Elastic alpha scattering on Sm: adding experimental data to constrain the Q-OMP

Charles SOTO

PhD Student in Nuclear Matter group: N.Millard-Pinard (PhD supervisor), C.Ducoin (PhD supervisor), O.Stézowski IP2I Lyon Collaboration IP2I, IJCLab, GANIL, DEMOKRITOS

PhD days, IP2I Lyon 15 april 2025

P-process

30-35 stable and neutron-deficient nucleus = P nucleus (proton rich)

Created via the p-process (main scenario is a reaction network with mainly **photodisintegrations** (y,n), (y,α)...)

P-process

The Crab Nebula is a remanent effect SN 1054.

Astrophysical sites for p process: CCSN, supernovae Ia, neutrino winds...

Created via the p-process (main scenario is a reaction network with mainly photodisintegrations (y,n), (y,α)...)

The p nuclei

Abundances of the nuclei created by r process (O), s process (-) and p process (). The p-process of stellar nucleosynthesis: astrophysics and nuclear physics status M. Arnould, S. Goriely

Compared to their isotopic neighbours, the p nuclei are underproduced

It gives very few clues on the rare astrophysical events that can produce them.

For my thesis:

Focus on the heavier p nuclei (A \approx 140-200)

In this region, the (y,a) reactions are the most crucial

A lot of the heavy p nuclei are synthetised through (y,g) reactions, their cross sections and abundances are computed through the HF model.

The final abundances depend a lot on the cross sections of these reactions.

As shown in those figures, the (y,p) is more important for light p nuclei while (y,a) is more important for heavy ones.

Evolution of the calculated abundances of p nuclei when the reaction rates are multiplied (\Box) or divided (×) by 3 [W. Rapp et al 2006 ApJ 653 474].

The a-Optical Model Potential

For HF calculations, **3** main ingredients:

- Gamma-Strengh Function
- Nuclear Level Density
- Optical Model Potential

Calculations of ¹⁴⁸Sm(a,a) ¹⁴⁸Sm cross sections at 22MeV using different a-OMP in TALYS (normalized by a reference a-OMP).

More constraints needed on the **a-OMP** for this region ! The typical way to constrain the OMP is through elastic scattering.

The Samarium

Let's use Samarium !

We are studying 2 Samarium isotopes :

¹⁴⁴Sm, measured two times through elastic scattering, stable, neutron magic (N=82) and a p nucleus

¹⁴⁸Sm, has no data available through elastic scattering , stable, non magic

Why Samarium ? ¹⁴⁴Sm strongly constrains a-OMP Good case to study the isotopic dependence Study of magic vs non magic ¹⁴⁴Sm is one of the naturally most abundant p nuclei (~3%) New data through ¹⁴⁸Sm We can compare with the already known case of ¹⁴⁴Sm

62 **Sm** Samarium 150.36

8Dy	149Dy	150Dy	151Dy	152Dy	153Dy	154Dy	155Dy	156Dy (~0,06 %)	157Dy	158Dy
7Tb	148Tb	149Tb	150Tb	151Tb	152Tb	153Tb	154Tb	155Tb	156Tb	157Tb
6Gd	147Gd	148Gd	149Gd	150Gd	151Gd	152Gd	153Gd	154Gd	155Gd	156Gd
5Eu	146Eu	147Eu	148Eu	149Eu	150Eu	151Eu	152Eu	153Eu	154Eu	155Eu
4Sm 3%)	145Sm	146Sm	147Sm	148Sm (~11%)	149Sm	150Sm	151Sm	152Sm	153Sm	154Sm
3Pm	144Pm	145Pm	146Pm	147Pm	148Pm	149Pm	150Pm	151Pm	152Pm	153Pm
2Nd	143Nd	144Nd	145Nd	146Nd	147Nd	148Nd	149Nd	150Nd	151Nd	152Nd

Extract of nuclear chart by NuDat3 centered around the Sm isotopes.

Experiment description

Elastic scattering measurements in order to make a nearly complete angular distribution :

Both at **20 MeV**, compromise between:

- **Astrophysically relevant (Gamow energy ~ 10 MeV)** ullet
- **High enough on energy to see effects of nuclear** \bullet potential (Coulomb barrier ~ 14 MeV).

Coulomb barrier (14 MeV)

The collaboration

International collaboration : GANIL, DEMOKRITOS, IJCLab, IP2I

This experiment was made at IJCLab on the ALTO platform in march 2024 using the Tandem accelerator and the SPLIT POLE spectrometer

Targets synthesis

The targets have been realised on the platform SIDONIE at the IJCLab.

Scheme of the SIDONIE electromagnetic isotope separator

3 targets have been realised : two 148 Sm and one 144 Sm, on carbon backings

The Split Pole has been used to measure scattered particles at the forward angles (22°-85°).

For the backward angles, 3 silicon telescopes in ΔE-E configuration have been used up to 145°.

(credit: The Focal-Plane Detector Package on the TUNL Split-Pole Spectrograph, C. Marshall, K. Setoodehnia)

Silicon telescopes

We used **3** sets of ΔE -E silicon detectors, purchased for this experiment.

E detectors : Thickness = 500 μ m and 1000 μ m, Resolution ~20 keV ΔE detectors : Thickness = 80 µm, Resolution ~80 keV

Each ΔE-E couple was mounted onto a specific mount with a **2mm collimator**. These mounts were crafted at IP2I.

Rutherford Backscattering Spectrometry (RBS)

Loss of matter due to auto-pulverization during the synthesis and to the damage that the beam has done to the target.

To compute the cross sections need to have a precise measurement of the target thickness.

We decided to run an **RBS** measurement on our targets to characterize them.

This measurement took place at **SIDONIE** with the team that synthetised them.

The RBS measurement has been done after our experiment.

The targets have a samarium content of : 74 µg/cm² for ¹⁴⁸Sm 44 µg/cm² for ¹⁴⁴Sm

Simulations

Energy depositions by alphas after the reaction happened,

Simulations

ш

Represents energy loss in the first detector as a function of the energy loss in the second detector,. The **sum** is equal to the **total energy** of the incoming particle (20 MeV for elastic alphas)

Analysis

This is what our typical $\Delta E = Plot$ looks like. We can see that the **p** and α banana are clearly separated.

Contaminants not visible due to the low cross section and low beam intensity.

(keV) 18000

16000

14000

12000

10000

8000

6000 4000

2000

20000

14000

E3 (keV) 18000 18000

 \mathbf{O}

E1 vs DE1

E3 vs DE3

α

8000

8000

△E-E plot on all 3 Si telescopes and Split Pole. It shows elastic scattering on ¹⁴⁸Sm.

The elastic scattering and 1st excited state are clearly visible.

Preliminary results

Preliminary results: angular distribution of alpha elastic scattering.

Compared with literature data for ¹⁴⁴ Sm and with calculations using TALYS and the two α-Optical Model Potentials of Demetriou (Omp 5) and Avrigeanu (Omp 6) for ¹⁴⁸Sm.

They are part of a new generation of models, they are now vastly used and have been conceived using the ¹⁴⁴Sm data.

Main uncertainty : target homogeneity and hitting point of the beam on the target during the experiment.

144Sm(a,a)144Sm XS angular distribution

Preliminary results

Preliminary results: angular distribution of alpha elastic scattering.

Compared with literature data for ¹⁴⁴ Sm and with calculations using TALYS and the two α -Optical Model Potentials of Demetriou (Omp 5) and Avrigeanu (Omp 6) for ¹⁴⁸Sm.

They are part of a new generation of models, they are now vastly used and have been conceived using the ¹⁴⁴Sm data.

Main uncertainty : target homogeneity and hitting point of the beam on the target during the experiment.

148Sm(a,a)148Sm XS angular distribution

Conclusion and perspectives

Alpha elastic-scattering angular distribution for 2 samarium isotopes, ¹⁴⁴Sm and ¹⁴⁸Sm, at 20 MeV, from 22° to 145°

Telescopes calibration **Energy loss and scattering simulations Target** characterization by **RBS Preliminary angular distribution**

Study of systematic shifts Determine set of parameters on a-OMP Study of isotopic and magicity dependence Analysis finalisation

Study of the energy dependance : very important for the g-OMP ----> Same experiment at 22.5 MeV. Study of its influence on the abundance of the p nuclei in this region

$rac{d\sigma}{d\Omega}$ $\frac{N}{Q \times d\Omega \times \varepsilon}$

Use of 184 W

Need to know the solid angle $d\Omega$. One way to have a precise measurement of it is by using our knowledge of the physics.

We used a ¹⁸⁴W target to do elastic scattering. At this energy, ¹⁸⁴W(a,a)¹⁸⁴W is mainly Rutherford, which gives us a pretty good knowledge of the cross section. Using this we can recover the solid angle.

The W target is 159 µg/cm² thick. It has been determined by RBS. At the measured angles, the nuclear potential has an impact on the scattering. We used TALYS with the **OMP of Avrigeanu and Demetriou to** compute the cross sections.

Cross section of α elastic scattering on W at 20MeV calculated with TALYS, normalized by Rutherford.

