

CHERENKOV CAMERA: STATUS

G. OSTERIA ON BEHALF OF THE CC GROUP

THE CC WORKING GROUP

• Bari

- F. Cafagna (system SW)
- Catania
 - R. Caruso, C. Petta (SiPM arrays characterization)
- Lecce
 - V. Scherini, L. Perrone (simulation)
- Napoli
 - G. Osteria, M. Mese, F. Perfetto, V. Scotti, A. Anastasio, V. Masone, G. Passeggio, Qureshi Haroon Akhtar (CC architecture, CC mechanics, SiPM connection, ASIC Radioroc2 board (plan B electronics), procurement)
 - D. Campana, B. Panico (simulation)
- Roma2
 - C. De Santis, Badoni, Ammendola, M. Casolino, A. Sotgiu (FPGA board)
- Torino
 - M. Bertaina, A. Di Salvo, S. Garbolino, M. Mignone, A Rivetti, S. Zugravel (MIZAR ASIC, ASIC board)
- Trento
 - E. Ricci (SiPM Bias system)
- Trieste
 - R. Munini, I. Buckland

CC Zoom meeting: fortnightly Tuesdays (alternating with Trigger) at 14:00 UTC

CHERENKOV CAMERA: BLOCK DIAGRAM

Mechanics and EMC shielding

CHERENKOV CAMERA OVERVIEW

Requirements: (from simulations)

- Pixel size: 3 x 3 mm²
- Pixel FoV: 0.2°
- Total FoV: 12° x 6°

Implementation:

• SiPM arrays:

G. Osteria

- 64 pixels (8 x 8)
 - 4 x 8 = 32 SiPM arrays
 - 2048 pixels
- four **CC-PDM**s (1x8 SiPM arrays, 512 pixels)

THE CC-PDM (CAD)

The Cherenkov Camera Photo Detection Module (CC-PDM) (1x8 matrix of 64 pixels SiPM arrays) 512 pixels

SIPM ARRAY STATUS

Hamamatsu S13361-3050 series

• S13361-3050-NE-08 (8x8ch), pixels 3mm²

Absolute maximum ratings

Parameter	Symbol	S13361-3050NE-04	S13361-3050AE-04	S13361-3050NE-08	S13361-3050AE-08	Unit	
Operating temperature*2	Topr		-20 to	o +60		°C	
Storage temperature* ²	Tstg		-20 to +80				
Soldering temperature* ³	Tsol	240 (twice)	-	240 (twice)	-	°C	

Electrical and optical characteristics (Typ. Ta=25 °C, Vover=3 V, unless otherwise noted)

Parameter		Symbol	Value	Unit			
Spectral response range		λ	320 to 900	nm			
Peak sensitivity wavelength		λр	450	nm			
Photon detection efficiency $(\lambda = \lambda p)^{*4}$		PDE	40	%			
Dark count*5	Тур.	CD	0.5	Mone			
	Max.		1.5	ricps			
Terminal capacitance		Ct	320	pF			
Gain		М	1.7×10^{6}	-			
Breakdown voltage		VBR	53 ± 5	V			
Recommended operating voltage		Vop	VBR + 3	V			
Vop variation between	Тур.		0.1	V			
channels in one product	Max.	- [0.3				
Temperature coefficient of recommended operating voltage		∆TVop	54	mV/°C			

S13361-3050-NE-08

- 17 available for prototyping studies
- 50 ordered and delivered

G. Osteria

37th JEM-EUSO Collaboration meeting June 2 - 6, 2025 - Paris

- Photon detection efficiency vs. wavelength (typical example)

- Overvoltage specifications of gain, crosstalk probability, photon detection efficiency

THE ELEMENTARY CELL

Status:

- 40 prototypes manufactured
 - only 30 are useful for the FM
- 25 will be delivered in one week

Elementary cell (side view)

G. Osteria 36th JEM-EUSO Collaboration meeting, December 9-13, 2024 - Chicago

The Cherenkov Camera

Status:

• First design completed

 \mathbf{O}

CC section view

Section view of the CC PDM

CC section view (in plane)

တ

CC cooling extracted exploited view

CC PDM cooling plate

CC fixing and cooling plate

CC PDM MECHANICS: FOCAL PLANE

Status: 4 (of four) manufactured

aluminum prototype of the mechanics of the focal plane

Three CC-EC fixed to the aluminum prototype of the mechanics of the focal plane

Good SiPM arrays alignment Dead space among arrays minimized

G. Osteria

CC-PDM MECHANICS: FOCAL PLANE

Status:4 (of four) manufactured

CC-PDM MECHANICS: HOUSING AND COOL Status: (3D PRINTED PROTOTYPE)

3D printed mode (show at Chicago meeting)

Side view

Top view

Bottom view

G. Osteria

タ

CC-PDM housing and cooling mechanics fixed to the focal plane

CC-PDM MECHANICS: HOUSING AND COOLING (FLIGHT MODEL) **Status:** •

Work in progress

G. Osteria

Aluminum model manufacturing in progress

CC-PDM housing and cooling mechanics fixed to the focal plane

RADIOROC-2: 512 CH ASIC BOARD

Radioroc-2; 512 ch board (prototype top view)

Radioroc-2: 512 ch board (prototype bottom view)

Samtec UEC5+UCC8 Firefly data connector

(0

RADIOROC-2: 512 ch ASIC board status:

Prototype completed

Bias Voltages connector

- Test in progress
- FPGA programmed (with a preliminary version of the FW)

Power connector

• Absorbed current measured (steady state): $14W \rightarrow 7W$ by passing the voltage regulators

RADIOROC-2: 512 CH ASIC BOARD

RADIOROC-2: 512 CH ASIC BOARD

Radioroc-2; 512 ch board

Radioroc-2: 512 ch board

RADIOROC-2: 512 ch ASIC board status:

CC PDM integration test: Radioroc ASIC board connected to the focal plane

CC-PDM MECHANICS: HOUSING AND COO Status: (FLIGHT MODEL) Status: manufacturing in progress

Radioroc ASIC board integrated into the housing and cooling mechanics

FPGA BOARD

Mechanical layout and interfaces

- Connectors and main ICs are defined
- 4 regulators for SiPM
- SOM XCAU15P (can be upgraded to XCAU25P)
- Electrical interfaces towards FE board:
 - 8 Firefly for ASIC interface
 - Harwin M80 for power
 - Harwin G125 for bias+temp
- Electrical interfaces towards TriggerBoard/Satellite:
 - Glenair 9 pin for CAN
 - 2 Glenair 15 pin for LVDS
 - Glenair 9 pin for 28V Power Supply
 - Norcomp for Ethernet

Power Supply Tree development

- Working on 28V single input scenario.
- Producing 12 V for SiPM regulators and SOM
- 1.5V Analog, 1.5V Digital, 2.8V Digital for Front end board
- 5V, 3.3V and 1.8V for SPI, CAN, JTAG, Ethernet...

Status:

Design in progress

DC-DC CONVERTERS

Both the ASIC boards need low voltages

- MIZAR ASIC board (1.2 V AN, 1.2 V DIG, 2.5 V DIG)
- Radioroc2 ASIC board (5V, 2.3V)

These voltages should be provided by DC-DC converters located on the FPGA board

Studies are underway to determine whether they can be hosted on the FPGA board or if a dedicated board is required. \rightarrow possible impact on the general mechanics design of the CC camera.

The problem of «who designs/procures the DC-DC converters and where they should be located» is common to several sub-systems. Dedicated discussion should be planned.

SIPM BIAS PROPOSED SOLUTION

- Developing of the bias system of PBR
 Cherenkov camera
- Best candidate: CAEN A7585D
- Issues: the component is not validated for temperatures higher than 60°C
- Circuit and component test currently ongoing
- We have the expertise and the infrastructure to do that in house from HEPD-02 tracker

- E. Ricci (researcher)
- R. luppa (associate professor)
- P. Zuccon (associate professor)
- D. Schledewitz (PhD student)

Status:

 Test and qualification of prototypes in progress

SETUP UNTIL NOW

• Proposed setup thermal test:

- Arduino controlled SiPM PS
- SiPM readout over multiple thermal cycles
- Setup ready for testing the SiPM PS module in climate chamber:
 - 25.5 Thermal cycles from -35°C to 90°C
 - Arduino responsiveness (serial communication, timing)
 - Output voltage from PS module across temperature
 - Power-on stability and cold start behavior

MEASUREMENT: SETUP

Thorlabs 3 motorized stages in XYZ configuration.

Optical fiber connected to a Hamamatsu PLP-10 Laser diode head 405 nm G. Osteria 37th JEM-EUSO Collaboration meeting June 2 - 6, 2025 - Paris

24

CC-PDM DESIGN & PROCUREMENT STATUS (SUMMARY)

CC PDM elements:

item	design	procurement	Expected delivery
SiPM arrays (8)	Ham. S13361	50 ordered	Delivered
CC-Elementary Cells (8)	completed	50 pcb orederd	Delivered
Focal plane mech.	completed	4 of 4 manufact.	Delivered
Housing and cooling mech	Completed (TBC)	Manufacturing in prog.	End of July
Samtec microcoax cables	completed	50 + 50 ordered	Delivered
ASIC board (MIZAR)	In progress	Order by end of June	End of July
ASIC board (Radioroc2)	V2 board tested	8-asic board ordered	Delivered
FPGA board	started	Order by end of July?	End of September
Bias system	started	Order after qualif. test	End of September
DC-DC converters	tbd		

SCHEDULE & MILESTONES

CC Project Planner

					Period Highlight:	Plan Duration	Actual Start	% Complete	Actual (beyond p	lan)	% Complete (beyond plan)
ACTIVITY	PLAN START	PLAN DURATION	ACTUAL START	ACTUAL DURATION	PERCENT COMPLETE	2 3 4 5 6 7 8	9 10 11 12 25	2 3 4 5 6 17	7 8 9 10 11 \2	26	35_35
Cherenkov Camera (CC)	1	24	1	27	40%						
Prototype development	1	9	1	22	60%						
Flight Model production	11	14	11	15							
SiPM order	10	5	10	5	100%						
ASIC MIZAR	1	5	1	15	100%						
ASIC MIZAR test board	5	3	7	9	100%						
ASIC board MIZ. design	5	3	10	10	60%						
ASIC board MIZ. order & pro	14	3	17	3	0%						
ASIC board 8-Radioroc	6	8	6	12	100%						
FPGA board design	4	5	7	13	40%						
FPGA board order & produc	t 14	3	19	3	0%						
Trigger development	12	5	17	5	0%						
FPGA firmware developmer	า 12	5	17	5	0%						
Mechanics (design)	1	17	1	18	80%	_					
Mechanics (production)	17	3	17	3	60%						
Testing	15	9	19	9	0%						
CC calibration	17	6	22	6	0%						
CC TVAC test	19	2	25	2	0%						
CC EMI testing	19	3	26	2	0%						

37th JEM-EUSO Collaboration meeting June 2 - 6, 2025 - Paris

G. Osteria

Thank you