/23/25	lt2-s-08	Long Term	KV-Flat	-60	$20 \min$	150	PASS	20 n
05/23/25	lt2-s-09	Long Term	KV-Flat	-60	$20 \min$	150	PASS	20 n

Table 8: Shear Test Results (Excluding Summer Tests and Flat Pads on Curved Glass), Sorted by Temperature. The lt2 test ID represents pads that were tested using the improved fridge testing procedure.

NO BOND FAILURES UNDER 399 lbs \rightarrow MSu = 3.37

r 400 r 400

r 400

ss Failure

r 400 r 400

r 400

r 400 r 400

r 400

d Failure

d Failure

ss Failure d Failure

r 400 for 3 days.

for 3 days. over night over night ss Failure over night $_{mins}$

 $_{nins}$ nins

Figure 14: To-failure tests in the shear configuration. For the to failure tests, a pass is considered if the glue bond does not break before passing the required strength given by the red dashed line. Loads where glue bonds failed are marked in red. Other breakages (mechanical or glass) are marked in black.

the glue bond does not break a any point in the test duration or during loading or unloading. Failure of the glass due to testing method or during loading/unloading is considered an inconclusive test.

Bonded Joint Testing: Status

Req Num	Requirement	Objective	Test Obj	Status	E.	NASA GSDR Req	System Re- quirement	Test Ob- jective	Test ID	Res
DDD CD 01	The glue hand shall hold an 8C load with a	CSDD 261	ID	DASS	5	GSDR 3.6.1	PBR-GB-01	5.1.1 - 1	tf-t-05,	PAS
FDR-GD-01	SF = 2.0 perpendicular to the surface of the	GSDR 3.0.1	0.1.1	FASS					tf-t-07,	INC
	DI' = 2.0 perpendicular to the surface of the mirror at 20°C with								tf-t-08,	369966410 - 19968
PBR_CB_02	The glue bond shall hold a an 8G load with	CSDR 361	5112	PASS					tf-t-09,	
I DIC-GD-02	a $SF = 2.0$ perpendicular to the surface of	G5D1 5.0.1	0.1.12	IASS					ti-t-10,	
	the mirror at -60° C								tf-t-12,	
PBR-GB-03	The glue bond shall hold a 4G load with a	GSDB 361	5121	TBD	0				tf-t-13,	
	$SF = 2.0.45^{\circ}$ to the surface of the mirror at		0.1.2						tf-t-14,	
	20°C								ti-t-15,	
PBR-GB-04	The glue bond shall hold a 4 G load with a	GSDR 3.6.1	5.1.2-2	TBD	7	GSDR 3.6.1	PBR-GB-02	5.1.1-2	lt1-t-01,	PAS
	$SF = 2.0 45^{\circ}$ to the surface of the mirror at	0.02100.011							lt1-t-02,	FAI
	-60°C								lt1-t-03,	INC
PBR-GB-05	The glue bond shall hold a an 8 G load with a	GSDR 3.6.1	5.1.3-1	PASS					1t1-t-04, 1t1-t-05	
POTOPOTY (2013) IN 1997 20 (2017) AND IDENTIFY (2017) AND IN POTOPOTY (2013) IN 1997 20 (2017)	SF = 2.0 parallel to the surface of the mirror								lt1-t-06,	
	at 20° C								lt2-t-07,	
PBR-GB-06	The glue bond shall hold a an 8 G load with a	GSDR 3.6.1	5.1.3-2	PASS					1t2-t-08,	
	SF = 2.0 parallel to the surface of the mirror								lt2-t-09, $lt2-t-10$	
	at -60°C								lt2-t-11,	
PBR-GB-07	The glue bond shall withstand an 8G load	PBR Team	5.1.4-1	TBD	5				lt2-t-12,	
	with a $SF = 2.0$ perpendicular to the surface					GSDR 3.6.1	PBR-GB-03	5.1.2-1	TBD	TBI
	of the mirror is applied to the glue pads when					GSDR 3.6.1	PBR-GB-04 PBR-GB-05	5.1.2-2 5.1.3-1	1BD lt1-s-04	PAS
	temperature cycled from -60° C to 20° C						I DIL GD 00	0.1.0 1	lt1-s-05,	FAI
PBR-GB-08	The glue bond shall withstand an 4G load	PBR Team	5.1.4-2	TBD					tf-s-10,	INC
	with a $SF = 2.0 \ 45^{\circ}$ to the surface of the								tf-s-11,	
	mirror when temperature cycled from -60°C								tf-s-12,	
	to 20° C				5				tf-s-14,	
PBR-GB-09	The glue bond shall withstand an 8 G load	PBR Team	5.1.4-3	TBD					tf-s-15,	
	with a $SF = 2.0$ parallel to the surface of								tf-s-16,	
	the mirror when temperature cycled from -								t_{1-s-17} , t_{f-s-18}	
	$60^{\circ}C$ to $20^{\circ}C$				7				tf-s-19,	
									tf-s-20,	
Table 2: Minimu	m strength specifications to satisfy required ult	imate safety fa	ctors for bone	ded joints					tf-s-21	

-J - - 1 J from GSDR 3.4, 3.5 and 3.6.1

8 End-to-End Trace Table

(a) Example of glass failure. Here, the glass broke due (b) Example of Mech Failure. The eye bolt shown here to high and uneven loads, but the pad remained firmly was bent out of place, causing a test termination and fixed to the glass.

an inconclusive result.

(c) Failed glue pad example. Here we see the pad completely separated from the glue joint. The glass chip still attached indicates the glass failed first, which then allowed the pad to peel off.

Figure 11: failure examples

Observed Failure Modes

7.4 Comments on Individual Failures.

lt1-s-03 While undergoing testing, the glass piece attached to the pad broke. In this case the pad itself was still glued to the remaining glass. However, we record this as a failure as it was inconclusive as to the strength of the pad.

tf-s-18 This was an actual failure that occurred at 427.5 lbs.

During this test the glass itself broke in half, causing a failure. Still this was at 433 lbs. tf-s-19

tf-s-20 This was an actual failure that occurred at 420 lbs. Similar to test tf-s-10, a chip came out of the glass as was still glued to the pad.

lt1-t-01 While undergoing testing, the glass piece attached to the pad broke. In this case the pad itself was still glued to the remaining glass. However, we record this as a failure as it was inconclusive as to the strength of the pad.

lt1-t-04 While undergoing testing, the glass piece attached to the pad broke. In this case the pad itself was still glued to the remaining glass. However, we record this as a failure as it was inconclusive as to the strength of the pad.

lt1-t-05 While undergoing testing, the glass piece attached to the pad broke. In this case the pad itself was still glued to the remaining glass. However, we record this as a failure as it was inconclusive as to the strength of the pad.

tf-t-07 While undergoing failure testing, the eye-Bolt attached to the glue pad bent out of form, causing a failure in the test. The joint itself was not broken.

tf-t-11 This was an actual failure recorded at 399 lbs.

tf-t-12 This was also an actual failure. The joint broke at 415 lbs.

Bond Material Information

Kovar Bar Stock

3M Primer 3901

COLORADO SCHOOL OF MINE Sold To: CBE DEPT/CSM CENTRL RECV 1301 19TH ST. GOLDEN CO 80401 **United States**

Material Size	Date Shipped
1in x 81in	2/7/2024
PO Number	Purchased By
VERBAL WILLIAM	ERIC MAYOTTE
Control Number	EFINEA ID Number
SO026639	062121-421

Overlap Shear Strength 17-7 S

Material Standards:

ASTM F15-04 TEMPER A REAPPR. 2017	ASTM E45-18A METHOD D
AMS I 23011 CL1 ANNEALED REV C(04/ /17)	

Chemical Analysis:

С	Mn	P	S	SI	Cr	Ni	AI	Cu	TI	Co
.02	.27	.001	.002	.15	.11	29.12	<.01	.08	<.01	17.37
Fe	Mg	Zr	Мо	13						
52.63	<.002	<.005	.11							

Mechanical and Physical Analysis:

Tensile	Yield	Elongation	Hardness	Grain Size	No Phase Trans
77,900 psi	53,900 psi	42.7% in 2"	84.0 RB	8	-196°C

Coefficient of Thermal Expansion:

30 to 400°C	450°C
4.99	5.27

Overlap Shear Strength 17-7 S

Test Name: Overlap Shear Strength Temp C: 23C Temp F: 73F Substrate: 17-7 Stainless Stee

Notes: Adhesive: AF-126, 0.06 wt.

Overlap Shear Strength 17-7

Test Name: Overlap Shear Strength Temp C: 82C Temp F: 180F

3M Epoxy DP2216

		24	25			
Overlap Shear Strength 17-7 Stainless Steel	10203 lb/in²		Overlap Shear (psi)			
			3M™ Scotch-Weld™ Epoxy Adhesive			
Test Name: Overlap Shear Strength Temp C: -55C		Test Temperature	2216 B/A Gray Adhesive	2216 B/A Tan NS Adhesive	2216 E Ad	
Temp F: -67F Substrate: 17-7 Stainless Steel		-423°F (-253°C)	2440	6. 		
		-320°F (-196°C)	2740			
Notes: Adhesive: AF-126, 0.06 wt.		-100°F (-73°C)	3000			
		-67°F (-53°C)	3000	2000	3	
	6310 lb/in²	75°F (24°C)	3200	2500	1	
Overlap Shear Strength 1/-7 Stainless Steel		180°F (82°C)	400	400		

	1		
ς.			
•			

Stainless Steel	3600 lb/in ²

		Overlap Shear (psi) 75°F (24°					
		3M™ Scotch-Weld™ Epoxy Adh					
Environment	Time	2216 B/A Gray Adhesive	2216 B/A Tan NS Adhesive	B/A Ad			
100% Relative Humidity @120°F (49°C)	14 days 30 days 90 days	2950 psi 1985 psi 1505 psi	3400 psi 2650 psi	13			
*Salt Spray@75°F (24°C)	14 days 30 days 60 days	2300 psi 500 psi 300 psi	3900 psi 3300 psi	12			
Tap Water@75°F (24°C)	14 days 30 days 90 days	3120 psi 2942 psi 2075 psi	3250 psi 2700 psi	19			
Air@160°F (71°C)	35 days	4650 psi	4425 psi				
Air@300°F (149°C)	40 days	4930 psi	4450 psi	35			
Anti-icing Fluid@75°F (24°C)	7 days	3300 psi	3050 psi	25			
Hydraulic Oil@75°F (24°C)	30 days	2500 psi	3500 psi	25			
JP-4 Fuel	30 days	2500 psi	2750 psi	25			
Hydrocarbon Fluid	7 days	3300 psi	3100 psi	30			

