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Data & Physics – 3 scenarios

No Data

1. Sufficient physical
knowledge

Limited Data

2. Limited physical
knowledge

Lots of Data

3. No Physics

Labelled Data
(observations)

Physics
constraints

▶ Physics-informed neural networks – PDE solvers
1 Sturm-Liouville (eigenvalue) problems, BIVPs – data independent.
2 Inverse problems – partially data driven.

▶ Neural networks with data-driven learning
1 E.g.: binary classification, regression tasks. – data dependent.

adopted from Karniadakis et al (2020) Nat Rev. Phys 3 422
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FNN architecture – generic
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▶ FNN ansatz:

f (x) = σℓ=L
[
∑ wℓ=Lσℓ=L

(
. . . ∑ wℓ=2σℓ=1

(
∑ w1x + b1

)
+ b2 . . .

)
+ bL

]
.

▶ Activation (σ): e.g. sin, tanh,

σ(z) =
1

1 + exp(−z)
(sigmoid).

▶ Loss (L): problem-dependent e.g. LPDE + LIC/BC for solving EIBVPs.
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NN optimisation algorithm – pseudo-code

▶ Initialise θ =
{

wℓ
jk, bℓj

}
1≤ℓ≤L

randomly from e.g. N (µ, σ2).

▶ For each epoch in training epochs:
1 Input xj (training points) + Evaluate f (xi) and L.

2 Backpropagate: compute
∂L
∂θ

=

{
∂L

∂wℓ
jk

,
∂L
∂bℓj

}

1≤ℓ≤L

using autodiff.

3 Update θ: w → w′ = w − ∂L
∂w

, b → b′ = b − ∂L
∂b

(optimisation algo. dependent).

4 Validate: e.g. for early-stopping.

▶ Test performance of model.

autodiff: exact numerical differentiation.
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Overview of application to physics problems

Use-case NN algorithm

1. Compute QNM frequencies of
Kerr BHs (solving ODEs).

PINNs

2. Improving sensitivity of
new physics searches (signal-
background event classification).

Binary classifiers

▶ Implementation: Pytorch – an ML open-source
library in Python.
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BH QNMs – simpler problem: Schwarzschild BH

▶ Regge-Wheeler-Zerilli eqn.:

d2ψ(x)
dx2 +[ω2 −V(r)]ψ(x) = 0,∗

tortoise: −∞ < x < +∞,
radial: 2M < r < +∞.

ℓ=5

ℓ=3

ℓ=2

r

V(r)

Black hole

radius of unstable 
circular orbits

particle approaches BH
but continues towards

0

particle falls inexorably
towards BH centre

▶ Schwarzschild BH effective potential:

V(r) =
(

1 − 2M
r

) [
ℓ(ℓ+ 1)

r2 + (1 − s2)
2M
r3

]
,

M = BH mass, ℓ = multipole number, s = spin of perturbing field.

∗ω(SI units) = ω(G units)× 2π(5.142kHz)M⊙/M, where G: G = c = 1.
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Astrophysical constraints & QNM frequencies

▶ Asymptotic behaviour of QNMs:

ψ(x) =

{
e−iωx, x → −∞
e+iωx, x → +∞

,

▶ non-Hermitian eigenvalue problem,
i.e for QNMs with e−iωt:

ω = ωRe − iωIm,

ωRe = physical oscillation frequency,

ωIm ∝ damping rate.

simple simulation of GW signal consisting
of QNMs

▶ GW significance of QNMs: “footprints” of BH as frequencies are BH parameter
dependent.

Konoplya & Zhidenko (2011) Rev. Mod. Phys. 83 793.
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Teukolsky eqn – Kerr BH QNMs

▶ Radial & angular ODEs:

∆(r)R′′(r) + (s + 1)(2r − 1)R′(r) + V(r)R(r) = 0,

(1 − u2)S′′(u)− 2uS′ +
[

a2ω2u2 − 2aωsu + s + A − (m + su)2

1 − u2

]
S(u) = 0,

where ∆(r) = r2 − 2Mr + a2, u = cos θ, a = BH rotation, ℓ, m = multipole indices.

▶ Eigenfunctions & eigenvalues:

R(r) = sRℓmω(r), S(u) = sSℓmω ,

ω = ωRe − iωIm, A = ARe + iAIm.

▶ Asymptotic behaviour:

R(x) =

{
e−i(ω−ma/2Mr+)x/∆s, x → −∞
e+iωx/r2s+1, x → +∞

.
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Existing methods

Existing methods for computing QNMs of BHs.

Method Pros Cons

Continued fraction
method
(Leaver, 1985)

High accuracy (standard
technique)

No physical intuition

WKB
(Schutz & Will, 1985)

Physical intuition poor for high n i.e. n > ℓ

Asymptotic Iteration
Method
(Cho et al, 2012)

Accurate as WKB Requires n-specific seed
values unlike WKB
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PINNs approach – Kerr case
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′′ +G1ĝ
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L

▶ Training minimises L(θ):

L(θ) = LDE+BC + Ldata,

where

F0,1,2 = F0,1,2(x, ω), x ∈ [0, 1]; G0,1,2 = G0,1,2(u, A), u ∈ [−1, 1].
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Numerical results

Low-lying QNM frequencies – gravitation perturbations of a Kerr BH
(s = −2, M = 0.5, a = 0.1, ℓ = m = 2, n ∈ {1, 2, 3}).

CFM PINN
n ωn ω̂n Â22

{A22 } (∆ℜω̂n , ∆ℑω̂n ) (∆ℜÂ22 , ∆ℑÂ22 )

1.0 0.7580 - 0.5411i 0.7616 - 0.5432i 3.7924 + 0.1548i
{3.7958 + 0.1504i} (0.484%, 0.397%) (-0.091%, 0.386%)

2.0 0.6786 - 0.9357i 0.6878 - 0.9447i 3.8201 + 0.2614i
{3.8222 + 0.2589i} (1.357%, 0.954%) (-0.054%, 0.196%)

3.0 0.5888 - 1.3653i 0.5968 - 1.3859i 3.8413 + 0.3648i
{3.8543 + 0.3758i} (1.363%, 1.511%) (-0.339%, -0.801%)

▶ Baseline set-up: 2 & 3 hidden layers, 20 per layer, 5 × 103 epochs (early-stopping)
Adam optimiser, ∼ 103 training pts.

Anele, Ncube DNN in physics PhD days, 2025 12 / 21



Evolution of PINN approximations
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Improving µ̃±
R searches in LHC data

▶ Simulations on MG5 with
Run 2 setup (i.e.

√
s = 13 TeV;

Lint = 139 fb−1).

▶ χ̃0
1 stable LSP ∴ DM

candidate.

▶ Backgrounds (SM QCD):

pp̄ → tt̄,
pp̄ → ℓ+ℓ−νν̄,

pp̄ → ℓℓℓν.

▶ s/b ≪ 1
e.g. b ∼ 750, s ∼ 10 events for
(mµ̃R , mχ̃0

1
) = (500, 0) GeV.

q

q

Z(∗)/γ(∗)

χ̃0
1

µ+

µ̃+
R

µ−

χ̃0
1

µ̃−
R

200 400 600
mµ̃R (GeV)

0

100

200

300

400

500

m
χ̃

0 1
(G

eV
)

mχ̃0
1
> mµ̃R

Nevents = Lint × σ × ε

6 events

10 events

100 events

10−2

10−1

100

101

σ
×
ε

(f
b

)

Concerning signals

Anele, Ncube DNN in physics PhD days, 2025 14 / 21



NN binary classifier
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class =

{
0 (bkgs) for σ`=L ≤ 0.7,

1 (sigs) for σ`=L > 0.7.

xi = kinematic variables; σ = sigmoid; LBCE = binary cross-entropy

▶ SGD optimisation algorithm,

▶ standardised inputs; train:validation:test ratio: 8:1:1; balanced train set.

▶ Gain in sensitivity compared to existing approaches (i.e. jet veto & BDTs)???
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NN Loss
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2 NNs trained on data from 2 signal regions: low and high mµ̃R .
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Sig acceptance & bkg rejection – NN vs. BDT vs. jet veto cuts

Signal acceptance: BDT > NN > jet veto.

mµ̃R
mχ̃0

1
s (TPs)

(GeV) NN BDT static jet veto
low mµ̃R signal region

100 0 19.5 (21.7%) 53.3 (59.5%) 37.2 (41.6%)
200 0 172.1 (72.3%) 214.5 (90.1%) 129.6 (54.4%)
300 0 74.3 (87.6%) 82.1 (96.8%) 45.2 (53.3%)
400 0 29.3 (91.4%) 31.6 (98.5%) 16.6 (51.7%)

high mµ̃R signal region

500 0 12.0 (90.5%) 13.2 (99.3%) 13.2 (99.3%)

▶ Background rejection (b/ FPs): low mµ̃R NN 5.9 (0.8%), high mµ̃R NN 2.4 (0.3%),
BDT 28.4 (4.0%) & 33.8 (4.5%).
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Statistical analysis (CLs method) – NN vs. BDT vs. jet veto cuts

100 200 300 400 500
m R [GeV]

0

100

200

300

400

500

m
0 1 [

Ge
V]

 m 0
1 > m R 

 (forbidden)

a
NN

2.0
4.0

6.0

6.0

8.0

100 200 300 400 500
m R [GeV]

b
BDT

2.0

4.0
6.0

8.0

100 200 300 400 500
m R [GeV]

c
static jet veto

2.0

4.0

6.0

8.0

0

4

8

12

16

20

24

28

AM
S 

(
)

Projected exclusion limit plots (NN > BDT > jet veto).

▶ AMS:

Z =

√
2
(
(s + b) ln

(
1 +

s
b

)
− s

)
, b = FP, s = TP.

▶ Z = 2σ (= 95%CL) ⇒ exclusion.
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Summary

PINNs for Kerr QNMs; NN classifiers for µ̃R searches.

Topic Kerr BH QNMs µ̃R searches

ML approach supervised PINNs NN classifier in 2 signal
regions

Results frequencies <5% error for
low-lying overtones (n ≤ 3)
& slow rotation (a ≤ 0.1)

Greater sensitivity for all
sig events at Run 2 (more
decisive exclusion limits).

Limitations &
improvements

Importance of higher
overtones & improved
PINN design

Limited success in
compressed region (i.e.
mχ̃0

1
/mµ̃R ≤ 1.5), ongoing

research.

▶ Articles:

▶ “Solving the Regge-Wheeler and Teukolsky equations: supervised versus
unsupervised physics-informed neural networks” (arXiv:2402.11343 [gr-qc]).

▶ “Improving smuon searches with Neural Networks” (arXiv:2411.04526 [hep-ph]).
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PINN application to eigenvalues in nilmanifolds

Laplacian eigenmodes in twisted periodic topologies for new physics models

Ncube A., Deandrea A., Cornell A., Herbst R.

Abstract: Laplacian eigenmodes in non-trivial topologies (e.g. having twisted periodicity)
are important in constructing a complete picture of the physics at play within models
that incorporate compact extradimensional spaces. Determining them analytically is
generally unwieldy, and the existing standard numerical methods have limited ability as
spatial dimensions increase and when computing higher-index eigenmodes is required.
To determine the feasibility of using physics-informed neural networks to compute
Laplacian eigenmodes, we apply them to three primitive test cases: the Möbius strip,
the real projective plane and the 3-torus in Cartesian coordinates. The neural networks
approach’s potential performance beyond solving the simpler cases is estimated in terms
of the approximation errors obtained by comparing with known analytical solutions.

for SAIP2025 conference on 7 - 11 July, 2025.
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Thank you
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