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Decision trees

and their limits



Why decision trees?

Linear Discriminant

e \Whenever data are described by simple
correlations, linear discriminants do just
fine in classification problems




Why decision trees?

Lingan Disediminant e But they fail when data have non-trivial

correlations




Why decision trees?

Linear Diseriminant e But they fail when data have non-trivial
correlations

We need a way to identify
complex, non-linear
features in our data

e Here, we would like to draw several,
small linear segments to separate our
data in a way that a simple linear
surface cannot do = decision trees
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What is a Decision Tree?
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Decision Trees

The idea of decision trees is to partition the input space into regions and solving each region
with a simpler model.

We focus on Classification and Regression Trees (CART; Breiman et al., 1984), but there
are additional variants like ID3, C4.5, ..
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Back to our examples

Decision Tree (max_depth=4)

A simple Decision Tree with at most 4
levels of splitting can easily identify the
four corners of our problem

Let's see what is behind and how we
train this Decision Tree
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Decision Trees

» Decisions trees: splitting each variable sequentially, creating
rectangular regions.

» Making fitting/prediction locally at each hyper-rectangular
region.

» It is intuitive and easy to implement, may have good
interpretation.

» Generally of lower prediction accuracy (weak learners).

» “The Boosting problem” (Kearns & Valiant): Can a set of
weak learners create a single strong learner?

» Bagging, random forests and boosting ... make
fitting/prediction based on a number of trees.

» Bagging and Boosting are general methodologies, not just

limited to trees.
11



Inference and Training

Inference

® Just follow the branching rules until you reach a leaf.

DECISION

® Output a prediction (real value/distribution/predicted class) o

based on the leaf.

Training
® Training data is stored in tree leaves -- the leaf prediction is
based on what is data items are in the leaf.

® At the beginning the tree is a single leaf node.
® Adding a node = leaf — decision node + 2 leafs
® The goal of training = finding the most consistent leafs for the prediction

Later, we will show that the consistency measures follow from the loss function, we are
optimizing.
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How do you train a decision tree ?

Take all features

Feature 1
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How do you train a decision tree ?

node

Take all features
l Root

Compare their separating power

Loop over all features “f_i"
For each value, check separation at a given cut “f_i > “c_ij"
Find the variable and cut giving the best separation
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How do you train a decision tree ?

Take all features

Compare their separating power

Find best splitting

e Gini Indez [default], defined by p- (1 — p);

e Cross entropy, defined by —p - In(p) — (1 — p) - In(1 — p);
e Misclassification error, defined by 1 — max(p, 1 — p);

e Statistical significance, defined by S//S + B;

Several separation criteria are usually possible, mostly
equivalent. Here p = purity (0.5: fully mixed samples, O :
samples composed of one class only)
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How do you train a decision tree ?

Take all features

_ 50.25 £ o5 \wep conf.
l 2 | 55(2013) 02004
: : S 02
Compare their separating power Ll
l 0.15
Find best splitting E Split criterion
Odr- = Misclas. error
- == Entropy
o Gini Index [default], defined by p- (1 — p); 0.05— — Gini
e Cross entropy, defined by —p - In(p) — (1 — p) - In(1 — p);
% 0.2 0.4 0.6 0.8 1
e Misclassification error, defined by 1 — max(p, 1 — p); signal purity
o Statistical significance, defined by S/v/'S + B; All these values are minimal if a node is dominated by

either signal or background
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How do you train a decision tree ?
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How do you train a decision tree ?

Until some criterion is reached

e max tree depth
e min nrofentriesin a leaf

NOTE : this generalizes to multi-class categorization by
computing a combined Giniindex: G=1-X (p_i)?
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Adantages and limitations of Deciston Trees

e Advantages
o Minimal/no data preprocessing needed
o Very straightforward interpretation of the decision
o Non linear : capable of learning complex correlations

e Limitations
o small changes in data can induce large variations in structure (different
splitting affect deeply the tree)
o contours are hypercubes (squares) : can struggle to detect linear behaviours
o some care needed on imbalanced datasets
o prone to overfitting!

19



Limitations of Decision Trees :overfitting

Decision Tree (max_depth=4)

ey

e Shallow trees cannot learn very
complex features
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Limitations of Decision Trees :overfitting

Declsiondlee{maudepth=13) e Shallow trees cannot learn very
complex features
e \We can make deep trees...

-1.5 -1.0 -05 0.0 0.5 1.0 1.5

21



Limitations of Decision Trees :overfitting

Decislonree:(max:depths1a) e Shallow trees cannot learn very

complex features
e \We can make deep trees...
e .. butthey become very sensitive to
outliers
o called overfitting : we will see that
more in detail later
o Iinthis example, the decision tree is
picking up on individual events,
generalization is very poor at the
frontier
e So we have conflicting issues
o weak learner : poor performance
on complex data
o strong learner : prone to overfitting

With boosting we combine both! -



Boosting
What s it, and why 1s it needed?
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Boosting : the basic idea

e Boosting = combining several weak learners into a powerful one
e Training done with an iterative approach

Increase
misclassified
events
importance

. - Select
Train decision . o
mmme Misclassified pemme

tree nr. N
events

Repeat (N +=1)

Each tree benefits from what the previous one has learned and corrects the

classification
The final score comes from a weighted majority vote
The strategy to increase the importance and to combine the votes corresponds to

various trees
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Boosting : the basic idea

. Boosted decision trees (strong learners)
Decision trees (weak learners) o5



AdaBOOSt Y. Freund and R.E. Schapire, J. of Computer and System Science 55, 119 (1997)

Treenr.1 Train
e Simplest boosting strategy : at every iteration n we increase

the weight of events wrongly classified
o compute the the misclassification rate “err” of tree n-1
o multiply the weight of wrongly classified event by the
boost weight a Treelnr 2 Train

1 —err

o=
err

o rescale all ssample weights to preserve a constant sum(w oo nr 3 i

e Final BDT decision is given by a weighted sum of each
individual classifier decision h.(x) (where e.g. O : bkg, 1: signal)
o by construction yBoost is a function between O and 1

1 N, collection

Boost (X) = ~———— - In(ey) - hi(x
Y OOSt( ) Neollection Z ( Z) Z( ) -
) Tree nr.N Train 6

L]
I<_ | : <_I<_ <_I<_ <_I
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AdaBoost : learning rate, limitations

e AdaBoost performs better with ensembles of weak classifiers (max depth of 2 or 3)
because of the reduced risks of overfitting
e Performance can be improved by increasing the number of classifiers and slowing
down the learning rate
e Achieved with a learning rate parameter 8 by replacing a » o
e The value of B impacts how quickly the weights change for a given error, and how
much importance is given to each tree in the final decision
o B <1:slower convergence, better generalization
o [ =>1:faster convergence, risk of overfitting

e AdaBoost main limitation is the sensitivity to outliers, since misclassified events are
given ever (exponentially) increasing weight = mostly limited to generalize on noisy
data
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Boosting revisited

e \We can generalize the classification problem as a minimization problem

e The target is to minimize the loss function L = function that encodes how far is the
prediction from the target

e Remember that a BDT decision F is a series of Decision Trees f, each depending on a
series of parameters a_:

F(x.P) = Z Bmf(x;am); P € {Bm;am}d’

e = At each step of the boostlng procedure, when we add a new tree f__to the series,
we can optimize its parameters a_ so that it goes in the direction of minimizing the
loss

e How to understand how to optimally grow each tree? » gradient boosting
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Gradient

e The gradient gives the direction and
magnitude of the maximal change
in a function F

e |f we follow this direction, we get as
quickly as possible to the minimum

e = efficient minimization criterion:
move by steps prop. to -grad

VF

LSTARTING POINT

, *  LocAL
MINIMA
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Gradient

e The gradient gives the direction and
magnitude of the maximal change
in a function F

e |f we follow this direction, we get as
quickly as possible to the minimum

e = efficient minimization criterion:
move by steps prop. to -grad

e The choice of the step during the
descent (learning rate) is a
compromise

o toosmall:slow convergence,
may get stuck in a local
minimum

o too big: no convergence
(jJumping around the mMinimum)

20 . N ) End (4.9-23.7),

Convergence

Descending with step coefficient 0.005 (iteration 50)
0

100 = %2 * sin(x)
20

10 Start (2.53.7)

1 2 3 4 5 B 7 8

Divergence

Descending with step coefficient 0.05 (iteration 50)
0

) = %% * sin(x)

Start (2.53.7)

. End (5.4,22.1)

2 <) 4 5 B 7 g

[llustration from this article
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https://ompramod.medium.com/mastering-gradient-descent-optimizing-neural-networks-with-precision-e461e996633e

Gradient boosting

e Ifwetake L(F,y)=exp(-F(x)y ), we fall back to AdaBoost
e But with this method we can choose a loss functions that is more robust against
outliers. Standard choices:

L(F,y) = (F(x) - y)* L(F,y) =In (14 ¢7276)
Mean squared error Binomial log-likelihood loss

e |In BDT boosting we take an additive, sequential approach. At each step n

fix the tree structure learned until step n-1

compute the gradient of the loss (~residuals)

train a new tree to learn this residual contribution

add the nth tree to the sequence, with a weight given by the learning rate

o O O O
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Gradient boosting

e Calculate the gradient of the loss at the mth iteration:

IL(y,f (x,))

of (x.) ~

f(x,' )=fm_1 (x,')

e Trainatreetolearng,
e Add this tree to the list, with a weight 5 that is the learning rate. T _ is expected to
learn as well as possible g __

fm =-fm—l-'-T'm =fm—l_nmgm
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Simple example of gradient boosting

e Let'stake the simple case of mean squared error: L =% 2 (y. - F(xi))2
e In this case the derivative of the loss is :

IL(y,. S (x)
of (x)

which is simply the residual of our prediction
e At each iteration the new tree learns the residuals and corrects the previous

prediction, converging towards zero residuals

=-g =, -f(x))
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The problem of overfitting

Bagging and random forests

34



Overfitting

e BDTs are complex functions with many parameters
o approx. Ntrees x Nnodes : can easily be O(100-1000)
e Resultsin a lot of freedom to the function that a BDT learns to model the input data

g sy 4

2M

"With four parameters | can fit an elephant,
and with five | can make him wiggle his trunk."

Enrico Fermi in 1953

F. Dyson et al,, “A meeting with
Enrico Fermi,” Nature, vol. 427, no.
6972, pp. 297-297, 2004
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Overfitting

e BDTs are complex functions with many parameters
o approx. Ntrees x Nnodes : can easily be O(100-1000)
e Resultsin alot of freedom to the function that a BDT learns to model the input data

This is actually possible... see:

https:/en.wikipedia.org/wiki/NVon_Neumann%27s_elephant

https:/arxiv.org/html/2407.07909vI

J. Mayer, K. Khairy, and J. Howard, “Drawing an elephant with four
complex parameters,” American Journal of Physics, vol. 78, no. 6, pp
648-649, Jun. 2010.



https://en.wikipedia.org/wiki/Von_Neumann%27s_elephant
https://arxiv.org/html/2407.07909v1

Overfitting

e Overfitting = learning specific statistical fluctuations of the training sample
o the method does not generalize well

e Major issue for machine learning in general! BDTs are no exception

e Methods exist to control and mitigate overfitting in BDTs
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° L. Breiman, “Bagging Predictors”, Machine Learning, 24 (2), 123-140, 1996
agglng an a’ l O ’ ; l Ores S L. Breiman, “Random forests”, Machine Learning, 45 (1), 5-32, 2001.

e \With Bagging (Bootstrap AGGregatING) we train trees on different bootstrap
samples

Bootstrap
sample

Classifier

e Statistical fluctuations are smoothed out, since outliers may not take part to the
training of the Nth tree
e The final decision is taken as a majority vote or average from all classifiers

e With random forests we take a step ahead and add even more randomization at
each node splitting by considering a random subset of the input features
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Link to Notebook
(Classification)

https://colab.research.google.com/drive/1Kx3rEsHhSBfXSpl3h9bx3af3UrOxFfij0?usp=sharing
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https://colab.research.google.com/drive/1Kx3rEsHhSBfXSpI3h9bx3af3UrOxFfj0?usp=sharing

Regression

40



Regression with trees

e Classification = predict a categorical feature (e.g. class: 0,1,2,...)
e Regression = predict a continuous feature

e Aregression tree can be built as a decision tree, but replacing the node purity
criterion by a standard deviation
o we try to group together events with similary

1/N-Y" (y—1)?

e When the node splitting (based on the regression features x.) ends, the prediction in
a leaf is computed as the averaged of all the target values in that leaf:

Qleaf — i Zyz
N
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Boosting regression trees

e For boosting, we can follow the same ideas
as for decision trees, but updating the loss
function

e AdaBoost is replaced by AdaBoost.R2 . A
loss L per event is computed, the quantity

B = (LD — (1Y),
is derived iand the weights are updated by

w ) (k) = w® (k) - 5(15”")(@

e For Gradient Boost, we use the Huber loss
function
o switches from a quadratic to a linear
error as error gets bigger : less
sensitive to outliers

) k)—14(k
Linear : L(k) = ma;Li(l(l)y(lg’()ﬂ@(k'l) :

events

2
k)—y(k
Square : L(k) = [ ma)lci(,(l)y(z'()llﬂ(k’l)] ;

events

Ezxponential : L(k) =1—exp [— ma)l(y(’&_(zl()kllg(kq)] .

events k/

Possible loss functions for AdaBoost.R2

HED= sy Fl—6/2) w—F| >

Huber loss function

{ Ly-Fx)® |y—-F|<s
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A simple regression example

sin(x)

1.00 4

0.75 1

0.50

0.25 4

0.00 A

—0.25 1

—0.50 A

—0.75 A

We learn the function sin(x) using a single feature “x”
A decision tree needs to be deep to properly model the curve
A BDT can learn the curve by boosting shallow regressors

Regression tree

—1.00 4

-==- true
depth=2

—— depth=4

—— depth=10

T T
10 12

sin(x)

1.00 4

0.00 A

—0.25 A

—0.50 A

—0.75 A

X

Boosted regression tree (100 trees, depth=3, learning_rate=0.1)

—1.00 A

T
10

12
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rained in (0, 4m)
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Regression tree trained in (0, 4m)

Always make sure that your training and your inference domains are consistent to

Regression trees (and decision trees) cannot extrapolate!
get reliable predictions

A final word of caution
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Link to Notebook
(Regression)

https://colab.research.google.com/drive/1cWHsJpYF9fIBoj371xBayB1bKJ_-l4vk?usp=sharing
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https://colab.research.google.com/drive/1cWHsJpYF9fIBoj37IxBayB1bKJ_-l4vk?usp=sharing

Practice

Applications to real data sets

The Iris dataset

https://colab.research.google.com/drive/11Y7fyQyFI7_-103y_XoNFetkqO80OxJNF?usp=sharing
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https://colab.research.google.com/drive/1lY7fyQyFI7_-I03y_XoNFetkqO8OxJNF?usp=sharing

Recap, quiz, resources
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Resources

e Overview of BDT and boosting/bagging from CERN ROOT TMVA manual :
https://root.cern.ch/download/doc/tmva/TMVAUsersGuide.pdf

e Fermilab introduction talk on BDTs:
https://indico.fnal.gov/event/15356/contributions/31377/attachments/19671/24560/De
cisionTrees.pdf

e XGBoost paper : https://arxiv.ora/pdf/1603.02754

e XGBoost introduction to boosted trees:
https://xgboost.readthedocs.io/en/stable/tutorials/model.html

e Boosted Decision Trees : basics and applications:
https://inspirehep.net/files/7e6542b5c90f3616cb63675046¢9380a
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