Gas Purification System for an Alpha counter GPS

José Busto CPPM Hichem Tedjditi CPPM Ali Dastgheibi Fard LPSC-LSM

Motivation

- The LSM need an Alpha counter to monitor the surface of the sample for the rare events detectors :
 - Dark Matter experiments
 - Double Beta decay experiments
- The best solution is to use the counter inside of the underground lab for un in-site measurement AND to reduce the Cosmic rays impact
- The bigger surface of the samples will give better sensitivity
- The more sensitive commercial existing detector is XIA Ultralo-1800 (*funded* by UGA and CNRS)

Alpha Counter

- XIA UltraLo-1800 a commercial Alpha counter with very low background noise:
 - Big surface of the samples : 1800 cm² for square section
 - 707 cm² for disk
 - Sensitivity : 0.001 Alpha/cm²/h
 - Energy resolution : < 9% FWHM (for a calibration source at 4.6 MeV)
 - Typical counter efficiency : > 90% (2π)
 - Electronic Background Suppression : distinguish between Alpha coming from the wall and the surface of the samples

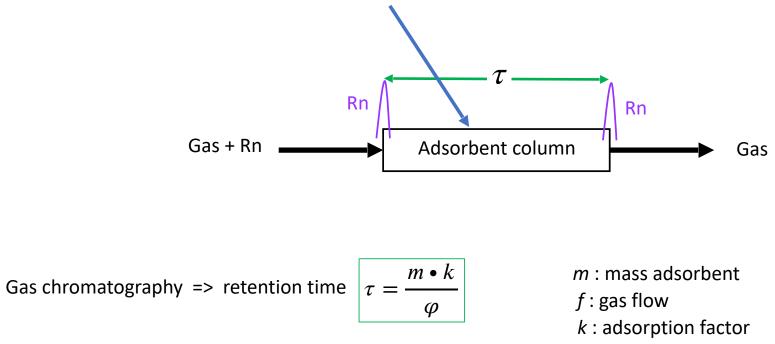
XIA : UltraLo-1800 environment

• Using the Liquid Argon :

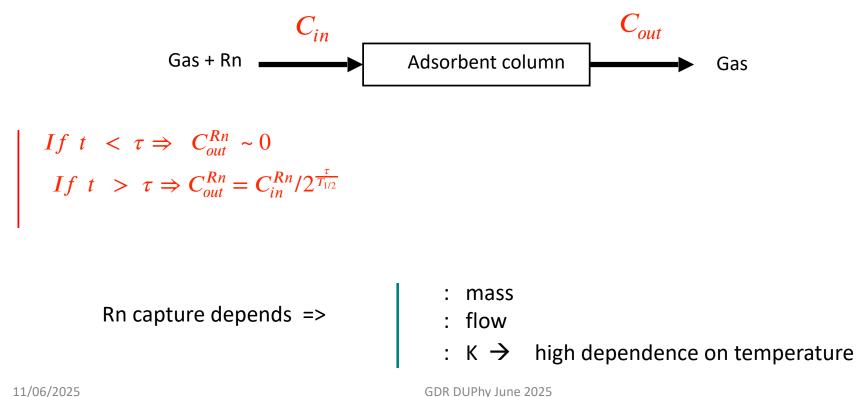
More radiopure than Ar-G

- Before each measurement : Ricing ≈ 700 L
- During the measurement (2-3 days up to 2-3 weeks) :

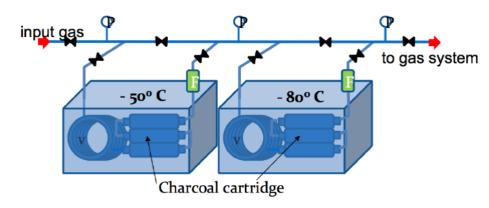
Flushing \approx 300 L/h


Idea for a Gas Purification and recirculation System

- It's no "more acceptable" in environmental point of view to continue to flushing the detectors
- Cost of the gas / year is also no negligible parameter (≈ 10 k€ /year)
- => <u>After discussing with José BUSTO @ CPPM (specialist of gas purification and recirculation system)</u>
- Using the gas Argon instead of liquid Argon
- Purification for : Radon, Oxygen, Humidity


Gas Purification System

- <u>Radon trapping</u>
 - Capture by physisorption on micro-porous materials
 - Radon is slowed down but not to stopped


Gas Purification system

<u>Radon reduction</u>

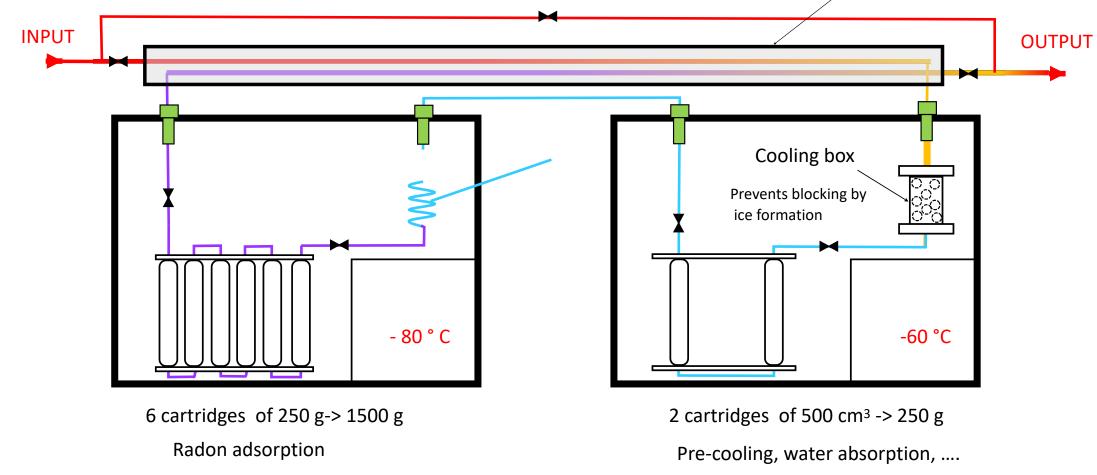
Example of existing system

 Anti-Rn system (J-trap): Study of emanation of SuperNemo demonstrator (< 150 mBq/m3) -> 2016

Gas	Source	Radon Level ($\mu Bq/m^3$)
He	Cylinder	70-100
N_2	Cylinder	400-1000
N_2	Boil-off	90-140
N_2	GPS	20
N_2	GPS	20

 Cable 7.1: Radon activity measured from various carrier gas and containers.

(Thesis: Xin Ran Liu (UCL))


Figure 7.4: Schematic of the GPS developed at CPPM.

Deux freezers @ - 80 ° C «stockage bio »

- 1st on @ -50°C (3 L Charcoal Cartridge)
- 2nd @ -80°C (1 L Charcoal Cartridge)

11/06/2025

Anti-Radon system for gas SN purification @ LSM (2020)

K-factor measurement and reduction coefficient

• K-factor in N_2 ($N_2 \approx$ Ar from adsorption point of view)

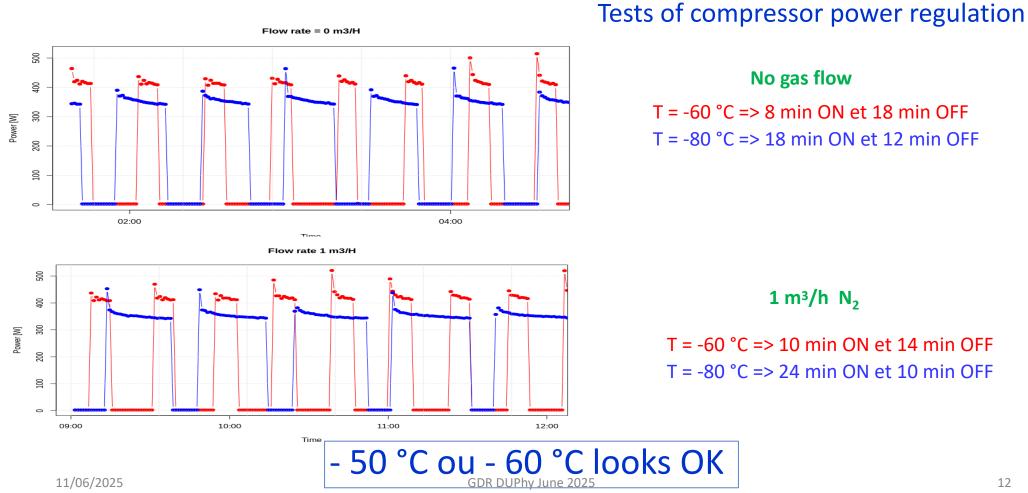
Temperature [°C]	-12	-30	-50	-70	-80
k (J-trap) [m3/kg]	25.3 ± 3.3	59.3 ± 6.0	183.0 ± 18.8	442.2 ± 44.1	-
k (Germanium) [m3/kg]	19.8 ± 4.4	57.7 ± 10.7	159.4 ± 27.9	-	765.1 ± 131.2

• Reduction factor
$$\frac{C_{in}^{Rn}}{C_{out}^{Rn}} = 2^{\frac{\tau}{T_{1/2}}}$$

	Temperature		
300 L/h	-30	-50	-70
1 cartouche	1.45E+00	3.17E+00	1.62E+01
2 cartouches	2.11E+00	1.00E+01	2.62E+02
3 cartouches	3.07E+00	3.18E+01	4.25E+03
4 cartouches	4.46E+00	1.01E+02	6.88E+04
5 cartouches	6.48E+00	3.19E+02	1.11E+06
GDR DUPhy June 6025 Cartouches	9.41E+00	1.01E+03	1.81 ¹⁰ +07

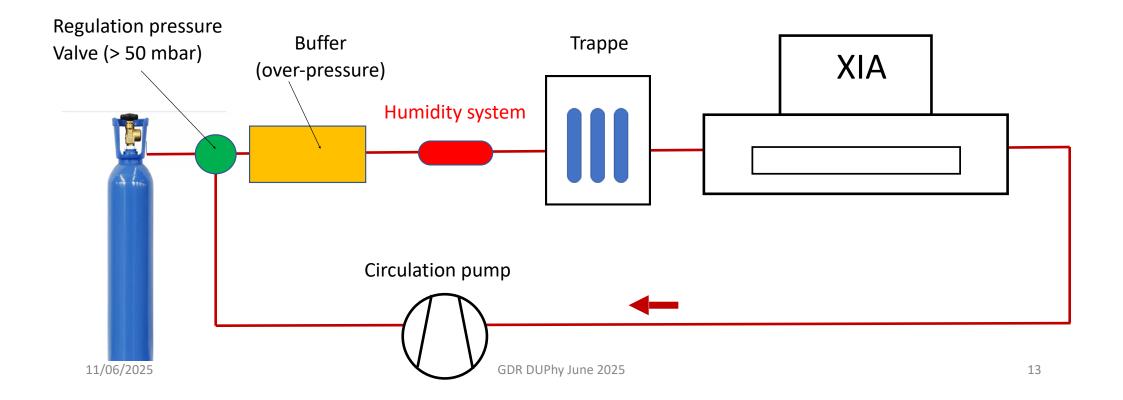
11/06/2025

Flushing time/flow

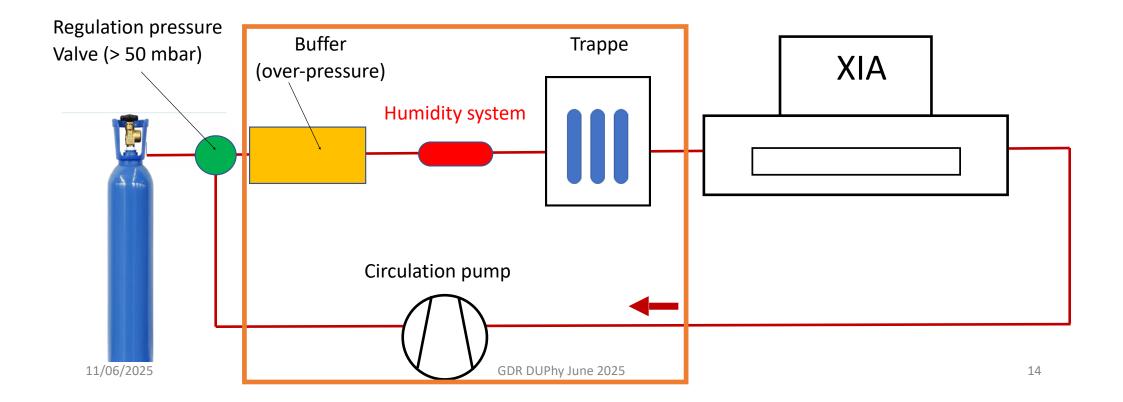

	Temperature		
900 L/h	-30	-50	-70
1 cartouche	1.13E+00	1.47E+00	2.53E+00
2 cartouches	1.28E+00	2.16E+00	6.40E+00
3cartouche	1.45E+00	3.17E+00	1.62E+01
4 cartouches	1.65E+00	4.65E+00	4.10E+01
5 cartouche	1.86E+00	6.83E+00	1.04E+02
6 cartouches	2.11E+00	1.00E+01	2.62E+02

	Temperature		
450 L/h	-30	-50	-70
1 cartouche	1.28E+00	2.16E+00	6.40E+00
2 cartouches	1.65E+00	4.65E+00	4.10E+01
3cartouche	2.11E+00	1.00E+01	2.62E+02
4 cartouches	2.71E+00	2.16E+01	1.68E+03
5 cartouche	3.47E+00	4.67E+01	1.07E+04
6 cartouches	4.46E+00	1.01E+02	6.88E+04

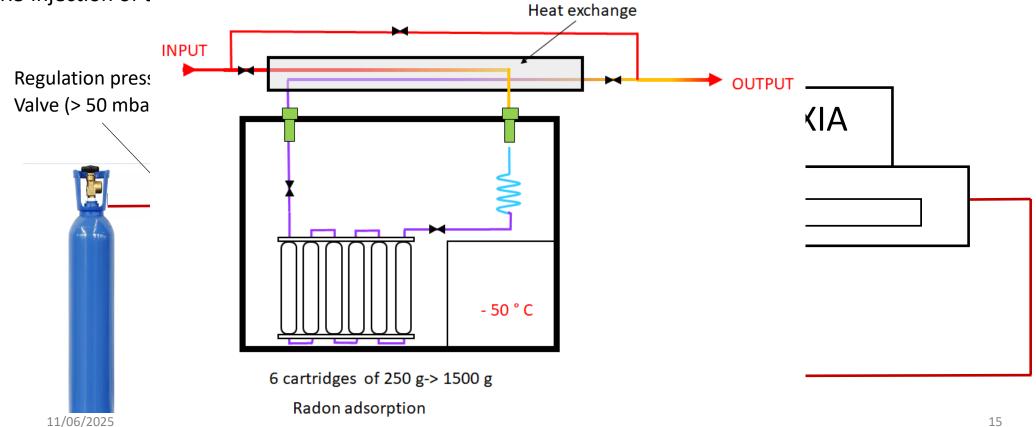
90 minutes


45 minutes

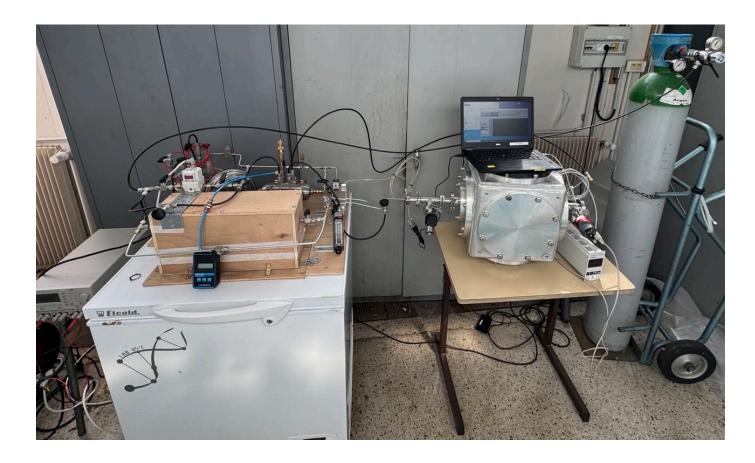
Operation temperature


GPS for XIA Ultralo 1800 #1

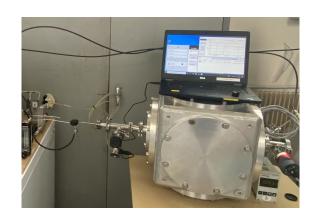
- To avoid any leak in the detector, the system must operate with over-pressure
- Re-injection of the gas for any leak

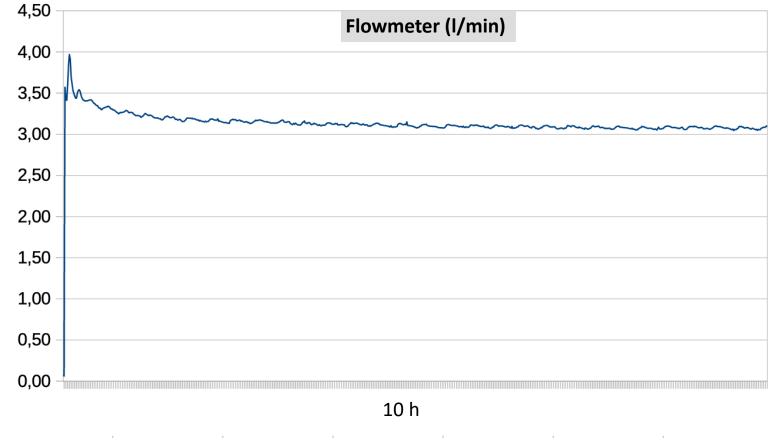

GPS for XIA Ultralo 1800 #1

- To avoid any leak in the detector, the system must operate with over-pressure
- Re-injection of the gas for any leak



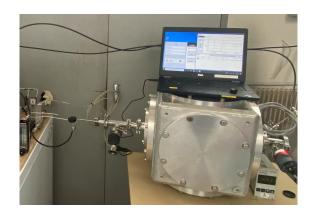
GPS for XIA Ultralo 1800


- To avoid any leak in the detector, the system must operate with over-pressure •
- Re-injection of the sec for any look •



GPS @ LPSC-LSM

GPS @ LPSC-LSM



11/06/2025

GDR DUPhy June 2025

17

GPS @ LPSC-LSM

Summary

- LPSC-LSM is equipped by an Alpha Counter, XIA Ultralo-1800 detector
- XIA Ultralo-1800 is a gaseous detector, working with dry, ultra pure Argon, in preference : boiloff from ArL
 - 700L for rinsing after each opening
 - 300L/h for measurement time
- Tanks to ENIGMASS, a Gas Purification [and recirculation] System is fabricated, which could be used with XIA Ultralo-1800 (with the support of CPPM)
- Firsts tests show a good stability in term of
 - Pressure inside of the test chamber
 - Gas flow inside of the test chamber

11/06/2025

Thanks for your attention

Grazie per l'attenzione

Sépâsse Az Shoma سپاس از شما

Merci pour votre attention

Gracias por su atención

11/06/2025