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Introduction/Background Possible Results

e Rare Earth Elements (REEs) are critical jj® Improved REE prediction with fused
LIBS—LRS.

Conclusion

e Fused spectral modeling using deep

for energy, defense, and green

learning shows strong potential for

technologies. e Enhanced signal clarity via deep

| rapid, in-situ REE detection.
Carbonatite complexes are key REE learning.
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Fusion of LIBS and Raman signals can

Figure 1:The mineral samples of processed LIBS

unlock complementary information. References

e Day Y., Ly, Z., &amp; Zhao, S. (2024).
Fusion of Laser-Induced Breakdown
Spectroscopy and Raman Spectroscopy
for Mineral Identification Based on
Machine Learning. Molecules Basel,
Switzerland), 29(14), 3317.
https://do1.org/10.3390/molecules2914331
7

e Wang, H., Xin, Y., Fang, P., Wang,
Y.,.Duan, M., Wu, W., Yang, R., Liu, S.,
Zhang, L., &amp; Wan, X. 2023).

Quantitative Analysis of Meteorite

| : _ - o Elements Based on the Multidimensional

Raman 1s largely unexplored. Dimension-1 Scaling—Back Propagation Neural

Network Algorithm Combined with

Raman Mapping- Assisted Micro-Laser

(8) UIBS data )RS data o (Fusiondan____ | Induced Breakdown Spectroscopy.

PLS-DA 1 PLS-DA ChemosenSOl‘S, 11(1 1), 567 .

- [l o o s 00 2o [ e 0w o e https://do1.org/10.3390/chemosensors1111
0567
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(e) LIBS-Raman: fused data

Problem Statement
 LIBS suffers from noise, plasma

instability, and matrix effects.

 Raman lacks elemental specificity

and 1s prone to fluorescence.

e Both methods alone have limited

reliability for REE analysis.

* Deep learning fusion of LIBS and

* No robust framework exists for REE Figure 2:LIBS Raman Fused Data

detection 1n carbonatites
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