

____ 52 ____

Light Dark Matter search with TESSERACT experiment

Paul Vittaz supervised by *J. Billard* and *J. Gascon*

PhD days - 17/04/2025

SUMMARY

• Context

- The Dark Matter issue
- Detection strategy

• **TESSERACT Bolometers**

- Working principle
- Design (COMSOL)
- Status

• Data analysis

- Set-up (Ricochet)
- Simulation & injections
- Dark matter limit

• Conclusion

iP 2i

50 orders of magnitude in mass

Focus of DM searches for the last decades has been on axion DM (μ eV - meV) and standard WIMP (10 GeV - TeV)

After few decades, still no DM signal and ongoing or planned ton-scale experiment (LZ, XENON-nT, DarkSide-20k, DARWIN, ARGO, ...) are approaching the neutrino limit

Need for new experiment with broader DM mass range and increased sensitivity to more DM interactions

State of the art of low mass Nuclear Recoil DM search

Low Energy Excess (LEE) is preventing cryogenic DM experiments from leading the sub-GeV search region

Design driver of **TESSERACT**:

- find the origin of the LEE to mitigate it
- develop detector technologies that can reject it

TESSERACT projections

<u>Transition Edge Sensor with Sub eV Resolution And Cryogenic Targets</u>

The **TESSERACT** experiment will allow to vastly extend the NRDM searches down to **100 MeV** with **particle ID** and **background rejection** in a region of the parameter space inaccessible to non cryogenic experiment

TESSERACT back. model = 10 DRU gamma + other backgrounds from EDW-III

CNrs

<u>Transition Edge Sensor with Sub eV Resolution And Cryogenic Targets</u>

American (SPICE & HeRALD) and French (LV & HV Bolometers) technologies :

- Complementary measurements
- Different strategies of mitigation of the LEE
- Commissioning at LSM in 2028
- LSM (*Laboratoire Souterrain de Modane*) : deepest site in Europe, 4800 m.w.e, 5 μ/m²/day

- PE and lead shielding
- Selection of radiopure materials

Working principle

Working principle

Charge/Phonon sensors

Charge/Phonon sensors

CNTS iP 2i

CNTS IP 21

R&D phase : Design drivers

From Ricochet to TESSERACT

Going beyond the Ricochet CryoCube technology

RICOCHET Cryocube

- Looking for : **CENNS**
- Phonon sensor : NTD-Ge
- Total capacitance ~45 pF
- Payload: 18 x 40 g
- σ_{ion} ~30 40 eVee
- σ_{heat}^{101} ~40 60 eVph

Ricochet Coll., Eur. Phys. J. C 84 (2024) 2, 186

Mini-Cryocube

Cnrs

TESSERACT DEMOnstrator (DMO)

- Looking for : DM
- Phonon sensor : NTD-Ge
- Total capacitance ~5 pF
- Payload: 4 x **5.35 g**
- σ_{ion} **10 eVee**
- σ_{heat} ~10 20 eVph

TESSERACT final

- Looking for : DM
- Phonon sensor : TES
- Total capacitance ~1 pF
- Payload: 4 x **5.35 g**
- σ_{ion} <**10 eVee**
- $\sigma_{heat} \sim 0.1 \text{ eVph}$

From Ricochet to TESSERACT

Going beyond the Ricochet CryoCube technology

TESSERACT DEMOnstrator (DMO)

- Looking for : **DM**
- Phonon sensor : NTD-Ge
- Total capacitance ~5 pF
- Payload: 4 x **5.35 g**
- σ_{ion} **10 eVee**
- σ_{heat} ~10 20 eVph —

- Reduce the detector volume
- Put the HEMT amplificator at < 1 cm from the electrode
- Optimize the holder, COMSOL driven

- Reduce the detector volume
- Optimize NTD dimension
- Low microphonic holder

CNrs

P 2

DMO Detector Status, COMSOL simulations

-0.01

DMO Detector Status

- 6 Ge crystals :
 - 2 in a DMO holder (V1)
 - 2 set aside for electrode evaporation at INL
 - 2 send to IJCLab for electrodes production
- 2 glued NTDs, no ionization readout for now
- Thermal integration in the cryostat in progress
- Link with the RICOCHET electronic in progress
- 100 mK part of the holder in progress
- Radioactivity measurement of the materials with HPGe detector (LSM) in progress

Data analysis, proof of concept

Set up

Set-up - Ricochet detectors

Heat sensor

Electrodes

15 meter water equivalent of overburden

External shielding (Lead & Polyethylene)

Internal shielding (Lead & Copper & **Polyethylene**)

10 mK plate

Set-up - Backgrounds

Reactogenic background

Fast neutrons Thermal neutrons High energy gammas → from the nuclear reactor and other experiments around Ricochet

Cosmogenic background

Muons Neutrons

Gammas

→ from the interaction of cosmic muons with shielding materials

Muon veto & overburden

Radiogenic background

Gammas Betas Alphas Neutrons → from the natural radioactivity of the materials near the detectors (²³⁸U and ²³²Th decay chains)

Selection of radiopure materials

Data analysis, proof of concept

Toward a Dark Matter limit

Simulation and injection

N. Martini

Simulation and injection

Efficiency = # reconstructed events / # injected events

Simulation and injection

Injection of WIMP spectrum

Data Selection

Band cut

Other cuts : Muon coïncidence, laser events, bad partitions

Background Model

Cnrs

P 2

Hypothesis : uniform distribution of beta events in the Q-Er plan

ROI selection

Region Of Interest : best signal over background ratio ⇔ κ maximum

+ scan over ionization thresholds

Calculation of the DM limit with Poisson statistics

Comparison between the data and WIMP spectrums

Excluded Cross Section (90% CL) ∝ (#excluded events in the ROI)

Calculation of the DM limit with Poisson statistics

CONCLUSION

Almost done ...

CONCLUSION

Cnrs

- Extend the Nuclear Recoil DM search down to 100 MeV
- R&D of the first DMO detectors on going (first data coming soon)
- Simulation for the optimisation of the design of the next versions of the detectors ongoing
- Analysis pipeline tested with Ricochet bolometers (publication in 2025)

The end

Thanks for listening

DMO Detector planning

TESSERACT planning, toward a commissioning at Laboratoire Souterrain de Modane

- Different cryogenic targets (French & American technologies)
- LEE mitigation
- Particle Identification
- Low impedance TES phonon sensors
- LSM ultra-low background environnement

Ultra-low threshold

- Optimal for both NRDM and ERDM
- Broader DM mass range covering

COMPLEMENTARY SLIDES

High Voltage loss of Particle Identification

COMPLEMENTARY SLIDES

RUN011@IP2I and RUN014@ILL background comparison

