

4

The IRENE Project (Innovative mateRials for Extreme radon capture)

GDR Duphy, WP2, Lyon Hichem Tedjditi 11/06/2025

Natural, Radioactive, Noble gas from the U and Th chains

Easy to transport, complicated to capture
Short half-life, high intrinsic activity

Radon Capture

Rn is a Noble gas:

• No chemistry \rightarrow Physical process

Physical adsorption:

- → <u>Surface</u> capture by Van der Waals forces
- \rightarrow Use of porous materials: very high surface materials, up to 4000m²/g

Need to optimized Porosity

→ 2015 : Study of Rn capture in 50 commercial or research microporous materials (SuperNEMO)

- Activated charcoals
- Carbon molecular sieves
- Carbon aerogels (Granada Univ.)
- Molecular cages CC3 (Liverpool Univ.)
- MOF
- Zeolites (Al, Si) (Marseille, Mulhouse Univ.)
- Dedritic polymers (Marseille)

→ 2015 : Study of Rn capture in 50 commercial or research microporous materials (SuperNEMO)

Échantillons	Snet N ₂ (m ² /g)	V<0.5 nm (cm ³ /g)	V _{0.5-0.7 mm} (cm ³ /g)	V0.7-0.9 nm (cm ³ /g)	V _{0.5-1.2 nm} (cm ³ /g)	V12-16 nm (cm ³ /g)	V _{1.6-2 nm} (cm ³ /g)	V<0.7 nm (cm ³ /g)	V0.7-2 nm (cm ³ /g)	V<2.nm (cm ³ /g)
Carbosieve SIII (1)	1062	0,076	0,233	0,062	0,018	0,020	0,000	0,308	0,102	0,410
Carboxen 1000 (2)	812	0,064	0,161	0,044	0,001	0,000	0,000	0,225	0,045	0,270
Carboxen 569 (3)	299	0,074	0,011	0,000	0,000	0,000	0,000	0,085	0,000	0,085
K485 (4)	799	0,074	0,138	0,034	0,033	0,032	0,006	0,212	0,105	0,317
Nucleacarb 208C STEDA (5)	1298	0,053	0,136	0,084	0,087	0,106	0,044	0,189	0,321	0,510
SHIRASAGI G2x4 (6)	1383	0,051	0,161	0,096	0,090	0,103	0,033	0,212	0,322	0,534
Carboact (7)	1096	0,077	0,206	0,053	0,033	0,048	0,022	0,283	0,156	0,439
Environcarb 207C (8)	1073	0,075	0,181	0,058	0,046	0,050	0,011	0,256	0,165	0,421
K48 (9)	793	0,078	0,137	0,026	0,034	0,034	0,005	0,215	0,099	0,314
Nuclearcarb 208 5KI3 (10)	1315	0,057	0,145	0,081	0,084	0,110	0,046	0,202	0,321	0,522
Carboxen 1012 (11)	1140	0,074	0,145	0,054	0,076	0,078	0,016	0,219	0,223	0,443
Carboxen 1021 (12)	585	0,083	0,049	0,020	0,037	0,026	0,017	0,132	0,100	0,231
Carboxen 1016 (13)	77	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Carboxen 1018 (14)	804	0,061	0,155	0,045	0,010	0,024	0,014	0,216	0,092	0,308
Aquacarb 207C (15)	1040	0,063	0,165	0,066	0,044	0,052	0,019	0,228	0,181	0,409
Carbosieve G (16)	1273	0.074	0,183	0,112	0,046	0.050	0.025	0.257	0.233	0,490

Porosity from 0.5 to 2 nm

Correlation Factor Adsoption v.s. porosite

Optimal porosity: • 0.5 – 0.7 nm (Rn 0.4 nm) **Small effect on the chemical composition (Sulphur)**

→ 2015 : Study of Rn capture in 50 commercial or research microporous materials (SuperNEMO)

Optimal porosity:

• 0.5 - 0.7 nm (Rn 0.4 nm)

Small effect on the chemical composition (Sulphur)

→ 2018 : Xenon / Radon adsorption with macromolecular cages: Cryptophane

- Used for the complexing of Xe
- Adjustable size

Atomic Radius						
Gas	Van der Waals (nm)	Covalent				
Хе	0.216	0.130				
Rn	0.220	0.145				
Compétition Xe / Rn						

Three types of cage

Two supports

Silice MCM-41 $\emptyset = 2,6 \text{ nm}$ $1000 \text{ m}^2/\text{g}$

Silice SBA-15 $\emptyset = 6,5 \text{ nm}$ $500 \text{ m}^2/\text{g}$

→ 2015 : Study of Rn capture in 50 commercial or research microporous materials (SuperNEMO)

Optimal porosity:

• 0.5 - 0.7 nm (Rn 0.4 nm)

Small effect on the chemical composition (Sulphur)

→ 2018 : Xenon / Radon adsorption with macromolecular cages: Cryptophane

Rn Adso	rption (C	CPPM)	

Adsorbant	K (m ³ /kg) @-30°C
YC-125: Cryptophane A/MCM-41	$103,2 \pm 25$
YC-126: Cryptophane A/SBA-15	60 ± 15
YC-127: Cryptophane E/MCM-41	24 ± 6
YC-128: Cryptophane E/SBA-15	2 ± 6
Crystals of Cryptophane	0
AC K48 special	66,6±5

Xe Adsorption (MADIREL)

Echantillon	Adsorption Xe (mmol/g)
Cryptophane A (MCM-41)	0.176 ±0.010
Cryptophane A (SBA-15)	0.123 ±0.006
Charbon actif Silcarbon K48	2.31 ±0.04

13.12

→ 2015 : Study of Rn capture in 50 commercial or research microporous materials (SuperNEMO)

Optimal porosity:

• 0.5 - 0.7 nm (Rn 0.4 nm)

Small effect on the chemical composition (Sulphur)

→ 2018 : Xenon / Radon adsorption with macromolecular cages: Cryptophane

→ 2020 : Radon adsorption on silver zeolite

Three commercial Ag Zeolite			Silver		
Zeolite Supplier Ch		emical formula	(wt%)	Pore size (Å)	
Ag-ZSM-5	Riogen	Ag _{4.8} [(AlC	$O_2)_{4.8}(SiO_2)_{91.2}] \cdot 16H_2O$	7.9	5.2×5.7 and 5.3×5.6
Ag-13X	Sigma Aldrich	Ag ₈₄ Na ₂	$xH_2O[(AlO_2)_{86}(SiO_2)_{106}] \cdot$	35	10 × 10
Ag-ETS-10	Extraordinary Adsorbents Inc.	Ag	g ₁₆ [Si ₄₀ Ti ₈ O ₁₀₄]	30	4.9 × 7.6

→ 2015 : Study of Rn capture in 50 commercial or research microporous materials (SuperNEMO)

Optimal porosity:

• 0.5 - 0.7 nm (Rn 0.4 nm)

Small effect on the chemical composition (Sulphur)

→ 2018 : Xenon / Radon adsorption with macromolecular cages: Cryptophane

→ 2020 : Radon adsorption on silver zeolite

1 Reference charcoal (carboAct)

→ 2015 : Study of Rn capture in 50 commercial or research microporous materials (SuperNEMO)

Optimal porosity:

• 0.5 - 0.7 nm (Rn 0.4 nm)

Small effect on the chemical composition (Sulphur)

→ 2018 : Xenon / Radon adsorption with macromolecular cages: Cryptophane

→ 2020 : Radon adsorption on silver zeolite

1 Reference charcoal (carboAct)

- Ag-ZSM-5
- Ag-13X
- Ag-ETS-10

→ 2015 : Study of Rn capture in 50 commercial or research microporous materials (SuperNEMO)

Optimal porosity:

• 0.5 - 0.7 nm (Rn 0.4 nm)

Small effect on the chemical composition (Sulphur)

→ 2018 : Xenon / Radon adsorption with macromolecular cages: Cryptophane

→ 2020 : Radon adsorption on silver zeolite

→ 2015 : Study of Rn capture in 50 commercial or research microporous materials (SuperNEMO)

Optimal porosity:

• 0.5 - 0.7 nm (Rn 0.4 nm)

Small effect on the chemical composition (Sulphur)

→ 2018 : Xenon / Radon adsorption with macromolecular cages: Cryptophane

→ 2020 : Radon adsorption on silver zeolite

High ²²⁶ Ra concentration		
Echantillon	226Ra (Bq/kg)	
К48	< 0,25	
NuclCarb 5TEDA	<0,3	
ENvCarb 207C	0,28 +- 0,17	
Shirasagi	0,164 +- 0,023	
CarboAct	0,0023 +- 0,0019	
ETS-10-AG	0,988 +- 0,05	

→ 2015 : Study of Rn capture in 50 commercial or research microporous materials (SuperNEMO)

Optimal porosity:

• 0.5 - 0.7 nm (Rn 0.4 nm)

Small effect on the chemical composition (Sulphur)

→ 2018 : Xenon / Radon adsorption with macromolecular cages: Cryptophane

→ 2020 : Radon adsorption on silver zeolite

Other results

@ room temperature

Sample	Reference	K factor [m3/kg]			
Ag-ETS-10	Heinitz et al.	3400			
Ag-ZSM-5	Heinitz et al.	3500			
8 Ag-FER-B	Takeuchi et al.	6500			

AC @ 20° C : ~ $10 \text{ m}^3/\text{kg}$

Very good results but not well understood

Can we do better ?

- Higher adsorption
- Improved radiopurity
- Lower sensitivity to water

Innovative mateRials for Extreme radoN capturE

Understanding and optimising the capture of Rn in new materials

Project start in February 2024

Philosophy:

- Feedback between the 5 laboratories
- Modelling as a guide
- 3 families of adsorbents:
 - Zeolites
 - Mol. Cages
 - Carbon based
- Xenon as a reference gas
- Radon capture in N₂,He and Xe

Innovative mateRials for Extreme radoN capturE

Understanding and optimising the capture of Rn in new materials

K is the volume of radon a sample can capture:
$$\mathbf{R}_{\mathbf{r}}$$

$$\frac{K}{kg}\left[\frac{m^3}{kg}\right] = \frac{C(Rn)_{Sample}\left[\frac{Bq}{kg}\right]}{C(Rn)_{gas}\left[\frac{Bq}{m^3}\right]}$$

The retention time τ is the time it take for Rn to exit the adsorbent $m[kg] * K[m^3/k_n]$

$$\tau [s] = \frac{m[\kappa g] \cdot \kappa [-/kg]}{\phi[m^3/s]}$$

And the reduction factor \boldsymbol{R} is define as:

•
$$R = \frac{Rn_{out}}{Rn_{in}} = e^{-\frac{\ln(2)}{T_{1/2}(Rn)}*\tau}$$

K can be expressed as an Arrhenius-type law:

•
$$K = K_0 e^{\frac{Q}{RT}}$$

K increased exponentially with respect to 1/T

Figure 3.1: Graph of the variation of K with respect to the temperature for an adsorbent measured at CPPM. The fit is an Arrhenius-type law with factor $A = 1.61 * 10^{-4} \pm 1.39 * 10^{-4}$ and $E = 26247.17 \pm 1747.08 J/mol$.

Dynamical adsorption method

Similarly to chromatography on a column, we force Rn carried by a neutral gas (N_2 , Ar, He, etc) through the adsorbent. When it is totally filled with Rn, we measure the Radon concentration inside with an HPGe. We can then calculate the K coefficient described previously.

- Measure the absolute K coefficient
- Reproductible measurement
- Take a long time (1 sample/day/bench)
- Done in 3 step:
 - 1. Activation of the sample
 - 2. Radonisation
 - 3. HPGe analysis

Objective:

- Ensure the reproducibility
- Maximum radon adsorption

Purpose:

• Removal of all traces of physically and chemically adsorbed molecules or atoms

How:

• Heating of the sample under vacuum or flow of neutral gas

Temperature and condition depends on adsorbent:

- AC/Zeolite \rightarrow 200°C+
- MOF & Molecular cage \rightarrow <100°C

CPPM activation bench:

- Temperature between 20 and 250°C
- Flow of $N_2/Ar/He$
- Vacuum

Radonisation

Set up:

- Send a constant concentration of radon through the sample
- Control of radon concentration with a Rn detector at the output
- Sample cooled at up to -80°C

CPPM platform bench:

- "Strasbourg", open loop, $A = 932 \pm 18 \text{ Bq/m3}$;
- "Marseille", closed loop, $A = 1240 \pm 41 \text{ Bq/m3}$;

Radonisation

Set up:

- Send a constant concentration of radon through the sample
- Control of radon concentration with a Rn detector at the output
- Sample cooled at up to -80°C

CPPM platform bench:

- "Strasbourg", open loop, $A = 932 \pm 18 \text{ Bq/m3}$;
- "Marseille", closed loop, $A = 1240 \pm 41 \text{ Bq/m3}$;

Radonisation

Typical Rn concentration change:

- 1. Carrier gas is radonised to a concentration C1, "initialization"
- 2. Flushed through the column, "adsorption"
- 3. C(Rn) stabilized at a value C2, "saturation"

HPGe measurement

Measurement of the Radon inside the sample by gamma spectrometry

→ 100 cm³ HPGe shielded by 15cm lead shielding
 → Measurement of ²¹⁴Bi 609 keV gamma line
 → A_{sample} in Bq/kg

Adsorption coefficient measurement

Measurement of:

- Active Charcoal
- Molecular sieves
- Carbon aerogels
- Molecular cages
- MOF
- Zeolite
- Doped charcoal
- Etc

From Ambient temperature to -50°C

AC adsorption coefficient K[m3/kg] @-30°C

Preliminary results from simulation

Goal: Find the zeolite with the best performance for Rn adsorption.

Zeolites	каррогт зг.Агтин
FER	>6
MWW	>18
MTT	>10
MEL	>20
MFI	>13
STF	>20

→ Zeolite with 10MR are the best candidate for Rn adsorption

Preliminary results from simulation

How chemical composition of zeolite influences Rn & Xe adsorption

FAU

Simulated Rn adsorption isotherms @ 298K for several zeolite structures

Preliminary results from simulation

Effect of the Si/Al ratio on Rn and Xe adsorption properties for FER with 4,6,8,10 Ag⁺ cations

Adsorbent measurement

12 MOF from CEA Marcoule :

- MOF with Ni is the most performant

Measurement of Extremely Adsorbent at high Temperature:

- For extremely adsorbent materials, low temperature measurement is complicated.
- Maximum K measurable for 0,2g is $39 \times 10^3 \text{ m}^3/\text{kg}$; $10^4 \text{ m}^3/\text{kg}$ for 0,8g.
- We can lower the mass, but it increase the uncertainty and enhanced the sensibility to humidity
- K can be expressed as an Arrhenius-type law:

•
$$K = K_0 e^{\frac{Q}{RT}}$$

Goal: Estimate the K factor of extremely adsorbent materials at low temperature by measuring K at high temperature and with an higher mass.

 \rightarrow Adsorption at high temperature is a advantage for the Rn purification of gas mixture.

Measurement of Extremely Adsorbent at high Temperature:

Preliminary Results with ETS-10-Ag

• ETS-10-Ag measured at -5, 22, 40, 80, 100 and 150°C, mass between 0,8 and 0,9g

Temperature [°C]	K[m ³ /kg]	
-30	19940 ± 5980,8	From DOI: 10.1093/ptep/pted160
-12	9951,9 ± 2404,6	
-5	$6593,8 \pm 684,6$	
22	$2332,1 \pm 165,5$	
40	989,1 ± 63,1	\rightarrow ETS-10-Ag K factor is still significant at high temperature !
80	$186,5 \pm 11,7$	
100	$136,8 \pm 8,0$	
150	$29,3 \pm 2,3$	

Measurement of Extremely Adsorbent at high Temperature:

Preliminary Results with ETS-10-Ag

• ETS-10-Ag measured at -5, 22, 40, 80, 100 and 150°C, mass between 0,8 and 0,9g

Measurement of Extremely Adsorbent at high Temperature:

Preliminary Results with ETS-10-Ag

• ETS-10-Ag measured at -5, 22, 40, 80, 100 and 150°C, mass between 0,8 and 0,9g

- Fit is in accordance with data up to -12°C.
- Need more measurement at inflexion point to improve K0 and Q estimation.

Conclusion

- Low-energy and low-counting rate experiments require materials with extreme purity and ultra-low radon concentration.
- Materials with adsorption capacities more than 100 times higher than the best active carbons are now commercially available but they do not have the necessary purity levels and their performance are not well understood.
- Possible improvements in radon capture can be reached by choosing the right chemical composition and good porous structure.
- The objective of the **IRENE** project is to tackle the problem of radon capture in microporous materials in a scientific and coherent way, thanks to a unique consortium of physical chemists and particle physicists
- **IRENE** is now in the phase of producing new adsorbent doped with silver and other metals

Thanks for your attention

Back up

Radonisation

CPPM platform bench:

• "Marseille", closed loop, $A = 1240 \pm 41 \text{ Bq/m3}$;

Side Project: Recycling & Purification system

- Gas price inflation since Ukraine/Russian war
- Throw out gas is now too expensive
- \rightarrow Need for recycling system
- → Imply purification of gas from radon and other contaminant
- → Adsorption and gas system knowledge of the CPPM radon platform fit
- Three system have been made:
 - 1. J-Trap: Radon removal system

Side Project: Recycling & Purification system

- Gas price inflation since Ukraine/Russian war
- Throw out gas is now too expensive
- \rightarrow Need for recycling system
- → Imply purification of gas from radon and other contaminant
- → Adsorption and gas system knowledge of the CPPM radon platform fit

Three system have been made:

- 1. J-Trap: Radon removal system
- 2. GPS: Rn removal and recycling system for XIA

XIA run with Ar from LAr evaporation:

→ 1 run cost 1k€

Objective:

• Use Ar by purifying it and recycling it to reduce the run cost.

Side Project: Recycling & Purification system

- Gas price inflation since Ukraine/Russian war
- Throw out gas is now too expensive
- \rightarrow Need for recycling system
- → Imply purification of gas from radon and other contaminant
- → Adsorption and gas system knowledge of the CPPM radon platform fit

Three system have been made:

- 1. J-Trap: Radon removal system
- 2. GPS: Rn removal and recycling system for XIA
- 3. NESS: No Ethanol System in SuperNEMO

Emanation/Exhalation

Emanation (²²⁶Ra α decay)

- O(5MeV) α-decay creates O(100 keV) ²²²Rn nuclear recoil
- Recoil range 10 100 nm (depending on Z, density)

Transport

- Tortuosity
- Density
- Inter-grain media
- Strongly depends on temperature

Radon exhalation

- ²²⁶Ra concentration
- Porosity
- Temperature
- Pressure
- Medium (gas /liquid)
- Self-adsorption

Influence des liquides sur l'exhalation et le transport

SupeNEMO gas : He + 4 % ethanol + 1 % Ar

JUNO : Rn transport in 5 mm HDPE liner air/ H_2O

44