

Harnessing Al-driven modeling for stroke sub-types classification and prediction of survival outcomes

Suzan Nakasendwa^{1*}, Joan Eron Mutyoba¹, David Guwatudde¹, Joyce Nabende Nakatumba², Agnes Kiragga³

* Corresponding Author. Email: suzannakasendwa@gmail.com

¹School of Public Health, Makerere University, Kampala, Uganda

²College of Computing and Information Science, Makerere University, Kampala, Uganda ³African Population and Health Research Centre, Nairobi, Kenya

Background

1. Introduction (or educational background)

Stroke is the third leading cause of mortality and disability globally and in the African region. It is the second leading cause of mortality in low-income countries.

Africa bears a significant burden of stroke – *Figure 1*... fueled by a complex mix of factors that affect one's course of life, such as age, poor nutrition, and exposure to air pollution.

2. Problem statement

Critical Challenges:

- Delayed detection & heterogeneous stroke types (Ischemic vs) Hemorrhagic).
- Complex influence of comorbidities (e.g., diabetes, hypertension).
- Limited data infrastructure, especially in Africa.

World Stroke Organization fact sheet 2025: 70% stroke burden increase (1990 to 2021), 87% deaths residing in low- and middle-income countries.

Efforts - The United Nations' sustainable development goal, target 3.4: To reduce the burden of premature deaths due to NCDs, including stroke.

Current Work

1. Objectives

Overall: To develop and evaluate advanced machine learning and deep learning models that detect anomalies in health facility stroke data, classify stroke subtypes, and predict time to hospital discharge.

Limitations:

- Paper-based records: Prone to missingness & outliers.
- Electronic systems: Incomplete data
- Statistical techniques struggle with large, high-dimensional, complex data.
- Limited African-focused ML research.
- Need for models addressing multimorbidity & competing risks.

Figure. 2 Stroke Sub-types

2. Methodology

Study design and setting:

The study will be conducted in Uganda and Cameroon at five (5) health facilities: Lubaga Hospital, Mulago National Referral Hospital, Uganda Heart Institute, Mildmay Uganda Hospital, and

Specific Objectives

- 1. To apply and compare data anomaly detection techniques for quality assurance of routine stroke health facility stroke data
- 2. To develop an explainable multi-model stroke subtype classifier by integrating structured data using ensemble and deep learning models.
- 3. To develop and validate a joint modeling framework for survival analysis under competing risks, integrating deep survival learning and conventional models with multimorbidity adjustments.

Douala General Hospital in Cameroon.

Study population: Hospitalized stroke patients seeking care at a health facility. **Data sources:** Electronic systems and patient files **Data Collection tool: Redcap**

Analysis Methods

Objective 1: Machine learning detection algorithms – combining clustering and distance metrics: Euclidean, Canberra, Mahalananobis, and Manhattan

Objective 2: Machine learning (logistic regression, decision) trees, random forest, support vector machines (SVM), K-Nearest Neighbors (KNN), gradient boosting, AdaBoost, XGBoost), and artificial neural networks (ANN). Shapley Additive exPlanations, and feature importance

Objective 3: Compare statistical () and machine learning (Random survival forest, DeepHit, PLANNCR) methods. Discriminative ability will be assessed using time-dependent AUC. The Brier score --- quantify overall prediction error

Conclusion & Expectations

1. Conclusion

This research is of major public health importance as it enhances stroke diagnosis and survival prediction using AI-driven models. It enables timely, accurate, and equitable care in resource-limited African settings while supporting data-informed clinical and policy decision-making.

2. Expectations

- A validated AI model capable of distinguishing between ischemic and hemorrhagic stroke using clinical and imaging data.
- A survival prediction tool tailored to diverse African healthcare settings, enhancing prognosis estimation.
- Scalable and adaptable tools to support clinicians and policymakers in improving stroke management and resource allocation.

Acknowledgment

