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The Standard Model
...and 1ts limits

Or why do we care




The Standard Model...

Standard Model of Elementary Particles

three generations of matter interactions [ force carriers
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Morel et al. (2020) — Determination of the fine structure constant
with an accuracy of 81 parts per trillion
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and its limits

The SM does not answer some important

guestions !

Need for BSM Physics
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Patrick Koppenburg (2024) — Flavor anomalies




The Need For
Automated Calculation

Or why are we paid
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For each BSM model

Wilson Running
coefficients with RGE to Observables
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Calculation in
full theory
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effective elements
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Calculations In flavour physics

2.2.2 Box diagrams

In this part we will evaluate the two rightmost diagrams in fig,
ization as before, and we define our notations in fig,

h. We use the same IR regular-
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Figure 3: Notations for the box diagrams. Indices a, 8,7, 8 are color indices, 1, v, p, o are Lorentz
indices and a,b are SU(3)c indices. Momentum conservation and color conservation by the W
vertex have already been taken into accoun

Uncrossed box  Applying the Feynman rules to the unerossed box diagram gives

u d'k [ 5 ig i(K +9) ppa o] —10™
M=t (zn)'["-‘zﬁ Tt p)E + A T At | TN
5t P )] s o7 Gy
- /B o e . .40
5 ["‘2 Vi e e [ v 340
After some elementary simplifications, we arrive at
i1, (575 (K + ] [ yeu (K ~ Pnud]
M = iGME ¢T3, '/"/ 3L 1144 Py Ch ! L (241
GMyai5al® | ey Tt oy +inllGe - 2 + 2 - aag + axJ @ v ) &4
which we can split into
M = iGTR (2.42)
where
97 = TR, T8 [T vy ] [y wd] (243)
2 'k (& + palk — ),
Ly = M2 [ - . - . 2.44)
’ w f[?n; 10k -+ p) -+ ][k — p)® + N [k2 — M + A [K2 + )] (244)

At first sight, it is not obvious how to simplify the contractions between Dirac matrices in different
fermion lines that appear in the expression of 7#7. The Fierz identities can help us here, as they
allow us Lo exchange fermions between lines, and in particular o put all the Dirac matrices
the same one. Writing the chirality projectors explicitly and using their anti-commutation
relation, we can rearrange

197 = 18,13, [0~ "] [ (1~ 7]

T [ (1~ ] [0+ AP ] (2.45)
Using the Fierz identity (1'1), we then
(1= )ufa§(1 ++°) %[nn (1= P)uflr(1+9%), (2.46)
and therefore
19 = L 1 [ (1 5] [ e (U )y ) (2.47)

2

Now we can “push” the projector to the right and use some Dirac algebra to reduce the rightmost
bracket:

@y 3 (L + P wul] = @Y v w1 - )]
= —2[@rr YW (1 - 1°)ui]
8977 [ (1 ~ v*)ug]. (2.48)

Putting everything together and exchanging back the two fermion lines with (3), we have
1% = 497715, T8 [ v ] [@hven) - (2.49)

To complete the calculation, we use the Ficrz-like identity for the generators of SU(3), giving

17 = 20 (8o, — 3yt ) (0] [#0003)

1
(o~ 30).

Now, to evaluate I,,,, we could use the usual technique with Feynman parameters right aw:
the resulting Feynman integrals are a pain to evaluate. Instead, we can first simplify the
using some general arguments. nvariance implies that /. can be written as

Ki(p

Lo = h(p* Mw)gps 1w )PpPes

in order to have the correct tensor structure. Contract
d'k o o L
@) [k + p)? + aAl[(k — p)? + iA][

g both sides with ¢°, we have

2

4 - PP Ky = Miyg?

(2.52)

B YR TR
from which we identify

5

"’u u./ 5 :

@0 [(k+ p)? + X[k — p)? + N[
Ak 1
(@m) [k + p)? + ][k — p)? + iN][K2

MG, +iA]

K

A+ i)

Kk* 4 i) factor in the denominator with the k* in the numerator,
As we ¢

Note that in J; we canceled U
which doesn’t pose any proble .
A 5 0. In order to evaluate these integrals, we » K = ik (and
similarly for °), so that d*k — id*kp, k? - and (k+p)? = (kg % pg)’. Omitting the
E subseripts as we now only work with components of Euclidean vectors, and denoting by k the
magnitude of the Euclidean vector k, the integrals become

5 =i "'f/ Y . — (2.55)

4 ()T (k+ p)P(k — p)P(K + M)

d'k 1
(2m)* K (k + p)*(k

perform a Wick rotation k"

K iMg (2.56)

PR M)

Note that we dropped the imaginary regulator as it is no longer needed uclidean space-
time. Splitting the euclidean volume form into d*k = k%dk dfy, where dfY, is the 4-dimensional
euclidean solid angle, we write

I

W (@251

(2.58)

T P p;lu ML)
Let’s compute Jy first. In order to evaluate the k integral, we use partial [raction decomposition
writing
K Ak + I Ck + D
(k+ plPk - plP(k2 + MG}~ K+ ak+p? "Rkt B

Ek i F

259
PR (2.50)
where o = 2peos# and we chose to align p with the +* axis of the Enclidean space, so that 0
al angular coordinate, ranging from 0 to . Multiplying

A iddentifying by powers of k, we obtain the

correspands to the second hyperspheri
both sides by the denominator of the left-hand side a
following system of equations:

A4 CHE =0, (2.60a)
B+ D+ F+alC-A)=0, (2.60b)
(A+C)NME +p%) + a2 - B) + (25 — a)E = 1, (2.60c)
aMi(C ~ A) 4 (B + D)AMY +5%) + (2%~ a®)F =0, (2.60d)
PME(A+C) +aM(D - B)+ Ep* =0, (2.60c)
PMR (B + D)+ Fpt =0 (2.601)

Changing variablos to X4 = C+ A, ¥4 — D+ B, the sysiom can be put in matrix form

1 0 1 0 0 0 Xy 0
PAME o 0 0 0 v 1
EME  aM3, P 0 0 0 Ef_fo
0 0 0 a 1 1 X ol (261
0 o 0 oMy My 27 o) |V 0
0 0 0 0 pPMy P F 0,
from which we read immediately that X — ¥y — F — 0, hence 4 — C and B — —D. Tnverting
the upper system yiclds after replacing o by its valie
1p(A-1)1 11
—sa—20--L L v _ap— ap— E— o, (262
Mg A M, ZoosB A7 M A @62

where = p*/M3, and A = (1

g rd < ak+b ak—b k
=i PR e e S
aent) Ay Eiaktp? K aktp k1M
where a = 1/2 and b= p(1 — #)/4cos#. Now, we evaluate the basic intograls that appear after
the partial fraction decomposition. Only two of them are convergent, namely
dk dk
o B ok bt e K2k bt
To evaluate the first one, wo replage o by its value, we complete the square and shift the momen-
tum in the denominator to obtain
i =

A)* + 4fi cos? 6. The integral J; then reads

(2.63)

00

o) _ (2.64)

o4 — f’" _dk_ . 2.65
o TT Pt 1 PO o8 s 71 el @9
for which an anti-derivative is known in terms of usual functions,
1 s 1 L4 1
(04+) _ q — ¥
T P‘ﬁnﬂ[mrmn(r B)LWB p= 9[2 arctan (Tnﬂ)] (2.66)
Finally, using the property of the arc-tangent,
arctanz + arctan a3, (2.67)
B

this redug
10— s'nrt'm[nne) -4 5 (2.68)
The sccond integral, I(0-), can be ebtained from 10+) by changing 8 7 — 6, henee
] w— 8
oy % - 2,69
P8 poi®) @69

The other three integrals are divergent, only their sum is finite. To give expressions, we introduce
a hard eutoff A and we let A > co. We then have to cvaluate

A A
k
TN = [ dk e 1Oy — [ dk 2.70)
W= ), *Erae e = MG @70
For the first integral, we rewrite the quotient by splitting it into
1 2k + 2pcosd peasf
1049 = dk dk — - 2.71
MW=3 ) o et 17 Jy T kot @m

The fi

egral admits 2 known anti-deri

tive, and the second one is the same as (2.64), henee

109y — %[In(k" t 2pkcost + )] prm;ﬂ[ﬂ 9“9 + o(%)}

1 A A? [ P N
—iln(l R r-‘) = ro(¥) (272)
which, keeping enly relevant contributions in the logarithm, reads
1, (A2 [ »
4y = L (A2 P
1094 2|1|(P,1) s D(A). (2.73)
As before, the 1) integral follows from replacing 8 —» = — 6,
:
0y = A (A) 1=
1)) 2|n(p_a + »o( ) (2.74)
Finally, the Tast integral is casy to cvaluate,
1 2k 1 A? 1 M3
) =~ [ dkg—— — I 1+ = | = 51 of =) 275
W=z, *mag e ) T A2 @75)

Tnjecting theso exprossions in Jy leads to

w5 e (E) ] ey 2} e

and we see that the A dependence indeed cancel out between all the integrals, leaving a finite

result,
2 sy 1 M3 28 26
9 f—‘—ln—,“f47 PO A
S AN R =2 R Ty 25in(28)
In the leading log (LL) approximation, we are not intercsted in constant torms nor torms peopor-
tional to 3 (which is small), thus we only keep the first term in the

L E (M) [
a La(zn)"ln(p.z =

The 4-dimensional solid angle clement reads df2y — sin® ysin#dydfdg, where y and 6 range
from 0 to = while ¢ ranges from 0 to 27. As A only depends on 6, we may write

g = (2.77)

(2.78)

dfg 7o, P deosf 7t deos®
_[T [csm "L “",[_‘T ,ILT. @2.79)
with
T deosf [ du 1 2/8
/:‘ - j: T e—D 1):|.rrmn (!i 24 0(8). (2.80)
Finally, the .y integral in the LL appraximation reads
M3,
%In(y—”). (281)

Getting back to Minkowskian vectors, we replace p* by —p®. In the LL approximation the
contribution of the p,p, term in L, is not relevant, thus the complete amplitude for the uncrossed
box reads, using (2.50) and g gy, — 4,

P

(= (2.82)

Crassed box  For the crossed box dingr

am (rightmost diagram in fig. 3), the Feynman

give
- f gt e e e
x [’ﬂ"""" L : m?'?m\'ﬁ" 71'"7] = nﬁw< w289
And after simplifications,
— iGN TR, a'k [0+ Ay ut] [ U + Bygnd] (284

Ra) k2 ik + ) +iXPIEE My + ]

As before, we split this amplitude into

—igT*l, (2.8%)
where
T — T8, T3 [#rry ug] [#v v ] (2.86)
a2 A G+ p)p(k 4 plo
Lo ‘”W”‘/(h)' TR aA][(k + p)? + APk — M3, + iA] (287)
The Fierz and gamma matrices identi allow us to calculate 797,
T = T3, T3 [ (1 — 2"y ug] [abnn (1 — 7*)ud]
= T T [t Pl [0y
1
= T Th (0] [ (]
- —Thﬂﬁ.[ﬁn*(l o] [ e (1 = 9%)ak]
= TaT3 [#57(1 ] [Fhrm ey (1 2 ]
= 2RI [y (1 )] [y e (L ] (288
We then use Feynman parametrization to rewrite the integral e as
N
i,.,—am,g‘fj drdydz(ztytz- 1)y
o
.
S e
() [k 4 y(k + p)2 + 2(K2 — ME) + 4]
Using 2+ + == 1 in the integral and shifting k — g — yp, this becomes
2 [ d'q (g+ (1 ylp)ula + (1 — ),
— 6Mg 5fdmdndzu|.|z 1:[—" » o (2.90
e A Y L e (20)

where V = 2M2, + yly
a sum of scalar intograls,

1)p*. Using the tensor reduction procedure, we rewrite this integral as

T
i,.,—ﬁM&,q‘fj drdydzb(z+y+z 1){%3,.,1“-“ byl y)zp,.p.,f“'“]}‘ (2.01)
o
which we evaluate using (1.51), leading to
L ' K. 9
=2 { St + B}, @)
where as before # = —p*/M}, and
T8 = f de YT A =1 fh) EXRT 2:9)
Kalf) — fd;f dvuii)t (2.94)
! YT o0 ) = !

These integrals are easicr to cvaluate upon cxchanging the two variables, which leaves after a first
cvaluation (dropping the i) regulator as it is no longer nceded)

Jg(.a)—f dy[ @

il u‘fy) T

*[’ dy {yn[(y — 1)(1 + fy)] - yIn[fuly — DI}, (2.95)

both arguments in the logarithms are negative real, so we can combine the logs and write

.
Jg(ﬂ)—ﬁ dyyln(l | Hly) (2.96)
Integrating by parts, we arc loft with
! v
o) — In(l ' ﬁ) Eﬁ e (2.97)

and nsing partial fraction decompaosition in the leftover integral finally yields the final result,

!

1 1
B =gt g5

n(1 -+ B). (2.98)

In order to recover the Leading Log approximation, wo cxpand this result around § — 0 up to
O(1), which yields

() - ln(ﬂ) | 2‘71 | %(1 %) (@ L D(ﬂ“))*; n(%) o)

(2.99)

For Ka(f) we also swap the iniegrals before computing the inner z-integration, leading to

g P 1 1 10 oy

Kyf) = [ dyy(t ‘77—7/.17 2.100

4 A: o1(t=s) [ﬁy(y T W Dis fiu)] Bl YA (@100)
and we then use partial fraction decomposition to compute the y-integral, which yields

i 144 5

Ka(f) R n(1 + ). (2.101)
As we did with ., we finally cxpand this result around 4 — 0,

. 1 1 g8 9102

Ko@) = g5t (#1 q‘)(ﬂ S5)-gron (2102)
With the Feynman integrals cvaluated, the momentum integrals now reads

1 MEY | s
el e (5) 5 e

The pype/p? term is of O(1) and therefore not needed in the LL approximation. Tnjecting (2.
and (2.103)

2.55), we have

(2104)

;-V)"F,Jﬁy[u’fﬂ o] @ (1 )]

Using some Dirac algebra, the Fiers identity (3) and the generator product identity (1.39), this

can be rewritten as

1o (M 1
(=G0 - 0
ressn ()0 ve)
Full box contribution Adding togother the amplitudes for the crossed and ncrossed box,
and their symmetric counterparts which contribute the same to the total amplitude, we arrive at

(2.105)

Mb oM 4 M) = w;"m("‘;)(o. %a,), (2.106)
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E.2 Isospin asymmetry of B — K*~
The isospin asymmetry Ay in B — K*v decays arises when the photon is emitted from the
spectator quark. The contribution to the decay width depends therefore on the charge of

the spectator quark and is different for charged and neutral B meson decays:

[(B° - K*%y) —T(B* - K**y)

- 5
Aot = [ET S o) 1 T(BE S Koy a0
which can be written as [59):
Ay = Re(bg — by) , (451)

where the spectator dependent coefficients b, take the form:

g =

1272 f5 Q, (i "

T, TIBAI\" as

5 fremi- Kgq) )

452
i, 6Apmp (452)

In the same way as for b — s branching ratio, the SUSY contributions induced by charged
Higgs and chargino loops must be taken into account for the caleulation of isospin symmetry
breaking.

The functions K} and Kz, can be written in function of the Wilson coefficients € in
the traditional basis (see Appendix @ at scale g Iﬁ!ll:

Croagus) [ (m)* . . .
+ N i Calpp) X1 (453)
2

.-a) i —Gﬂw} + rl} +(Cie )

. [
K = - (ﬂ-(l'h)+

(i + S ) 8+ (cutun) + S (454)
aulpe) [Pz[m,] (f mme 2 117(;,(,)) + ,.?] +(Ce0),
T 3 m 3
J“;

'

where x4 = 5 and N =3 and Cp = 4/3 are colour factors, and:
1

8 4
n = [; Calp) + 5y (Calim) + Col)) — 8(NCalym) + r*.—.m))] Fimf o
B : Ho
4 4 . ., Hp -
Y = [_? Cs(pe) = 37 (Calpe) +(.i(ﬂ,,})] 1:1‘1—; +o (455)

Here the number of flavours ny = 5, and pg = O(m,) is an arbitrary normalization scale.
The coefficient a$ reads [60]:

- (1)C ‘
a5(K™) = Crlp) + LI [Cy()Gafra) + Coli)G (456)
+%[r.z(m.}nzt.n-h) +Calm)Hs| + (€, C) .

where py, = /Ry is the spectator scale, and

Gylry) = —55In T 92(%ep) 5 (457

8
Gy = -InFr g, (458)
b

with
11 222 2irx
L e (459)
2 4 . .
galx) = 37 [.15+:ium —5m? — 2ix® — 36((3) + (36 + 6ir — 97%) Inx  (460)

+ (3 + 6im) In®x + In"r]

2 . 9 9 ; .
+§.i'2[125 +2a% = 2ix® + (12 - b'?rz] Inz + Giw In’x + |||"‘r]

+2L_.r“[ — 04 112im — 1472 + (182 — 48i7) Inx — 1261..‘4-]
7

_838 20w E,,.:uz
62 27 9

where ((3) is given in Eq. 1)) The function Hy(z) in Eq. ([@56) is defined as:
272 fuf K !
Hy(z)= - rfai—1 d
2() 3N TE+K m3, L %

where fi(u, z) is the hard-scattering function:

& 1
#ﬁ dv h(5, 2)®, (v) . (461)

hu,x) = o

— || -=, (462)
/u—-l.r+r£ u

u

@ is the light-cone wave function with transverse polarization, which can be written in

the form lh_ll
®, (u) = Gui [1 +3af £+ a3 5(552— 1]] . (463)

where & = 1 —u and £ = 2u — 1, and $p; is the distribution amplitude of the B meson
involved in the leading-twist projection. Finally:

2 L 1 £ f! .
He fefi- ; f (‘,E'I'm(\,'l drldn{:) ’
B Jo [

= 164
3! T]B L 3 v ( )
The first negative moment of @5, can be parametrized by the quantity Ag such as
1
Pmi(f) _ms
df———=—. 465
Jo € A (465)

The convolution integrals of the hard-scattering kernels with the meson distribution ampli-
tudes are as follows:

FL =
Gi(se) = [.uo*(”(‘(* 7) (466)
Hi(s) = —&)G(s,.]‘).

X, =

with s, = (m¢/my)?, and
1
G(s8,7) = —4/ duuii In(s — uar — ie) , (467)
0

and the Gegenbauner momenta read [61):

a ] 1 5
_q(_')(u) = ()'m':{l +“|;£+ [jug + —) (3

] (5¢% — 1)} (468)

+644 (Buii + @iIln@ + ulnu) +65- (@lni —ulnu),

() = %(l+£2)+u|,’g 3 ( (469)
9
+ mu.,+

+§t§*(2+lnu+lnm+:EA:_(‘_’f-f-lnﬂ—lnu).

To compute X |, the parameter X = In(mpg/Ay) (1 + pe'?) is introduced to parametrize
the logarithmically divergent integral ]0' dx/(1 —x). o <1 and the phase ¢ are arbitrary,

and A, =~ 0.5 GeV is a typical hadronic scale. The remaining parameters are given in
Appendix [G]
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MARTY (1.5)

Analytical QFT Numerical library

Model building calculations generation

Symmetries, breaking patterns Scattering amplitudes
Field content Decay widths
— Lagrangian Wilson coefficients

Numerical phase

space integration

G. Uhlrich, F. Mahmoudi and A. Arbey, Comput. Phys. Commun. 264, 107928 (2021)
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MARTY (1.5)

Time for a live demo |

Calculation of a(ete™ -» h®W*W ™) in the SM.
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MARTY and the SU(2), model

Darmé, Deandrea, Mahmoudi (2023) — Gauge SU(2) flavor transfers [hep-ph:2307.09595]

Add a SU(2) gauged flavor symmetry between second and third generations of leptons.

Constraints ?

(?(1 fjﬁg A']
v I
A )

(3 Lepton flavor
- violating decays
lo

/l

"/}’(3

YYY

A\

_ “\'
s

Neutrino trident production [hep-ph:1406.2332]



LFV leptonic decays branching ratios (solid: LH + RH, dashed: LH only). LFV Radiative decays branching ratios (LH + RH).
10 oo — u ey
_ > \\‘\ T: —¥E oy
10° A Wy
10" - ™ =y
1074 1 10! -
-9 =
10 10—3 n
1071 4
1077 ~
101 |
10 — u~ e eet
— 77 e eet 1= -
1072 | — 7= S emept
—_— T ey ut i
10729 —— 7~ s upet 1077 1
— T s u Tt
1073 1072 101 10° 10 102 = 152 10° 10!
My [GeV] My [GeV]

15



ot MARTY and the SU(2), model

Lm.m.m;i,,.z l,\"‘r Neutrino trident production cross-sections (solid: LH + RH, dashed: LH only).
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Su perlso F. Mahmoudi, Comput. Phys. Commun. 178, 745 (2008) [0710.2067]

SM
THDM
SUSY

Superlso

Random
Grid Parameter
Directed .
(Multinest...) generat|on

Wilson :
- Observable Associated :
coefficient : - Constraints
: calculation X
calculation
N2LO/L expressions QCD Factorisation Check against exp. values
from literature accounting for theo.

17 uncertainties



Hyperiso — MARTY

Built-in or Model
VEGIAEN  selection

Random

Grid Parameter
Directed i
(Multinest...) generatlon
Wilson :
- Observable Associated :
coefficients : - Constraints
: calculation X
calculation
N2LO/L from QCD Factorization Check against exp. values
literature accounting for theo.
18 uncertainties

MARTY = Calculations in any
generic BSM scenario
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