

Spectrophotometric standardisation of ZTF type Ia Supernovae

Constance GANOT, supervised by Yannick COPIN and Mickael RIGAULT

PhD Days - April 17, 2025

— 52 **—**

Summary

- Introduction to cosmology with SNe Ia
- Spectro-photometric standardisation methods
- ZTF spectra sample
- Testing standardisation on ZTF
- Conclusion

h SNe Ia isation methods

Type Ia supernovae

 $\mu = 5log$

SN 1994D in galaxy NGC 4526 Hubble Space Telescope

Introduction

Type Ia supernovae

 $\mu = 5log$

SN 1994D in galaxy NGC 4526 Hubble Space Telescope

Introduction

Distance modulus can be measured on lightcurves *Redshift* can be measured with a spectrum

Introduction

Distance modulus can be measured on lightcurves *Redshift* can be measured with a spectrum

Introduction

Equation of ωCDM model • Flat Universe • $\Omega_M + \Omega_\Lambda = 1$

DESI+CMB+Panth.					
H_0	67.74 ± 0.71 km s ⁻¹ Mpc ⁻¹				
Ω_M	0.3095 ± 0.0069				
ω	-0.997 ± 0.025				

Introduction

Equation of ωCDM model • Flat Universe • $\Omega_M + \Omega_\Lambda = 1$

DESI+CMB+Panth.					
H_0	67.74 ± 0.71 km s ⁻¹ Mpc ⁻				
$\mathbf{\Omega}_M$	0.3095 ± 0.0069				
ω	-0.997 ± 0.025				

Introduction

Goals | Cosmology

Equation of ωCDM model • Flat Universe • $\Omega_M + \Omega_\Lambda = 1$

DESI+CMB+Panth.					
H_0	67.74 ± 0.71 km s ⁻¹ Mpc ⁻¹				
$\mathbf{\Omega}_M$	0.3095 ± 0.0069				
ω	-0.997 ± 0.025				

Introduction

Equation of ωCDM model • Flat Universe • $\Omega_M + \Omega_\Lambda = 1$

DESI+CMB+Panth.					
H_0	67.74 ± 0.71 km s ⁻¹ Mpc ⁻¹				
$\mathbf{\Omega}_M$	0.3095 ± 0.0069				
ω	-0.997 ± 0.025				

w variations are in the thickness of the line : we compute $\mu - \mu_{\Lambda CDM}$ to see it

Introduction

Equation of ωCDM model • Flat Universe • $\Omega_M + \Omega_\Lambda = 1$

DESI+CMB+Panth.					
H_0	67.74 ± 0.71 km s ⁻¹ Mpc ⁻¹				
$\mathbf{\Omega}_M$	0.3095 ± 0.0069				
ω	-0.997 ± 0.025				

Photometric standardisation

Hubble Diagram photometric standardisation Credit : in prep. ZTF "DR2" Data paper, Smith et al.

SNe Ia dispersion :

 $\sigma = 0.40 \text{ mag}$

Standardisation

-	

Photometric standardisation

 $\sigma = 0.40 \text{ mag}$

Standardisation

Lightcurves of ZTF20abxzrqw

Photometric standardisation

Standardisation

Spectro-photometry

Lightcurves of ZTF20abxzrqw In ztf-g, ztf-r, ztf-i filters

-> New standardisation of distance modulus, using spectral information?

Standardisation

Time series of SN2011fe between **-15** to **+100** days Credit: Pereira et al. 2013

Spectro-photometric standardisation

Spectral time-series of two 'Twins' SNe Credit : Fakhouri et al. 2015

- information

Standardisation

Initial discovery : Twins - Fakhouri 2015

 Magnitude dispersion is smaller for similar time-series

• One spectrum at maximum is sufficient to have the variation

Full method : **Twins Embedding - Boone 2021**

 Parameterization of the spectral variation of spectra at phase=0

 New standardisation of SNe Ia, using spectral information

Before standardisation : $\sigma_{mag} = 0.40$ mag

> **Photometry :** $\sigma_{mag} = 0.15$ mag

With SNFactory

Twins Embedding : $\sigma_{mag} = 0.07 \text{mag}$

Low-redshift z<0.15 Northern sky 3 filters : g, r, i Limits in magnitude of ~20mag

ZTF Camera P48 FoV Source : Joel Johansson

 \mathbf{O} Located in Mount Palomar in California

ZTF Dataset

Zwicky Transient Facility

March 2018 to 2026

Two instruments : * P48 camera * P60 spectrograph

SEDm (P60)- Integral field Spectrograph Source : N. Blagorodnova et al. 2018

SEDmachine

March 2018 to December 2020 o(3600) Supernovae Ia o(4000) spectra

60% SNe Ia spectra from the SEDm

Source: Transient Name Server wis-tns.org/stats-maps

ZTF Dataset

- spectral extraction by pysedm. (Rigault 2019)
- Correction of host galaxy by Hypergal (Lezmy 2022)

Purpose : typing Low resolution : $R = \frac{\lambda}{\Delta \lambda} \sim 100$ Optical window: 3,650 - 10,000 Å Acquisition of ~1 hour

Rigault 2019) Dergal (Lezmy 2022

 SEDm (P60)- Integral field Spectrograph field of view of ZTF18abqlpgq
 Source : pysedm - Rigault, Neill

ZTF spectra flux calibration

Example of flux calibration with ZTF20aayvubx_20200524_SEDm_0

ZTF Dataset

Parameter cut	Remains	Quantity remov
from SEDm	1749	40 %
phase in [-5,+5] days	1005	around 40%
z<0.1	992	around 6%
SNR>12	775	4 %

-> 846 spectra from 775 Sne la

ZTF spectra sample

ZTF Dataset

Twins Embedding - Boone et al. 2021

1. Generate at maximum luminosity

$$m_i(p;\lambda_k) - m_i(0;\lambda_k) = p \cdot c_1(\lambda_k) + p^2 \cdot c_2(\lambda_k)$$

Quadratic evolution in phase of SN Ia spectra

Capture 85% of the spectral **time evolution** variance common to every SNe between -5 and 5 days

Twins Embedding

3 steps

2. RBTL - fit one offset and a color outside the lines

 Δm_i a magnitude offset compared to reference spectrum $\Delta \tilde{A}_{V,i}$ a color coefficient compared to reference spectrum

SNFactory spectra before/after dereddening, and residuals intrinsic dispersion (std) *Credit : Boone et al. 2021*

ZTF spectra before/after dereddening, and Spectral dispersion (nMAD) after RBTL correction for **SNf** and **ZTF**

Twins Embedding

More red SNe in **ZTF** sample, same distribution shape in magnitude

Twins Embedding - Boone et al. 2021 **3** steps

- **1. Generate at maximum luminosity**
- 2. RBTL fit one offset and a color outside the lines
- 3. Manifold Learning parameters reduction

Twins Embedding

9	Value
þ	onent
-2	Comp

Twins Embedding - Boone et al. 2021

- **1. Generate at maximum luminosity**
- 2. RBTL fit one offset and a color outside the lines
- **3. Manifold Learning** *parameters reduction*

Twins Embedding

3 steps

$$\mu = m^{max} - M^{max} - \alpha \cdot \Delta A_V$$

Manifold standardisation (work in progress)

$$\mu = m^{max} - M^{max} - GP(\xi)$$

With SNFactoryTwins Embedding : $\sigma_{mag} = 0.07 mag$ -> what with ZTF ?

Ġ

6

RBTL linear standardisation For SNFactory sample

Twins Embedding

168 SNe la before/after standardisation after a cut on z, Av < 0.5 & RBTL uncertainties

RBTL linear standardisation

 $\Delta \mu = \mu_{z=0.05} - (m_{band} - M_{offset})$ 0.8 0.4 0.6 Hubble residuals [ABmag] -0.0 -0.0 -0.4 0.2 ľŽ 0.0 -0.2 -0.6 data in new band -0.4std=0.234, nmad=0.22 -0.80.08 0.09 0.10 0.05 0.06 0.07 0.02 0.03 0.04 Redshift z

> 628 SNe la before/after standardisation after a cut on z, Av < 0.5 & RBTL uncertainties

Twins Embedding

For ZTF sample

Comparable dispersion to that of photometric standardisation, with only 1 parameter

Conclusion

TE application results

- RBTL standardisation is working well
- Manifold standardisation still in progress

What's next

- 1st paper on the results on the evaluation of Twins Embedding method on ZTF spectra
- Construct an Hubble Diagram using ZTF and SNLS spectra using Twins Embedding
- Cosmology with spectro-photometric standardisation

Conclusion

Be prepared for new surveys

SNe parameters cuts

Parameter cut	Remains	Quantity removed	Cuts for RBTL standardisation		
from SEDm	1749	40 %	Paramotor cut	Romains	Quanti
calibration precision	1647	6%	Farameter cut	Kemanis	remove
phase in [-5,+5] days	1005	around 40%	z>0.02	766	1 %
z<0.1	992	around 6% A _V <0.5	A _V <0.5 A _{V,err} <0.2 Dm _{err} <0.2		
cosmological params: c in [-0.2,0.8], c _{err} <0.1 x ₁ in [-3,3], x _{1,err} <1 t _{0,err<} 1 day	966	3 %		628	20 %
cosmo sn_type	830	around 14%		767 opootro	
SNR>12	775	4 %		or spectra (JI UZO JII

Back-up slides

Goals | Dark Energy

Back-up slides

Precision required (Systematics)

Calibration :

 δ mag = 0.001

Astrophysical bias:

 δ mag = 0.001

Dispersion (Statistics)

SNe Ia dispersion :

 $\sigma_{mag} = 0.40$

SNe la are not standard candles !

Differential time evolution model

Formula of quadratic evolution in phase :

 $m_i(p;\lambda_k) - m_i(0;\lambda_k) = p \cdot c_1(\lambda_k) + p^2 \cdot c_2(\lambda_k)$

with *p* the phase, $c_{1,2}(\lambda_k)$ the coefficients common to all Sne $m_i(p, \lambda_k)$ the magnitude of the SN *i*

Quadratic evolution in phase of SN Ia spectra

Back-up slides

$$f_{\text{meas., s}}(p; \lambda_k) \sim N(f_s(p; \lambda_k); \sigma_{\text{tot., s}}^2 \ (p; \lambda_k))$$

$$f_s(p;\lambda_k) = 10^{-0.4(m_i(p;\lambda_k) + m_{\text{gray},s})}$$

$$\sigma_{tot,s}^2 (p;\lambda_k) = \sigma_{meas,s}^2(\lambda_k) + (\epsilon(p;\lambda_k) \cdot f_s(p;\lambda_k))$$

Fitted parameters : $f_s(p, \lambda_k)$ the model flux of spectrum s $\epsilon(p, \lambda_k)$ the model uncertainties common to all Sne, $m_{gray,s}$ the gray offset of the spectrum s $c_{1,2}(\lambda_k)$ the coefficients common to all Sne

Known: $f_{obs}(p,\lambda_k)$ the observed flux of spectrum s

Capture 84.6% of the spectral evolution variance common to every Sne between -5 and 5 days

Differential time evolution model

Formula of quadratic evolution in phase :

$$m_i(p;\lambda_k) - m_i(0;\lambda_k) = p \cdot c_1(\lambda_k) + p^2 \cdot c_2(\lambda_k)$$

with p the phase,

 $c_{1,2}(\lambda_k)$ the coefficients common to all Sne $m_i(p, \lambda_k)$ the magnitude of the SN *i*

Quadratic evolution in phase of SN la spectra

Back-up slides

=> Spectra @ max

$$f_{\text{meas., s}}(p; \lambda_k) \sim N(f_s(p; \lambda_k); \sigma^2_{\text{obs., s}}(p; \lambda_k))$$

$$tot., s$$

$$f_s(p; \lambda_k) = 10^{-0.4} (m_i(p; \lambda_k) + m_{\text{gray}, s})$$

$$\sigma_{tot,s}^2 (p;\lambda_k) = \sigma_{meas.,s}^2(\lambda_k) + (\epsilon(p;\lambda_k) \cdot f_s(p;\lambda_k))$$

Fitted parameters :

10

 $\epsilon(p, \lambda_k)$ the model uncertainties common to all Sne, $m_{gray,s}$ the gray offset of the spectrum s $c_{1,2}(\lambda_k)$ the coefficients common to all Sne

Known:

 $f_{meas.,s}(p, \lambda_k)$ the observed flux of spectrum s $\sigma_{meas..s}(\lambda_k)$ the measured uncertainty of sp. s

Capture 84.6% of the spectral evolution variance common to every Sne between -5 and 5 days

Differential time evolution model

Formula of quadratic evolution in phase :

$$m_i(p;\lambda_k) - m_i(0;\lambda_k) = p \cdot c_1(\lambda_k) + p^2 \cdot c_2(\lambda_k)$$

with p the phase, $c_{1,2}(\lambda_k)$ the coefficients common to all Sne $m_i(p, \lambda_k)$ the magnitude of the SN *i*

Quadratic evolution in phase of SN Ia spectra

Back-up slides

 $f_{\text{meas., s}}(p; \lambda_k) \sim N(f_s(p; \lambda_k); \sigma_{\text{tot., s}}^2 \ (p; \lambda_k))$

$$\sigma_{\text{tot.,s}}^2 (p; \lambda_k) = \sigma_{\text{meas.,s}}^2(\lambda_k) + (\epsilon(p; \lambda_k) \cdot f_s(p; \lambda_k))$$

Fitted parameters : $\epsilon(p, \lambda_k)$ the model uncertainties common to all Sne, $m_{gray,s}$ the gray offset of the spectrum s $c_{1,2}(\lambda_k)$ the coefficients common to all Sne

Known: $f_{meas.,s}(p, \lambda_k)$ the observed flux of spectrum s $\sigma_{meas..s}(\lambda_k)$ the measured uncertainty of sp. s

Capture 84.6% of the spectral evolution variance common to every Sne between -5 and 5 days

Read between the lines (RBTL)

Remove variability:

- Magnitude offset (e.g peculiar velocity of host)
- Extinction (e.g Dust in the host)

Fitted parameters : Δm_i the offset with mean for SN i $\Delta A_{V,i}$ the extinction coefficient for SN i $\eta(\lambda_k)$ the intrinsic dispersion (common to all)

Known: $f_{max,i}(\lambda_k)/\sigma_{f_{max},i}^2(\lambda_k)$ the spectrum flux/uncertainty at max for SN i $f_{mean}(\lambda_k)$ the mean spectrum at max $C(\lambda_k)$ the extinction law (Fitzpatrick 99)

Back-up slides

=> Explain Scatter **Between the lines**

Capture Grey scatter + Extinction

Fit all together with bayesian inference :

$$f_{\text{model},i}(\lambda_k) = f_{\text{mean}}(\lambda_k) \times 10^{-0.4(\Delta m_i + \Delta \tilde{A}_{V,i})}$$

$$\sigma_{\text{total},i}^2(\lambda_k) = \sigma_{f_{\max,i}}^2(\lambda_k) + (\eta(\lambda_k)f_{\text{model},i}(\lambda_k))$$

$$f_{\max.,i}(\lambda_k) \sim N(f_{\text{model},i}(\lambda_k); \sigma^2_{\text{total},i}(\lambda_k))$$

Areas with large intrinsic dispersion ($\eta(\lambda_k)$) are deweight during the fit :

5 0.3 utrinsic 7000 8000 4000 6000 Wavelength (Å)

Read between the lines (RBTL)

Remove variability:

- Magnitude offset (e.g peculiar velocity of host)
- Extinction (e.g Dust in the host)

$$f_{\text{dered.},i}(\lambda_k) = f_{\max.,i}(\lambda_k) \times 10^{+0.4(\Delta m_i + \Delta \tilde{A}_{V,i}C(\lambda_k))}$$

Areas with large intrinsic dispersion ($\eta(\lambda_k)$) are deweight during the fit

Back-up slides

=> Explain Scatter **Between the lines**

Capture Grey scatter + Extinction

SNFactory spectra before/after dereddening, and residual intrinsic dispersion (std) - from Boone 2021

Read between the lines (RBTL)

Remove variability:

- Magnitude offset (e.g peculiar velocity of host)
- Extinction (e.g Dust in the host)

$$f_{\text{dered.},i}(\lambda_k) = f_{\max.,i}(\lambda_k) \times 10^{+0.4(\Delta m_i + \Delta \tilde{A}_{V,i}C(\lambda_k))}$$

Areas with large intrinsic dispersion ($\eta(\lambda_k)$) are deweight during the fit

Back-up slides

=> Explain Scatter **Between the lines**

Capture Grey scatter + Extinction

SNFactory spectra before/after dereddening, and residual intrinsic dispersion (std) - from Boone 2021

The Twins Embedding parameters space => Explain

Spectral distance between two Sne I and j :

$$\gamma_{ij} = \sqrt{\sum_{k} \left(\frac{f_{\text{dered.},i}(\lambda_k) - f_{\text{dered.},j}(\lambda_k)}{f_{\text{mean}}(\lambda_k)} \right)^2}$$

Isomap algorithm embed high-dimensional space to low-dimentional while preserving distances

But it does not provide a model of a spectrum given its coordinates in the embedding : for that they use Gaussian Process

86.6% of variance explained with 3 components

Back-up slides

Fraction of the variance explained for different models from Boone 2021

The Twins Embedding parameters space => Explain

Twins Embedding three components variation effects Figure from Boone 2021

Back-up slides

	25	ا رکہ ا	ر ک ک		
Added noise, S/N = 20 -	0.99	0.98	0.96	1.0	þ
Added noise, S/N = 10 -	0.97	0.96	0.89	- 0.9	plaine
Added noise, S/N = 5 -	0.94	0.88	0.79	- 0.8	ce Ex
Added noise, $S/N = 2$ -	0.68	0.12	0.22		arian)
Binning 2000 km/s -	1.00	1.00	1.00	- 0.7	n of V
Binning 5000 km/s -	1.00	0.99	0.97	- 0.6	actio
Binning 10000 km/s -	0.99	0.98	0.90		Ĺ

Dependancy of the variance explained with S/N and binning

The standardisation using Twins Embedding

To map the magnitude residuals through the TE space : linear standardisation not sufficient, instead Gaussian Process regression :

$$\vec{m}_{\text{RBTL}} \sim \mathcal{GP}\Big(m_{\text{ref}} + \omega \Delta \vec{\tilde{A}}_V, \\ \mathbf{I} \cdot (\vec{\sigma}_{\text{p.v.}}^2 + \sigma_u^2) + K_{3/2}(\vec{\xi}, \vec{\xi}; A, l)\Big)$$

Before/after correction of magnitude residuals with GP from Boone 2021b

Back-up slides

Fitted parameters :

 m_{ref} a common reference magnitude ω a linear correction term σ_{μ} the unexplained residual dispersion A, *l* the GP kernel parameters

Known:

 $\overrightarrow{m}_{RBTL}$ the magnitudes residuals of the RBTL, ΔA_V the reddening coefficients , ξ the coordinates in the TE space, $\vec{\sigma}_{p,v}^2$ the host galaxy peculiar velocity variance

