

*	UTo	kvo
	010	nyo

<u>K. Martens</u> M. Yamashita C. Ishikawa X. Wang

Prof R. Schreiner M. Hausladen Universität

Prof C. Weinheimer

Fea In XE Detector

CHARGE EMISSION

Scientific context

<u>XLZD</u>: Next generation LXe Experiment (50-100 tons) for **rare event searches** (Dark Matter, neutrinos, 0vBB)

(some)Problematics with large detectors

- Radioactive purity: need for faster **purification** methods (Radon) Electrodes for **2nd scintillation**:
 - Mechanical issues, resolution, spurious charge

FEA: Microscopic Conductive structure

- Large electric field site
- Various shape / material (Cu, Si) / fabrication method
- Used in industry in vacuum

Figure 14. SEM images of highly regular (a and e) nanopillar, (b and f) nanorod, (c and g) nanopencil, and (d and h) nanocone Si arrays, produced by wet-etching. (Reproduced from ref. [81] with permission from the authors and the Royal Society of Chemistry).

CONCLUSION

PURIFICATION

PURIFICATION

Field effect charge emission

Fowler-Nordheim tunneling (~1930)

5

CONCLUSION

SECONDARY

CHARGE EMISSION

Charge emission in vacuum

Result from OTH in Vacuum Hausladen et al. DOI: 10.1116/6.0003233

- Silicon laser micromachined tip array of 21x21
- Onset voltage of ~70V
- Stable current obtained
- Current distributed evenly over the array

_

Single tip in LXe

Tip for LXe tests

WD26mm

5kV

SS30

x2,500

18 Apr 2024

- We took first measurement in
 2023 with a 21x21 array
 → Emission but hard to interpret
- Going back to 1 single tip
- First "conditioning" in vacuum
 → smoothens the surface

Single tip in LXe

INTRO

Inner vessel

Stirling cooler

LXe Cryosystem

C. Ishikawa & X. Wang

SECONDARY SCINTILLATION

CONCLUSION

Electron AND Hole emission observed !

- Established procedure to obtain stable emission
- Change of tip structure observed to be understood
- Effect of coating?

9

Plans

- Experience building up on the tip conditioning
- Work on simulations is ongoing
 - Distribute emission over an array
 - Measure attachment to radon with a dedicated experiment →

CHARGE EMISSION

Secondary scintillation

Electrode R&Ds

Double phase "Floating electrodes"

INTRO

CONCLUSION

G. Martinez-Lema et al 2024 JINST 19 P02037

<u>Single phase with wire</u>

Single phase with micro/nano structure

A. Breskin 2022 JINST 17 P08002 / arXiv:2203.01774

- No liquid gas interface
- No electrode sagging
- No delayed electrons
- Cleaner S2 signal
- Large local electric field
- Not as studied as double phase for rare event searches

Secondary scintillation simulation

Simple geometry

400

CONCLUSION

- Number of electron vs photon -
- Charge emission? _
- \rightarrow Need a smaller enhancement factor

0

14

Simple geometry

15

Many possibilities

Gated FEA

Many possibilities

Various geometry

Gated FEA

Simple Tip+Mesh TPC

Simple Tip+Mesh TPC

CONCLUSION

- Simple adaptation of Xelab
- Gate + Anode \rightarrow FEA + Anode

Plans

- Explore / optimize geometries with simulation
 - among existing ones
 - discuss feasibility if not existing
- Test simulation with experiment
 → Xelab@LPNHE is now an option
- Measure performances of these structures