

New ML methods for v_e interaction identification @T2K near detector

1

Anaëlle Chalumeau

Réunion du vendredi - LPNHE 11/04/2025

Overview

- Why neutrinos are interesting
- T2K and v_e (electronic neutrinos)
- Why we need to improve the v_e selection
- 2 new PID* methods with ML: Transformer & Variational Auto-Encoder
- The Transformer PID method
 - What is a Transformer
 - How we can apply it for the v_e selection
 - Vision Transformer
 - First performances
- A glanced at the Variational Auto-Encoder method

*PID = Particle IDentification

Standard model of particles

Standard model of particles

4

Standard model of particles

Standard model of particles

Matter vs anti-matter

antimatter

8

MATTER

ANTI MATTER

Matter vs anti-matter

antimatter

Matter vs anti-matter

antimatter

SORBONNE LPNHE TZK

Where are they?

nuclear reactions in nuclear power plants

nuclear reaction in stars

cosmic rays collision with the atmosphere

(and similar experiments) create specifically a beam of neutrinos

They oscillate!

They oscillate!

 $P(\mathbf{v}_{\mu} \to \mathbf{v}_{e}) = f(\theta, \delta)$

They oscillate!

Р(′′ µ	$\rightarrow \nu_{e})$	=	$f(heta,\delta)$
$P(\overline{\nu_{\mu}})$	$\rightarrow \overline{\nu}_{e})$	=	$f\prime\left(heta,\delta ight)$

They oscillate!

$$P(\mathbf{v}_{\mu} \to \mathbf{v}_{e}) = f(\theta, \delta)$$
$$P(\overline{\mathbf{v}}_{\mu} \to \overline{\mathbf{v}}_{e}) = f(\theta, \delta)$$

neutrinos & anti-neutrinos don't oscillate the same way

They oscillate!

$$P(\mathbf{\nu}_{\mu} \to \mathbf{\nu}_{e}) = f(\theta, \delta)$$
$$P(\overline{\mathbf{\nu}}_{\mu} \to \overline{\mathbf{\nu}}_{e}) = f(\theta, \delta)$$

neutrinos & anti-neutrinos don't oscillate the same way

could explain why there was more matter than anti-matter after the big-bang i.e. why we exists

particle accelerator to create neutrino beam

particle accelerator to create neutrino beam

Anaëlle Chalumeau – Réunion du vendredi–11/04/2025

near detector: ND280

particle accelerator to create neutrino beam

& data taking since end of 2024

& data taking since end of 2024

The Super-FGD

T2K goal: measure this difference!

- v_{e} of the beam are an irreducible background
- v_{e} are the signal at SK
- \Rightarrow very important to characterize the v_e component at ND280
- \Rightarrow need Particle Identification for v_{e} selection
- \Leftrightarrow identifying **e** vs μ , γ , π , **p**

how to detect uncharged particles (like v) in a detector that can only detect charged ones?

 \rightarrow by detecting the charged particle from ν interaction* in the detector:

- v_{e} of the beam are an irreducible background
- v_{e} are the signal at SK
- \Rightarrow very important to characterize the v_e component at ND280
- \Rightarrow need Particle Identification for v_{a} selection

 \Leftrightarrow identifying **e** vs μ , γ , π , p

how to detect uncharged particles (like v) in a detector that can only detect charged ones?

 \rightarrow by detecting the charged particle from ν interaction* in the detector:

Selection of a particle =

1) Define a **PID** method to identify your particle (e)

Using simulations of particle:

- 2) count how many true e are selected by the method
- 3) count how many other particles are selected by the method

This allows to define:

Particle IDentification

- **efficiency** = how much true **e** we selected
- **purity** = how much background is kept in the selected particles

Important! goes into the T2K uncertainties \rightarrow need method which gives best eff & pur

Selection of a particle =

1) Define a **PID** method to identify your particle (e)

Using simulations of particle:

- 2) count how many true e are selected by the method
- 3) count how many other particles are selected by the method

This allows to define:

Particle IDentification

- efficiency = how much true e we selected
- **purity** = how much background is kept in the selected particles

Important! goes into the T2K uncertainties \rightarrow need method which gives best eff & pur

-

Selection of a particle =

1) Define a **PID** method to identify your particle (e)

Using simulations of particle:

- 2) count how many true e are selected by the method
- 3) count how many other particles are selected by the method

This allows to define:

Particle IDentification

- efficiency = how much true e we selected
- **purity** = how much background is kept in the selected particles

Important! goes into the T2K uncertainties \rightarrow need method which gives best eff & pur

-

Selection of a particle =

1) Define a **PID** method to identify your particle (e)

Using simulations of particle:

- 2) count how many true e are selected by the method
- 3) count how many other particles are selected by the method

This allows to define:

Particle IDentification

- efficiency = how much true e we selected
- **purity** = how much background is kept in the selected particles

Important! goes into the T2K uncertainties \rightarrow need method which gives best eff & pur

-

Selection of a particle =

1) Define a **PID** method to identify your particle (e)

Using simulations of particle:

- 2) count how many true e are selected by the method
- 3) count how many other particles are selected by the method

This allows to define:

Particle IDentification

- efficiency = how much true e we selected
- **purity** = how much background is kept in the selected particles

Important! goes into the T2K uncertainties \rightarrow need method which gives best eff & pur

with current method:

efficiency = 18.6% purity = 68%

simulation sample

with current method:

efficiency = 18.6% purity = 68%

with current method: efficiency = 18.6% purity = 68%

2 new PID methods with ML: Transformer & Variational Auto-Encoder

2 new PID methods with ML: Transformer & Variational Auto-Encoder

Training & test:

Transformer: supervised ML

What is a Transformer

"**Transformer** = a new simple network architecture, based solely on attention mechanisms, dispensing with recurrence and convolutions"

Attention Is All You Need

Key ideas:

- takes sequences as inputs
- attention mechanisms: allows the model to focus on the most relevant parts of the input sequence when producing an output
- **multi-head attention:** attending to different parts of the input in parallel allows for the model to capture multiple types of relationship
- parallelizable architecture

standard BERT architecture

How we can apply it for the v_e selection

How we can apply it for the v_e selection

How we can apply it for the v_e selection

Vision Transformer

- Problem: some sequences of hits are too long:
- ⇒ not computationally efficient as complexity of transformer
- ~ O(sequence length²)
- \Rightarrow training would take too long
- Solution: use the principle behind **vision transformers**

Vision Transformer

- Problem: some sequences of hits are too long:
- ⇒ not computationally efficient as complexity of transformer
- ~ O(sequence length²)
- \Rightarrow training would take too long
- Solution: use the principle behind vision transformers

Vision Transformer

Now (ViT) :

T2K LPNHE

First performances

model trained for e/γ separation

model trained for $e/\gamma/\mu/\pi/p$ separation

First performances

First performances

model trained for $e/\gamma/\mu/\pi/p$ separation

A glanced at the Variational Auto-Encoder method

Key idea: anomaly detection to distinguish e- (anomalies) out of γ (trained on)

- 1 Train the VAE with many gamma conversion in the SFGD: it will learn to reconstruct the gamma events
- 2 Test it on e- events: the reconstruction should not be as good \rightarrow anomaly in the loss function

A glanced at the Variational Auto-Encoder method

Summary

- It's necessary to charactize precisely the v_a background at the near detector
- New methods are being developed for this matter: a Transformer and a VAE
- The developpement of the **Transformer in the T2K analysis software** is done! (first complex ML algo to be implemented there)
- The Transformer training shows promising PID results: other improvements are needed
- Some VAE upgrades are on-going, then new analyses are too come

Next steps:

- compare those 2 methods with the old ones on the same samples
- control sample

Back-ups

The gamma background

CC electronic neutrino event

