#### 4-D Particle Flow Algorithm for Higgs factories, Higgs-WW coupling measurement PhD Days 2025

Tanguy Pasquier

#### IP2I/Université Lyon 1 - FLC Group PhD supervisors: Gérald Grenier, Imad Laktineh

April 15th, 2025

#### Introduction

#### Context

- Need for high-precision measurements to test the Standard Model
  - Next step : lepton colliders (Higgs factories)
- Currently in development
  - New colliders (FCC, CEPC, Linear Collider Facility ...)
  - New detection and analyses techniques
  - An example : Particle Flow Algorithms (PFA)







#### Figure: Tunnel of the LCF project

Tanguy Pasquier (IP2I Lyon)

PhD Days 2025

## Particle Flow Algorithms (PFA)

- Particle detection
  - Reconstruction of final state with jets
  - Types of particles:
    - Charged hadrons and electrons
    - Photons
    - Neutral hadrons
- PFA Principle
  - Goal : Accurately measure the energy of each individual particle using the most precise sub-detector available
  - Requires
    - Efficient particle tracking
    - High granularity detectors (e.g., SDHCAL)





#### Particle reconstruction

- Particle showers
- Challenge: Reconstruct and separate different particle showers
  - Current approach : 3D spatial reconstruction (Pandora and APRIL)
  - SDHCAL: Addition of fine temporal segmentation (< 100 picoseconds)
  - Preliminary studies: 4D reconstruction improves separation capability
- Final goal: 4D spatio-temporal reconstruction using APRIL



Figure: Particle shower in the SDHCAL

#### Figure: Impact of timing on separation

Tanguy Pasquier (IP2I Lyon)

PhD Days 2025

## **APRIL** and Pandora

#### APRIL

- Development started in 2013 in Lyon
- Based on the Arbor concept and implemented in PandoraSDK
- Based on graph theory: Reconstructs showers as oriented trees



#### Pandora

- Already at an advanced stage of development by 2009
- Currently the reference PFA
- Based on cone clustering
- Reclustering to counter confusion (12 reconstructions, best selected)



#### Software preparation and SDHCAL Calibration in the simulations

# Preparation of APRIL and software update for APRIL integration

#### • Preparation of APRIL:

- Gathering of previous implementations
- Resolution of various issues (memory leaks, updates, etc.)

#### • Software update for APRIL integration:

- Software used for running PFAs: DDMarlinPandora
- Issue: Not designed to run anything other than Pandora
- Creation of a new local version of DDMarlinPandora
- Developed to include SDHCALContent (SDHCAL plugins) and APRIL
- Enables all possible combinations between different plugins and PFAs

#### • Summary:

- APRIL has been updated and is now working properly 

   Git repo
- A request has been made to include our new version of DDMarlinPandora in the official iLCSoft software (in progress)

## SDHCAL angular corrections

- For ILD\_12\_v02 using APRIL with  $|\cos{(\theta)}| < 0.7$  and single KLong samples
- Corrections restore linearity



Figure:  $E_{\rm reco}$  before corrections using linear reconstruction

Figure:  $E_{\text{reco}}$  after corrections using linear reconstruction

Tanguy Pasquier (IP2I Lyon)

## Semi-Digital HCAL

#### SDHCAL reconstructed energy

 $E_{reco} = \alpha_1 N_1 + \alpha_2 N_2 + \alpha_3 N_3$ 







- Linear  $\alpha_i$  constant (Pandora default).
- Density  $\alpha_i = \text{above} \times f(N \text{ neighbour hits})$



Tanguy Pasquier (IP2I Lyon)

April 15th, 2025

## Determination of $\alpha_i$ parameters

- Several methods were tested:
  - Classical method:  $\chi^2$  minimization
  - Machine Learning
  - New reconstruction approach based on correlations between  $N_1$ ,  $N_2$ ,  $N_3$
- **Goal**: Establish a robust calibration for 3D reconstruction before integrating timing for 4D reconstruction

#### Classical method: $\chi^2$ minimization

• 
$$\chi^2 = \sum_{i=1}^N \frac{(E_{\rm mc,i}-E_{\rm reco,i})^2}{E_{\rm mc,i}}$$
 , where  $N$  is the number of events used

- Minimization performed using TMinuit and MIGRAD (ROOT)
- Calibration performed using single KLong samples with energies between 5 GeV and 90 GeV
- Calibration traditionnaly performed on the full energy range
  - Issue: Difficult to fit parameters that work for the whole energy range
- $\bullet~{\rm Tried}$  to split the samples to have a formula for low  $N_{hit}$  and another for high  $N_{hit}$  : Split methods

### Comparison for the single KLongs

- Single KLongs with no angle
- Achieve good linearity and resolution with the different methods
- APRIL gives better results than Pandora on KLong



#### Comparison for dijets events

- Performance usually evaluated through mass reconstruction of dijets events (u, d, s) with  $|\cos{(\theta)}| < 0.7$
- Quadratic methods perform a lot better than the classical linear method
- Using two formulas instead of one (split method) improves linearity and resolution for higher energies



#### Dijets comparison between APRIL and Pandora

- APRIL better than Pandora for  $E_{jet} < 80 \text{ GeV}$
- **Expected:** Reclustering improves resolution for  $E_{jet} > 100$  GeV
- $\bullet$  Unexpected: Reclustering impacts resolution negatively when  $E_{jet} < 80~{\rm GeV}$
- $\bullet~$  Reclustering creates a lot of small clusters  $\to$  accumulation of low resolution measures  $\to~$  negative impact on global measure



Detector prototypes development

## Development of MRPC

- Fabrication of medium-sized MRPC prototypes ( $\sim 50 \times 30 {\rm ~cm})$
- Glass plates separated by Mylar (polyester) spacers
- 3 to 5 gas gaps of  $\sim 300~\mu{\rm m}$
- Resistive coating on the outer glass plates
- High voltage applied:  $(\sim 10-12 \text{ kV})$
- Gas mixture:
  - TFE : 93%
  - SF<sub>6</sub> : 2%
  - CO<sub>2</sub> : 5%
- About ten detectors built that need to be studied (efficiency, homogeneity, time resolution ...) : ongoing



Figure: MRPC prototype during assembly

## Time resolution measurement

- Setup of a dedicated test bench:
  - 3 MRPC prototypes stacked at different heights
  - Scintillators/PMs used as trigger and as a reference
- Measurement of time difference between cosmic muon hits in two MRPCs
  - $\mu_{2d}$ : Mean time of flight between two MRPCs
  - $\sigma_{\rm 2d} \sim$ : Time resolution for the two-MRPC system
  - Time resolution per MRPC:  $\sigma_{1d} = \frac{\sigma_{2d}}{\sqrt{2}}$
- First results:  $\sim 100~{\rm ps}$  (including angular effects)



Figure: Test bench setup

#### Timing inclusion in APRIL

## Timing inclusion in APRIL

- Removing non-causal connections  $(\beta>1)$   $\checkmark$
- Late neutrons separation  $\checkmark$
- Time-based clustering  $\checkmark$
- Algorithm inclusion achieved
- Ongoing simulations : will be the main focus from now on



Figure: Simulated distribution of hits in the SDHCAL as function of their distance from the shower axis and the hit time, for all hits (left) and without neutrons induced hits (right)

#### Higgs-WW coupling measurement

## PFA performance evaluation

- Higgs-WW coupling measurement with future colliders simulations
  - Crucial measurement to test the Standard Model predictions
  - Complex signal topology involving jets
- M2 internship : comparison between APRIL 3D and Pandora 3D
- Promising results for APRIL
- Current experimental uncertainty :  $\sim 10\%$
- **Goal:** Quantify the impact of 4D reconstruction on the coupling measurement

|                                  | Pandora PFA 3D     | APRIL 3D           |
|----------------------------------|--------------------|--------------------|
| $\frac{\Delta g_{HWW}}{g_{HWW}}$ | $1.44 \pm 0.02~\%$ | $1.35 \pm 0.04~\%$ |

Figure: Relative statistical uncertainty on the coupling for APRIL 3D and Pandora 3D



## Conclusion

#### Summary:

- APRIL works and can be used by anyone thanks to the new DDMarlinPandora
- SDHCAL fully calibrated and gives good results
- APRIL gives better results than Pandora for  $E<80~{\rm GeV}$  but still need improvements for higher energies to counter the confusion
- Several medium size MRPC prototypes built and currently being tested
- Timing inclusion in the algorithms is done

#### Outlook:

- Focus will now be entirely on timing
  - Study the impact of timing on the reconstruction of dijets events
  - Look at APRIL 4D performance on Higgs-WW coupling measurement

#### Thank you for your attention!

## Backup

## Particle flow calorimetry

#### Particle Flow Algorithm (PFA)

- $\bullet~$  ILC/CEPC physics program requires  $W/Z{\rightarrow}\, q\bar{q}$  mass separation.
- $\Rightarrow$  jets resolution [50, 500] GeV better than  $\sim 3-4$  %  $\sim 30\%/\sqrt{E}$ .
- Use optimal sub-detector for jet energy estimation :
  - tracker (~ 60%), ECAL (~ 30%), HCAL (~ 10%).
- Separate energy depositions from close-by particles : high granularity is key point





Extensive studies have been done with ILD detector option 1 and PandoraPFA algorithm.

At higher jet energy (E $\gtrsim\!\!100$  GeV), dominant contribution to resolution is confusion.

See Steven Green, Cambridge University Thesis 2017



## SDHCAL angular corrections

- Goal: Establish a solid simulation baseline for ILD Option 2 (SDHCAL in Videau geometry)
- SDHCAL required angular corrections in both theta and phi  $\to E_{\rm reco}$  was too low
- Creation of SDHCALContent for SDHCAL-specific plugins Git repo
- Clear separation between "detector/geometry" algorithms (SDHCAL, ILD Option 2) and PFA algorithms (APRIL).





## **MRPC Efficiency**

• High detection efficiency achieved with MRPC prototypes



Figure: Efficiency of a 4-gap MRPC for different gas mixtures

## Coupling measurement

- Comparison of PFA for the measurement of the HWW coupling
- Improvement of the analysis strategy
- Statistical significance:

$$S = \frac{N_{\rm sig}}{\sqrt{N_{\rm sig} + N_{\rm bkg}}} \tag{1}$$

• Calculation of the relative statistical uncertainty on the measurement of *g<sub>HWW</sub>*:

$$N_{\rm sig} \propto g_{HWW}^4 \Rightarrow \frac{\Delta N_{\rm sig}}{N_{\rm sig}} = S^{-1} = 4 \frac{\Delta g_{HWW}}{g_{HWW}}$$
 (2)

|                                  | Pandora PFA 3D     | APRIL 3D           |
|----------------------------------|--------------------|--------------------|
| S                                | $17.3\pm0.3$       | $18.5\pm0.4$       |
| $\frac{\Delta g_{HWW}}{g_{HWW}}$ | $1.44 \pm 0.02~\%$ | $1.35 \pm 0.04~\%$ |

Figure: Statistical significance and relative statistical uncertainty on the measurement of  $g_{HWW}$  for ILD, assuming  $L = 3 \text{ ab}^{-1}$  and 80% training (BDT)

## Studied signal



Figure: Feynman diagram of the studied signal channel