

GRENOBLE | MODANE

The TESSERACT direct dark matte experiment at LSM

Juliette Blé PhD student at LPSC Grenoble

- Direct Dark Matter (DM) searches have been mostly focused around the standard WIMP mass (10 GeV - TeV)
 - Better limits reached by few tons experiments (liquid target)
- Still no evidences, now reaching neutrinos floor

Need to broaden DM searches including masses below the GeV

Solid state and cryogenic detectors are best suited for low mass DM detection

Cryogenic DM Experiments and Low Energy Excess (LEE) Limiting DM Search

Need to understand, mitigate LEE and develop new technology to reject it

The TESSERACT Experiment

Transition Edge Sensor with Sub-Ev Resolution And Cryogenic Target <u>Goal:</u> extending the Dark Matter mass search window from meV-to-GeV with ultra low-threshold cryogenic detectors with multiple targets and particle identification capabilities

US contribution

One design, several targets leading to different DM sensitivities

French contribution

Add the Ge/Si semiconductors calorimeter technology and benefit from RICOCHET and EDELWEISS experiences

Deploy TESSERACT experiment @ LSM

RI² project: TES4DM

- Discrimination between signal and background
 - Simultaneous readout of signals induced from energy deposition to distinguish NR/ER
 - Fiducialization of detectors for background rejection
- Low energy threshold
 - $\circ~$ Elastic scattering of light DM particle deposits few keV in the detector

Use Ge/Si semiconductor calorimeter

Ge/Si semiconductors

Charge/Phonon sensors

Ge/Si semiconductors

$$= E_{recoil} + \frac{1}{3 eV} E_{ion} \Delta V$$

Ge/Si semiconductors

Ge/Si semiconductors : High Voltage mode

Optimal for **ERDM** sensitivity

TES "point contact"

First observation of a single-electron sensitivity in a massive (40g) Ge cryogenic detector !

Aluminum electrode

CRYOSEL performance goals: 200 V bias + single e-h sensitivity + SSED LEE tagging efficiency > 1000

First R&D results shown at TAUP2023:

•Stable operation up to 60 V

•Confirmation that first NbSi SSED acts as efficient LEE veto

•New prototype currently being tested with significantly improved performance

For TESSERACT:

•Switch to low-imp. TES for sub-eV SSED energy threshold

•LEE discrimination down single e-h pair

•Exquisite sensitivities to ERDM with LEE discrimination

Ge/Si semiconductors : Low Voltage mode

•ER/NR discrimination threshold has been improved by about one order of magnitude w.r.t EDW and SuperCDMS
•Ricochet can now probe reactor neutrinos (CEvNS) and equiv. 3 GeV WIMP with highly efficient LEE and ER rejection
Ricochet resolution goals: 20 eV (heat) + 20 eVee (ionisation) - almost achieved (by a factor of ~2)

For TESSERACT:

Switch to TES for sub-eV heat energy threshold and reduced LEE, and aiming for <10 eVee ion. resolution
ER/NR identification down to 10s of eVnr + LEE discrimination down to 50 eVnr (Lindhard)
Ideal for low-mass NRDM with PID

• Discrimination between signal and background

• Simultaneous readout of signals induced from energy deposition to distinguish NR/ER

- Fiducialization of detectors for background rejection
- Low energy threshold

• Elastic scattering of light DM particle deposits few keV in the detector

• Low and controlled backgrounds

- Cosmic rays + cosmogenic activation of detectors & shielding materials
 - ✓ Low Background Environment: TESSERACT integration in Modane Underground Laboratory

Muon flux reduced by 10^6 relative to surface

- Cosmic rays + cosmogenic activation of detectors & shielding materials
- Natural radioactivity from Modane rock (U, Th, K)
 ✓ Passive/Active shielding
- Internal radiogenic contamination (U, Th, K, Cs ...)
 ✓ Radiopurity specifications with screening and material assay with HPGe

Ongoing simulation work essential for geometry design

Simulation of octagonal vs cubic geometry to assess the protection from the rock

- Cosmic rays + cosmogenic activation of detectors & shielding materials
- Natural radioactivity from Modane rock (U, Th, K)
- Internal radiogenic contamination (Cs, U, K, ...)
- Radon dust leading to contamination of detector surfaces
 - Detector technology to reject surface events contamination

- TESSERACT will use ultra-low threshold cryogenic detectors with multiple targets (leading to different NR/ER sensitivities) and particle identification for light DM search down to meV
- TESSERACT will be deploy @ LSM to have a ultra low background environment
- Ongoing simulations studies for shielding design and material radiopurity requirement
- **Commissioning** of cryostat and shielding @LPSC soon!

Conclusion

- TESSERACT will use ultra-low threshold cryogenic detectors with multiple targets (leading to different NR/ER sensitivities) and particle identification for light DM search down to meV
- TESSERACT will be deploy @ LSM to have a user low background environment
- Ongoing simulations studies for shielding design and material radiopurity requirement
- **Commissioning** of cryc stat and shielding @LPSC soon!

BACKUP SLIDES

SPICE: Sub-eV Polar Interaction Cryogenic Experiment :

Al₂**O**₃:

GaAs:

Look for ERDM

•mass range : 100 meV - MeV

•LEE mitigation method : use of two TES (pulse shape discrimination)

•No particle identification

•Single Phonon sensitivity

ERDM and **NRDM**

•mass range : eV - MeV and MeV - GeV

•LEE mitigation method : photon / phonon coïncidence in two separate sensors (~ eV scale)

•Particle identification with dual Photon –

Phonon readout (~ 10 eV scale)

HeRALD: Helium Roton Apparatus for Light Dark matter

Easy to purify, intrinsically radio pure

- R. Anthony-Petersen et al., arXiv:2307.11877
- LHe cell operated at 20-50 mK with wafer-like cryogenic detectors with TES suspended in vacuum
 - UV/IR photons and He atoms from qp induced evaporation
- First evidence of ER/NR discrimination @10 keV
- Already achieved ~170 eV threshold on He recoils (300 MeV DM)

Commissioning @ LPSC

The clean room for the cryostat is ready at LPSC

•Summer 2025: vibrational measurements •Fall 2025: platform

