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The Higgs boson 3

The Higgs mechanism is responsible for the 

spontaneous breaking of electroweak symmetry, 

allowing the W and Z bosons to acquire mass, as 

well as the fermions, thereby mixing their right-

handed and left-handed components.

The Higgs potential is as follows:

𝑉 𝜙 = 𝜇2𝜙†𝜙 + 𝜆(𝜙†𝜙)2

With 𝜇2 < 0 ,the minimum of the potential is 

located at 𝑣 = −
𝜇2

𝜆

This minimum is called the vacuum expectation 

value (vev). If we expand the Lagrangian of the 

scalar field around this vev, we notably find a mass 

term
𝑚ℎ

2

2
ℎ2 with 𝑚ℎ

2 = 2𝜇2 , reflecting the 

appearance of a scalar boson, a relic of this 

mechanism.



A Higgs boson discovery at the LHC 4

Physics Letters B, Vol. 716, Issue 1, 2012, Pages 30-61

In 2012, the discovery of a scalar boson, compatible 

with the Higgs boson of the standard model, was 

announced by the ATLAS and CMS experiments at 

CERN. This discovery was observed in the diphoton 

decay channel with a significance greater than 

4.5σ and greater than 5σ when combined with 
other channels (ZZ,WW,ττ) providing strong 

evidence of its existence. This marked a significant 

milestone in completing the Standard Model of 

particle physics, confirming the mechanism 

responsible for particle mass acquisition as 

predicted by the Higgs mechanism.



Motivation for the search for an 

additional Higgs boson
5

The Standard Model, however, fails to predict and explain 

certain phenomena:

•Dark matter, which is thought to constitute 24% of our 

universe.

•Gravity at the quantum scale.

•Neutrino oscillations.

•The matter-antimatter asymmetry.

 There must exist a theory beyond the Standard Model 

that can explain all observed and unexplained 

phenomena.

Certain models, such as two-Higgs-doublet models or 

supersymmetry, predict additional Higgs bosons with masses 

different from the one detected in 2012.

An excess was notably detected around 95.4 GeV, 

measured with a local significance of 2.9σ by CMS, which 

could correspond to an additional Higgs boson.

Meanwhile, ATLAS measured a significance of 1.7σ around 

the same mass https://cds.cern.ch/record/2904053

CMS Collaboration. Search for a standard 

model-like Higgs boson in the mass range 

between 70 and 110 GeV in the diphoton

final state in proton-proton collisions at 

√s=13 TeV. Phys. Lett. B 860 (2025) 139067. 

https://cds.cern.ch/record/2852907.

https://cds.cern.ch/record/2904053
https://cds.cern.ch/record/2852907


CMS experiment localisation 6

The farthest point from CERN's 

main site (~20 minutes by car)



The CMS experiment 7



The CMS experiment 8



The electromagnetic calorimeter 9

The high energy resolution electromagnetic 
calorimeter (ECAL) measures the energy of photons 
and electrons. It is composed of PbWO₄ (lead 
tungstate) crystals.

Electron : Bremsstrahlung ; Photon : Pair production

The scintillation light at the end of the particle 
shower is then detected by photodetectors, 
allowing the reconstruction of the energy of the 
incident particle.



Low mass « standard model-like » h->γγ

analysis
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- Production mode : ggH, VBF, VH, et ttH

- Diphoton invariant mass :

- Signal search range: 70-110 GeV

- Background fiting range: 65-120 GeV

(Limited by the trigger bandwidth)

- Backgrounds :
- Irreducible background producing γγ (QCD)
- γ+jets , jets+jets
- Drell-Yan : Z/γ*->ee



Problem of the Drell-Yan process 

reduction

To discriminate photons and 

electrons in the CMS experiment, 

both information from tracker and 

ECAL are used. 

Electron : charged particle that 

leaves an inner track

Photon : neutral particle that do not 

have such tracks

Some ineffiencies in the tracker lead 

to misinterpretation of the electrons 

as photons, especially coming from 

the Drell-Yan process (DY).
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Problem of the Drell-Yan process 

reduction
(Work started during my M2 internship during the first 
semester of 2023)

Run 2 (2016-2018) solution : add two selection criteria to 
preexistent pixel veto

Linear cut in 2D between pT (transverse momentum) and 
log(∑pT

2 ) (Sum of the squares of the transverse momenta
of the tracks in the chosen vertex) such that :

log Σ𝑝𝑇
2 ≤ 0.016𝑝𝑇

𝛾𝛾
+ 6.0

With the additional selection NMatchedEle = 0

In this way, we kept ~92% of the signal and ~30% of the 
DY background.

Challenges for Run 3 :

- Data format has changed from MicroAOD to 
NanoAOD since Run 3 (2022-2026) and do not have 
the variables log(∑pT

2) and NMatchedEle

- We need the same results as in Run 2, or even better.
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https://cds.cern.ch/record/2852907

https://cds.cern.ch/record/2852907


Trials with Run 3 variables on Run 2 simulated events 13

Here, electronIdx indicates 

whether a photon originates from 

an electron or not (in the later 

case, the variable is set to -1).

 Shown to be equivalent to 

Nmatched = 0

PV_score corresponds to the sum 

of the transverse momenta of the 

clustered objects (Not only tracks).

We can try to do a linear cut.

With this method, the efficiency is :

- Signal efficiency= 93%

- DY efficiency= 36,4%

Not quite as good as in Run 2



Neural Network 14

To discriminate the signal from our

background, we’re investigating using a 

neural network that can gives us the 

probability of an event to belong to one 

or another.

We have a training set and a test set of 

events that we label (signal = 1 ; 

background =0).

Each event will go into a unit called a 

neural, which is a matrix filled with scalars

called weights.

The output is a probability of an event to 

be signal or background.



Neural Network 15

The list of variables used comes from

the photon kinematics (eta,phi,pT) 

from the most two energetic photons 

(lead and sublead), information from

the primary vertex (PV_*) and from

energy deposits in the ECAL and the 

tracker.

Pseudo rapidity
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After training the model, we can calculate 

the importance of the selected variables by 

ranking them based on the value of their 

gradient when a small perturbation is 

introduced.

We can also calculate the efficiency by 

performing a selection associated with the 

score of each event, i.e., the probability 

that it originates from the signal or 

background noise.

The best possible cut is 0.90.

Eff_s = 94%

Eff_bkg = 6%

But this is only true for a signal at 90GeV



Neural Network 17

pT as an input variable pT/m as an input variable

We can apply our NN model to every possible mass that we have (from 60GeV to 110GeV) and cut on the distribution 
output to look at the behavior of the efficiency. We can see that the model is very dependant on the variable pT and 
less on pT/m. Since we don’t want any dependance on the mass, using this variable is more likely. 



Diphoton BDT

A diphoton BDT (boosted decision tree) have been trained to discriminate
prompt diphoton events from the QCD events (γ γ ,γ+jet,jet+jet).

The score is then used to divide photon events into 4 classes such that we have the best 
efficiency for all of them.
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Current DY background modeling procedure 19

78 events 418 events

1239 events 1576 events

Class 0 Class 1

Class 2 Class 3

Likely photons
Possibly photon and 

electron or jets

Possibly photon and 

electron or jets
Likely not photons



Total background modeling 20

Plot of the total 

background 

modeling for 

each class trying

to use different

continuum 

functions



Background modeling challenge 21

The number of  Monte Carlo events

is not enough to do a robust

modeling so we are investigating

using a data augmentation 

algorithm. The technique 

investigated so far is called a 

variational autoencoder.

The idea is to encode a distribution 

into a latent space and then

decode it to generate a similar

one with greater statistics.



Background modeling challenge 22

78 events 418 events

1239 events 1576 events

Class 0 Class 1

Class 2 Class 3

Likely photons
Possibly photon and 

electron or jets

Possibly photon and 

electron or jets
Likely not photons



Data Augmentation example 23

Epoch = 100 Epoch = 500 Epoch = 1000

The number of events are the same for 

both trained and generated events

Epoch = 100 Epoch = 1500 Epoch = 3000



Data Augmentation 24
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Every plot have been normalized to the unity

Class 0

Original : 78

Generated : 34818

Class 1

Original : 412

Generated : 276 480

Class 2

Original : 1225

Generated : 834 560

Class 3

Original : 1561

Generated : 1 091 584



CDF for each class
25

Class 0

KS Stat = 0.096

P-Value = 0.43

Class 1

KS Stat = 0.050

P-Value = 0.25

Class 2

KS Stat = 0.031

P-Value = 0.17

Class 3

KS Stat = 0.018

P-Value = 0.67

Technique still has to be evaluated and other techniques to 

investigate (Normalizing flow,Generative Adversarial Network)

𝐹𝑋 𝑥 = 𝑃(𝑋 ≤ 𝑥)

KS Stat = maxbin(Freel,FVAE)



Photon energy scale extraction from Z->μμγ
Run 3 data as a service task for CMS

26

 To correct the energy, we need to calculate :

𝑆 =
𝑚𝜇𝜇𝛾

2 −𝑚𝜇𝜇
2

𝑚𝑍
2 −𝑚𝜇𝜇

2
− 1

For different region of η (Endcap and Barrel) and for different R9 

region (>0,94 or <0,94) and then fit them with a Voigtian function

using some percentages from 60 to 100% with a step of 1%. Thus , we 

keep the fit covering the largest percentage of data that has an 

acceptable p-value.

Uncertainties : 

- Statistical : given by the fit

- Systematics : Quadratic sum of the fit range and fit function 

uncertainties

The Z boson properties are well
known and CMS can measure
pricesely muon caracteristcs so the 
photon energy can be measured
and corrected properly thanks to this
process



Conclusion

 The strategy of the analysis is still on going :

 A neural network has been adopted, and a baseline cut defined to discriminate h->γγ
events from Z->ee events

 The data augmentation technique has to be tested with the input variables of the BDT 

and the neural network to have more statistics for modeling

27
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Back ups
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Example fits with Voigtian Functions 30

EE high R9 EE low R9

EB high R9 EB low R9

EE High R9 EE Low R9

EB High R9
EB Low R9



Plot ATLAS for Run 2 search of low

mass Higgs Boson

31

With the full Run 2 data, ATLAS has found an 

excess around 95.4GeV with a significance of 
1.7σ. Which is less than CMS (2.8σ). 

JHEP01 (2025) 053 arXiv:2407.07546

https://arxiv.org/abs/2407.07546


Neural Network 32

Every output of every neural has an activation function : 

Identity, ReLU (Rectified Linear Unit), sigmoid, etc…

The ReLU function gives us some non linearity in the 

model :

ReLU(x)=max(0,x)

The sigmoid is used to have an output between 0 and 1, 

so our result can be interpreted as a probability.

𝜎 𝑧 =
1

1 + 𝑒−𝑧

The result is then compared to the training set using a loss

function that has to be minimized.



Neural Network 33

Loss function Score

Loss: 0.10602, Acc: 96.63% | Test Loss: 0.09577, Test Acc: 96.95%



Neural Network 34

For each neural, the corresponding result is 𝑧 = σ𝑖 𝑓(𝑤𝑖𝑥𝑖 + 𝑏) , we do this for every

neural for each layers. This is called the forward propagation. 

Then we compute the loss function. For a classifier, it corresponds to the binary cross 

entropy : 𝐵𝐶𝐸 𝑥 = −σynln 𝑥𝑛 + 1 − 𝑦𝑛 ln(1 − 𝑥𝑛). Then, we perform a 

backpropagation, corresponding to the correction of the weights such that the loss

function can be minimized.



Data Augmentation 35

CDF of the mass distribution

KS Statistics = 0.03

P-value = 0.23

CDF of the BDT distribution

KS Statistics = 0.13

P-value = 10-22

𝐹𝑋 𝑥 = 𝑃(𝑋 ≤ 𝑥)

KS Stat = maxbin(Freel,FVAE)



Uncertainties for the scale energy

extraction

36

Statistical Uncertainty: Given by the fit

Range Uncertainty: The maximal difference between the value of S

we found and other values of S found within an interval of fit-range

20% wide for which the fits have an acceptable p-value.

Fit Uncertainty: Using the selected fit, 1000 toy models containing as

many points as the original sample are generated and fitted with a

Cruijff function. The mean of these functions are fitted with a

Gaussian and the difference between the mean of the Gaussian and

the selected value of S is taken to be the fit uncertainty.

Systematic Uncertainty: the quadratic sum of the range uncertainty

and the fit uncertainty


