

Fabrication and characterization of Gd targets for the production of terbium radionuclides for nuclear medicine

PhD hours presentation – 9th session

Student: Vanessa RHODEN

Work team:

Thomas SOUNALET, Ferid HADDAD and Nathalie MICHEL

Contents:

- $\phi \rightarrow$ Introduction
- $\bullet \rightarrow \text{Goals}$
- ♦ → Methodology
- \rightarrow Results
- → Conclusion and Perspectives

Introdution

Seizieme annès, - Nº 775

FAUDRAIT ISOLE A RADIO-ACTIVITÉ DE CE MÉTAL. UN DES COMPO SERA PLUS FACILEMENT UTILISABLE SANTS DU *PECHBLENDE Dimanche 10 Janvier 1904. Le Petit Parisien SUPPLÉMENT LITTÉRAIRE ILLUSTRÉ LEUR TOUR, ILS ORIENTENT LEURS TRAVAUX DEUX ANS SERONT NÉCESSAIRES AU COUPLE, AIDÉ DANS CE SENS. DU PHYSICIEN BEMONT, POUR OBTENIR LE RADIUM C'EST UN DOCUMENT CAPITA POUR L'HISTOIRE DES SCIENCES. NULLEMENT JALOUX DE VOIR D'AUTRES SAVANTS DEVENIR CÉLÈBRES, BECQUEREL POURSUIT SON OEUVRE LABORIEUSE. CE N'EST QU'EN 1903 QUE LE SAVANT PUBLIE L'ENSEMBLE DE SES TRAVAUX. DANS LA MÊME, ANNÉE, HENRI BECQUEREL SE VOIT DÉCERNER LE PRIX NOBEL POUR SA DÉCOU-VERTE. Πc B

- Centralizing the attention to the \geq discover of radioactivity and radioactive elements;
- This field has involved into a crucial \geq component of modern healthcare;
- Either as an independent technique \succ or in conjunction with other medical procedures.

• RHODEN V. – May 22, 2025

Huit pages : CINQ centimes

DIRECTION: 18. rue d'Enghien (10"). PARIS

Results

Conclusion and Perspectives

> This evolution has been supported by significant advancements in theragnostic approaches.

• RHODEN V. – May 22, 2025

Introdution	Goals	Methodology	Results	Conclusion and Perspectives
Methodology of Pell (for production):	letizing			

> This technique involves transforming fine particles of a material into pellets through agglomeration.

Hydraulic press Pression max = 950 MPa

Why Pelletezing?

simple process and to obtain dense targets.

- Alpha particles: 67.4 MeV, up to 35 μ A;
 - Deuterons: 17-35 MeV, up to $80 \,\mu$ A.

Additional experiments conducted by MP methodology + pelletizing methodology (experiments in progress)

Results

≁

Irradiation experiment: to evaluate the feasibility of the MP methodology

Samples manufacturing parameters				
Substrate:	Ti foil			
Time of process:	3h20min			
Temperature:	18-21 °C			
C _{electrolyte solution} :	0.07 mg.ml ⁻¹			
Current dentity:	10.5 mA.cm ⁻²			
Deposit diameter:	0.6 cm			
Stirring speed:	250 rpm			
Solvent:	Isopropanol			

Irradiation parameters				
Date:	Dec/2024			
Technique:	Stacked foils			
Time of irradiation:	40 min			
Particles:	Protons			
Beam current:	150 nA			
Monitor:	Ti and Cu foil			
Catcher:	Al foils Thichness $Al_1 = 13.2 \ \mu m$ Thickness $Al_2 = 13.0 \ \mu m$			
Energy:	18.2 MeV			

- $\begin{array}{c} Collimator \\ Al & Ti + Gd_{deposition} \\ IS.2 \text{ MeV} \\ IS.2 \text{ MeV} \\ IS.2 \text{ MeV} \\ IS.1 \text{ MeV} \\ IS.2 \text{ MeV} \\ IS.1 \text{ MeV} \\ IS.2 \text{ MeV} \\ IS.$
 - Simulations with SRIM program;
 - Considered half the thickness of each foil = to determine the energy loss for each foil;
 - Inputs: material, thickness and density;
 - Outputs: the loss of energy and energy with each foil.

$$\sigma(E) = \frac{Act \cdot A}{\Phi_{sample} \cdot N_A \cdot P \cdot \left(\frac{m_2}{s}\right) \cdot (1 - e^{-\lambda t})}$$

 $\sigma(E)$ = the energy efficient section (cm²)

Act = the activity of 155 Tb/ 156 Tb (Bq)

A = molar mass of 155 Tb/ 156 Tb (g.mol⁻¹)

 Φ = the flow of projectiles as determined by monitor (particules \cdot s⁻¹)

 λ = the radioactive constant of the radionuclides (s⁻¹)

P = purity $m_2 = mass of (Gd) obtained by ICP-OES analysis (g)$ $S = surface of deposit (cm^2)$ t = the irradiation time (s) $N_A = Avogadro's number (mol^{-1})$

- ➤ Reaction of interest: $^{nat}Gd(p,x)^{155}Tb \rightarrow half-life = 5.32$ days
- ➤ Competitive reaction: $^{nat}Gd(p,x)^{156}Tb \rightarrow half-life = 5.35$ days
- ▶ 1° counting: 3-4 days after irradiation

^{nat}Gd(p,x)¹⁵⁵Tb, ¹⁵⁶Tb \rightarrow determine the activity of ¹⁵⁵Tb, ¹⁵⁶Tb

- $> 2^{\circ}$ counting: 48-50 days after irradiation
 - ^{nat}Ti(p,x)⁴⁸V \rightarrow determine the activity of ⁴⁸V (half-life = 15.97 days) ^{nat}Cu(p,x)⁶⁵Zn \rightarrow determine the activity of ⁶⁵Zn (half-life = 243.93 days)

Introdut	ion Goals	Methodology	Result	ts	Conclusion and Persp	ectives
Irradi	ation experiment: to e	valuate the feasibility of the M	IP methodology			
²⁸⁰ 260	T I I	(a) Cross section of $^{nat}Gd(p,x)^{155}Tb$	280 -		(b) Cross sectio	n of $^{nat}Gd(p,x)^{156}Tb$
240 - 220 -			240 - 220 -			
180 - 180 - <u>a</u> 160 -			180 - <u><u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u></u>			
140 - 120 -						- T
100 - →- 80 -				 + <u>+</u> +		
	- <u>-</u>		$\begin{array}{c} 60 \\ 40 \\ - \\ \end{array}$			1 1
	15 20 25 30 Energy (Me	35 40 45 50 55 60 63 V)		15 20 25 30 Energy	35 40 45 50 (MeV)	55 60 65
• C. Verme	ulen et al. (2012) • This work - 1° irradiation - with V-48 •	This work - 2° irradiation - with V-48 • G. Dellepiane et al. (2022)	• C. Vermeulen et al. (20	 • This work - 1° irradiation - with V-48 • T. 	is work - 2° irradiation - with V-48 • G. Dellepiane et	al. (2022)

- > m(Gd) of sample of the first irradiation = 1.33 ± 0.01 mg;
- > m(Gd) of sample of the second irradiation = 1.47 ± 0.01 mg;
- Its notice that our points follows others points from Vermeulen et al. and Dellepiane et al. including their uncertainties, concluding that our values are good consistence with these authors.

Introdution Goals		Methodology Results		Conclusion and Perspectives				
Adi	tional experiments :							
1. Varying the speed of mechanical agitation:		2.	Varying the solvent:	3. Varying the substrate thickness:				
Goal: to optimize the homogeneity of the electrolyte solution and, consequently, the		Goal: to ensure better compatibility with the manufacturing system.		Goal: to assess whether there is a difference in using thicker or thinner substrates.				
deposits.								
	• 	Solvent:	Result:	Solvent:	Substrate thickness:	Average mass*:		
Speed:	Result:	Methanol	Without good adhesion to the	Isopropapol	125 μm	$1.53\pm0.03~mg$		
rpm	deposition layer	substrate			20 µm	$1.51\pm0.01~mg$		
250 rpm	Very homogeneous surface	DMF	Inhomogeneous surface	Isobutanol	125 μm	$0.78\pm0.02~mg$		
500 and 1000	Very strong the speed and	Isobutanol	Isobutanol		20 µm	$0.80\pm0.02\ mg$		
rpm	inhomogeneous deposition were obtained	Isopropanol	adhesion	*mass of Gd obtained by ICP-OES analysis➤ The results display well-defined that there		l that there		
		Ethanol	Homogeneous surface, but high volatitily	are not d substrates	are not difference using thicker or thinner using substrates.			

Introdution	Goals	Methodo		Results	(Lonciusion and Perspectives	
Aditional	experiments:						
4. Varying the voltage:		5. Varying	5. Varying the m(Gd) add to the working solution:		6. Varying the process time:		
	\downarrow				\downarrow		
Goal: to optimize the efficiency of the process of electrodeposition.		Goal: to o	Goal: to optimize the deposition yield.		Goal: evaluate which behavior has the longest processing time.		
Voltage	Result:	m(Gd):	Result:		Process time:	Result:	
300 V	Process time = 20 min $T_{initial} \approx 19-20^{\circ}C$	2 mg 10 mg	Yield of deposition = Yield of deposition =	73.5±1.3 %	20 min	Yield of deposition = 44.97 \pm 1.4 % T _{final} \approx 20-25°C	
	$T_{\text{final}} \approx 19-20^{\circ}\text{C}$ Process time = 20 min				40 min	Yield of deposition = 83.32 ± 1.0 % T _{final} \approx 42-45°C	
500 V	$T_{initial} \approx 19-20^{\circ}C$ $T_{final} \approx 48^{\circ}C$				The results of better to worl min of proces	display well-defined that is $(Gd) = 2 \text{ mg and } 20$ is time.	

• RHODEN V. – May 22, 2025

- \blacktriangleright Pressed under 600 bar for 60s;
- > We are looking to optimize the process to obtain well-densified pellets for irradiation studies.

ntrodution

Goals

Methodolog

Work completed:

Thin target:

- Improve the quality of Gd deposit and characterize Gd deposit to understand under which chemical form it is made;
- Irradiate a natural Gd thin target, manufactured by MP, with deuterons and protons, and compare the results with those from different authors to confirm the feasibility of our technique;
- Characterize the targets obtained, accurately measuring the effective production cross sections of Tb-155 and different impurity radioisotopes;

Follow-up:

Thin target:

- □ Continue developing experiments focused on the MP methodology and further improve the characterization of the obtained Gd deposits;
- Expand the possibilities of applying this target manufacturing method to other chemical elements.

Thick target:

- \Box Obtain Gd₂O₃ pellet to prepare the future production;
- □ To explore ${}^{155}\text{Gd}(\alpha,4n){}^{155}\text{Dy} \rightarrow {}^{155}\text{Tb}$ and ${}^{156}\text{Gd}(\alpha,5n){}^{155}\text{Dy} \rightarrow {}^{155}\text{Tb}$ nuclear reactions are designed;
- Expand the possibilities of applying this target manufacturing method to other chemical elements.

Chemical separation:

□ Study and develop chemical separation techniques for a cyclic process.

