Quantum Colliders Y. Afik, JRMdN, EPJ Plus 136, 907 (2021) Y. Afik, JRMdN, Quantum 6, 820 (2022) Y. Afik, JRMdN, PRL 130, 221801 (2023) Y. Afik, Y. Kats, JRMdN, A. Soffer, D. Uzan, arXiv 2406.04402 (2024)

Juan Ramón Muñoz de Nova

CEA, Paris-Saclay, 12/05/2025

Part I: Quantum Theory

Quantum Theory: Quantization

- Quantum Mechanics was originally named after observation of quantized values:
 - Electromagnetic radiation (Black-body/Photoelectric effect)
 - Electron orbits (Atomic spectra)
 - Angular momentum (Stern-Gerlach) 0

4000 Å

500

J. R. Muñoz de Nova

12/05/2025

about the Tools, each the typhology they No. 1941.7.

To see mound the Sector

3/48

Quantum Theory: Copenhagen Interpretation

- Copenhagen interpretation of Quantum Mechanics:

 - $\bigcirc \quad \mathsf{Outcomes of measurements: Observable eigenvalues} \rightarrow \mathsf{Quantization}$
 - $\bigcirc \quad \mathsf{Probabilities of outcomes encoded in} \ |\Psi|^2 \to \mathsf{Interference}$

Quantum vs. Classical

- Quantum Mechanics: Superposition → Fundamental probabilistic description of measurements.
- Classical Mechanics: Random outputs using classical probability distributions resulting from *ignorance* (noise, experimental variations...)
- Is God just playing dice with the Universe? \rightarrow

Quantum vs. Classical

- Quantum Mechanics: Superposition → Fundamental probabilistic description of measurements.
- Classical Mechanics: Random outputs using classical probability distributions resulting from *ignorance* (noise, experimental variations...)
- Is God *just* playing dice with the Universe? → God is well beyond a mere croupier!
- Quantum Correlations=Correlations not accounted by classical probabilistic theories.

Quantum State

Pure state → Wave function |Ψ⟩
|Ψ⟩ = ∑_n α_n · |φ_n⟩, ⟨Ψ|Ψ⟩ = ∑_n |α_n|² = 1
<u>Coherent</u> mixture of quantum states → α_n are complex amplitudes
Expectation values: ⟨A⟩ = ⟨Ψ|A|Ψ⟩ = ∑_{n,m} α_m^{*} α_n ⟨φ_m|A|φ_n⟩
Mixed state → Generalization to density matrix ρ
ρ = ∑_n p_n · |φ_n⟩ ⟨φ_n|, trρ = ∑_n p_n = 1
<u>Incoherent</u> mixture of quantum states → p_n are probabilities
Expectation values: ⟨A⟩ = tr(aA) = ∑ p_n ⟨φ | A|φ_A⟩

3 Expectation values: $\langle A \rangle = \operatorname{tr}(\rho A) = \sum_{n} p_n \langle \phi_n | \overline{A | \phi_n \rangle}$

Qubits: Pure state

- Qubit: Two-level quantum system $\left|0\right\rangle,\left|1\right\rangle\rightarrow$ Most simple!
- Paradigmatic example: spin-1/2 particle. $|0\rangle \equiv |+\rangle$, $|1\rangle \equiv |-\rangle$
- General wave function: $|\Psi\rangle = \cos \frac{\theta}{2} |0\rangle + \sin \frac{\theta}{2} e^{i\phi} |1\rangle \equiv |\mathbf{\hat{n}}\rangle$
- ightarrow Eigenstate of spin projection: $\pmb{\sigma}\cdot\hat{\pmb{\mathsf{n}}}\ket{\hat{\pmb{\mathsf{n}}}}=\ket{\hat{\pmb{\mathsf{n}}}}$
- Unit vector n̂ = [sin θ cos φ, sin θ sin φ, cos θ] labels quantum states → Surface of Bloch sphere.

Qubits: Density matrix

• General density matrix (2×2) for 1 qubit \rightarrow 3 parameters B_i :

$$\rho = \frac{1 + \sum_{i} B_{i} \sigma^{i}}{2}, \ \mathbf{B} = \operatorname{tr}[\boldsymbol{\sigma} \rho], \ |\mathbf{B}| \le 1$$

• Two qubits \rightarrow Most simple example of quantum correlations.

• General density matrix (4 imes 4) for 2 qubits o 15 parameters B_i^{\pm}, C_{ij}

$$\rho = \frac{\mathbb{1} + \sum_{i} \left(B_{i}^{+} \sigma^{i} \otimes \mathbb{1} + B_{i}^{-} \mathbb{1} \otimes \sigma^{i} \right) + \sum_{i,j} C_{ij} \sigma^{i} \otimes \sigma^{j}}{4}$$

• Polarization vectors \mathbf{B}^{\pm} and correlation matrix \mathbf{C} :

$$B_i^+ = \langle \sigma^i \otimes \mathbb{1} \rangle \,, \, B_i^- = \langle \mathbb{1} \otimes \sigma^i \rangle \,, \, C_{ij} = \langle \sigma^i \otimes \sigma^j \rangle$$

Quantum Discord

 Classically, two equivalent expressions for mutual information of bipartite system A and B (Alice and Bob):

$$I(A, B) = H(A) + H(B) - H(A, B) = H(A) - H(A|B)$$

$$H(A, B) = -\sum_{x,y} p(x, y) \log_2 p(x, y)$$

$$H(A|B) = \sum_{y} p(y)H(A|B = y)$$

 Quantum mechanics can introduce a "discord" between both expressions:

 $\mathcal{D}(A,B) \equiv H(B) - H(A,B) + H(A|B) \neq 0$

- Most basic form of quantum correlations!
- Quantum Discord is asymmetric $\mathcal{D}(A, B) \neq \mathcal{D}(B, A)$

J. R. Muñoz de Nova

PRL 88, 017901 (2001)

Quantum Discord: Classical states

OK...but where is the Physics here? → Only classical states have zero discord!

$$ho_{ ext{class}} = \sum_{n,m} p_{n,m} \ket{n} \otimes \ket{m} ra{n} \otimes ra{m}$$

- $|n\rangle$, $|m\rangle$ form an *orthonormal* basis for A, B
- $p_{n,m}$: classical probability of being $|n\rangle \otimes |m\rangle$
- Qubits → Tails and heads between two coins!

$$\rho_{\text{class}} = p_{++} |++\rangle \langle ++| + p_{+-} |+-\rangle \langle +-| \\ + p_{-+} |-+\rangle \langle -+| + p_{--} |--\rangle \langle --|$$

Entanglement

• What if we generalize the previous idea? \rightarrow Separability:

$$\rho_{\rm sep} = \sum_{n,m} p_{n,m} |n\rangle \otimes |m\rangle \langle n| \otimes \langle m| = \sum_{k} p_{k} \rho_{k}^{(A)} \otimes \rho_{k}^{(B)}$$

- $|n\rangle$, $|m\rangle$ not necessarily orthonormal basis now $\rightarrow p_{n,m}$ are quasi-probabilities (not disjoint events)
- Any classically correlated state (classical probability) is separable.
- Entanglement: Non-separability of a bipartite quantum state.

Entanglement: Two qubits

• Two qubits: Separability=Positive P-representation $P(\mathbf{n}_A, \mathbf{n}_B) \ge 0$:

$$\rho = \int \mathrm{d}\Omega_{A} \mathrm{d}\Omega_{B} P(\mathbf{n}_{A}, \mathbf{n}_{B}) |\mathbf{n}_{A}\mathbf{n}_{B}\rangle \langle \mathbf{n}_{A}\mathbf{n}_{B}|, \ \int \mathrm{d}\Omega_{A} \mathrm{d}\Omega_{B} P(\mathbf{n}_{A}, \mathbf{n}_{B}) = 1$$

- $P(\mathbf{n}_A, \mathbf{n}_B)$ is a quasi-probability: Overlap $|\langle \mathbf{n}_A | \mathbf{n}_B \rangle|^2 \neq 0$
- Separability=Purely classical spins pointing at directions n_A, n_B

$$C_{ij} = \langle \sigma^i \otimes \sigma^j \rangle = \int \mathrm{d}\Omega_A \mathrm{d}\Omega_B \ P(\mathbf{n}_A, \mathbf{n}_B) n_A^i n_B^j$$

 Entanglement=NO positive P-representation → Genuine non-classical!

Steering and Bell nonlocality

- EPR Paradox: Quantum Mechanics challenges local realism!
- Schrödinger: QM should hold but also locality → Local quantum states → Bob can "steer" Alice state → Steering
- Bell: Local realism \rightarrow Joint Alice and Bob measurements M_A, M_B accounted by local hidden-variable model

$$p(a, b|M_A M_B) = \int d\lambda \ p(a|M_A \lambda) p(b|M_B \lambda) p(\lambda)$$

• Bell Theorem: Local realistic theories satisfy Bell (CHSH) inequality $|C(M_A, M_B) - C(M_A, M'_B) + C(M'_A, M_B) + C(M'_A, M'_B)| \le 2$ $C(M_A, M_B) = \sum_{a,b=\pm 1} (a \cdot b)p(a, b|M_AM_B)$

Quantum Colliders

Hierarchy of Quantum Correlations

- Steering and Discord can be asymmetric between Alice and Bob.
- Bell Nonlocality and Entanglement are always symmetric.
- Quantum Hierarchy:

 $\textit{Bell Nonlocality} \subset \textit{Steering} \subset \textit{Entanglement} \subset \textit{Discord}$

Part II: Quantum Field Theory

Quantum Optics

- Light has motivated the major advancements in modern Physics:
 - EM radiation: Maxwell equations
 - Special relativity: Michelson-Morley experiment
 - Quantum mechanics: Black-body spectrum & Photoelectric effect
 - Quantum field theory: First quantized field

... and God said: "let there be light" .

Quantum field theory

• Set of classical fields $\{\phi_A\}$ described by Lagrangian density $\mathcal{L}: (\phi_A, \partial_\mu \phi_A, x)$

$$\boldsymbol{L} = \int \mathrm{d} \mathbf{x} \ \mathcal{L}(\phi_A, \partial_\mu \phi_A, x), \ \boldsymbol{S} = \int \mathrm{d} t \ \boldsymbol{L} = \int \mathrm{d}^4 x \ \mathcal{L}$$

- Equations of motion: $\partial_{\mu} \frac{\delta \mathcal{L}}{\delta \partial_{\mu} \phi_{A}} = \frac{\delta \mathcal{L}}{\delta \phi_{A}}$
- Canonical momentum: $\Pi_A(x) \equiv \frac{\delta \mathcal{L}}{\delta \partial_t \phi_A}$

• Poisson brackets from Hamiltonian theory:

$$\{Q,P\} = \sum_{A} \int d\mathbf{x} \ \frac{\delta Q}{\delta \phi_{A}(\mathbf{x})} \frac{\delta P}{\delta \Pi_{A}(\mathbf{x})} - \frac{\delta Q}{\delta \Pi_{A}(\mathbf{x})} \frac{\delta P}{\delta \phi_{A}(\mathbf{x})}$$

• Quantization à la Dirac: promotion of magnitudes Q, P to operators \hat{Q}, \hat{P} satisfying commutation relations:

$$[\hat{Q},\hat{P}]=i\hbar\{Q,P\}$$

Quantum KG field

- Simplest example: massless Hermitian scalar field $\mathcal{L} = \frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi$.
- Field $\phi \rightarrow \text{Doublet } \Phi = \begin{bmatrix} \phi \\ i \Pi \end{bmatrix}$
- KG equation $\Box \phi = \partial_{\mu} \partial^{\mu} \phi = 0 \rightarrow$ Linear equation $i\hbar \partial_t \Phi = M\Phi$:
 - Sector Expansion of the field in terms of eigenmodes: $M\Phi_n = \epsilon_n \Phi_n$
 - Conjugate solutions: $\bar{\Phi}_n = \sigma_z \Phi_n^*$
 - Conserved inner product:

$$(\Phi_n | \Phi_m) \equiv i \int \mathrm{d}^3 \mathbf{x} \, \left(\phi_n^* \Pi_m - \phi_m \Pi_n^* \right) = \langle \Phi_n | \sigma_x | \Phi_m \rangle$$

• Careful: both *M* and inner product are not positive definite!

$$M\bar{\Phi}_n = -\epsilon_n^*\bar{\Phi}_n, \ (\Phi_n|\Phi_m) = -(\bar{\Phi}_m|\bar{\Phi}_n)$$

 Plane waves provide complete orthonormal basis with positive/negative frequency (norm)

$$M\Phi_{\mathbf{k}} = \hbar\omega_{\mathbf{k}}\Phi_{\mathbf{k}}, \ \Phi_{\mathbf{k}}(\mathbf{x}) = \frac{e^{i\mathbf{k}\mathbf{x}}}{\sqrt{2\omega_{\mathbf{k}}(2\pi)^3}} \begin{bmatrix} 1\\ \omega_{\mathbf{k}} \end{bmatrix}, \ M\bar{\Phi}_{\mathbf{k}} = -\hbar\omega_{\mathbf{k}}\bar{\Phi}_{\mathbf{k}}$$

Harmonic oscillators

• Fourier amplitudes promoted to operators: $\hat{a}({f k})=(\Phi_{f k}|\hat{\Phi})
ightarrow$

$$\hat{\Phi}(\mathbf{x}) = \sqrt{\hbar} \int \mathrm{d}^3 \mathbf{k} \; [\hat{a}(\mathbf{k}) \Phi_{\mathbf{k}}(\mathbf{x}) + \hat{a}^{\dagger}(\mathbf{k}) \Phi_{\mathbf{k}}^*(\mathbf{x})]$$

- Canonical commutation rules $\rightarrow [\hat{a}(\mathbf{k}), \hat{a}^{\dagger}(\mathbf{k}')] = (\Phi_{\mathbf{k}}|\Phi_{\mathbf{k}'}) = \delta(\mathbf{k} \mathbf{k}')$
- QFT described in terms of harmonic oscillators → We can import all our knowledge from textbooks:
 - Phase space variables: $\hat{X} = \frac{\hat{a} + \hat{a}^{\dagger}}{\sqrt{2}}, \ \hat{P} = i \frac{\hat{a}^{\dagger} \hat{a}}{\sqrt{2}}$
 - **)** Number states: $\hat{a}^{\dagger}\hat{a}\ket{n}=n\ket{n}$
 - Coherent states: $\hat{a} | \alpha \rangle = \alpha | \alpha \rangle$, $| \alpha \rangle = e^{-\frac{|\alpha|^2}{2}} \sum_{n=0}^{\infty} \frac{\alpha^n}{\sqrt{n!}} | n \rangle$, $\alpha \in \mathbb{C}$
 - Squeezed states: Coherent states of Bogoliubov transformation

$$U = e^{\lambda[(\hat{a}^{\dagger})^2 - \hat{a}^2]}, \ \hat{b} = U^{\dagger} \hat{a} U = (\cosh \lambda) \hat{a} + (\sinh \lambda) \hat{a}^{\dagger}$$

Number vs. *P* representations

 Number states form a complete orthonormal basis → Any quantum state ρ on the Fock space can be written:

$$\rho = \sum_{n,m} \rho_{nm} \left| n \right\rangle \left\langle m \right|$$

• Coherent states form an overcomplete basis $1 = \frac{1}{\pi} \int d^2 \alpha |\alpha\rangle \langle \alpha| \rightarrow$ Glauber-Sudarshan *P*-representation:

$$ho = \int \mathrm{d}^2 lpha \, P(lpha) \left| lpha
ight
angle \left< lpha
ight|, \ \int \mathrm{d}^2 lpha \, P(lpha) = 1,$$

Normal-ordered expectation values

$$\langle (\hat{a}^{\dagger})^{m} (\hat{a})^{n} \rangle = \int \mathrm{d}^{2} \alpha \; (\alpha^{*})^{m} \alpha^{n} P(\alpha)$$

P(α) is a quasi-probability distribution: Overlap | ⟨α|β⟩ |² ≠ 0
No need for P(α) to be positive or even well-defined!

J. R. Muñoz de Nova

Quantum Correlations

• General quantum state of EM field:

$$\rho = \int d^2 \{ \alpha_{\mathbf{k}} \} P(\{ \alpha_{\mathbf{k}} \}) \prod_{\mathbf{k}} \otimes |\alpha_{\mathbf{k}} \rangle \langle \alpha_{\mathbf{k}} |$$

- Measurements=Normal-ordered expectation values → Positive *P*-representation yields classical states of light → Quantum correlations require negative-valued *P*-distributions!
- Simplest example: Bipartite Hilbert space *H* = *H*_A ⊗ *H*_B product of Fock spaces of two modes *â_i*, *â_j*

$$\rho = \int \mathrm{d}^2 \alpha_i \mathrm{d}^2 \alpha_j \, P(\alpha_i, \alpha_j) \left| \alpha_i \alpha_j \right\rangle \left\langle \alpha_i \alpha_j \right|$$

Cauchy-Schwarz violation

• Quantum correlations tested via first, second-order correlations:

$$g_{ij} = \langle \hat{a}_i^{\dagger} \hat{a}_j \rangle, \ c_{ij} = \langle \hat{a}_i \hat{a}_j \rangle, \ \Gamma_{ij} = \langle \hat{a}_i^{\dagger} \hat{a}_j^{\dagger} \hat{a}_j \hat{a}_i \rangle$$

- Classical light obeys:
 - $|c_{ij}|^2 \leq \underline{g_{ii}g_{jj}}$
 - $\Gamma_{ij} \leq \sqrt{\Gamma_{ii}\Gamma_{jj}}$
- Proofs explicitly based on positivity of P → Effective scalar product → Cauchy-Schwarz inequalities!
- Operators *A*, *B* do satisfy mathematical Cauchy-Schwarz inequality associated to trace scalar product

$$\langle A|B\rangle \equiv \operatorname{tr}(\rho A^{\dagger}B) = \langle A^{\dagger}B\rangle$$

Any quantum state obeys:

$$\begin{array}{l} \bullet \quad |c_{ij}|^2 \leq (\underline{g_{ii}+1})\underline{g_{jj}} \\ \bullet \quad \Gamma_{ij} \leq \sqrt{(\Gamma_{ii}+g_{ii})(\Gamma_{jj}+g_{jj})} \end{array}$$

• There is room for violation of the *classical* CS inequalities!

Continuous Variable Entanglement

- Peres-Horodecki criterion: $\rho = \sum_{n} p_{n} \rho_{n}^{A} \otimes \rho_{n}^{B}$ separable $\rightarrow \rho_{n}^{T_{2}} = \sum_{n} p_{n} \rho_{n}^{A} \otimes (\rho_{n}^{B})^{T}$ non-negative operator
- ρ^{T_2} not non-negative positive \rightarrow Entanglement
- Continuous system: Covariance matrix M must be positive

$$M_{\alpha\beta} = \langle \Delta\xi_{\alpha}\Delta\xi_{\beta} \rangle = \frac{\langle \{\Delta\xi_{\alpha}\Delta\xi_{\beta}\}\rangle}{2} + \frac{\langle [\Delta\xi_{\alpha}\Delta\xi_{\beta}]\rangle}{2} \equiv V_{\alpha\beta} + i\frac{\Omega_{\alpha\beta}}{2}$$
$$\Delta\xi_{\alpha} = \xi_{\alpha} - \langle \xi_{\alpha} \rangle, \ \xi_{\alpha} = [X_{1}, X_{2}, P_{1}, P_{2}], \ \alpha = \frac{X + iP}{\sqrt{2}}$$

• Wigner representation \rightarrow Quantum Boltzmann distribution:

$$W(\alpha) = W(X, P) = \frac{1}{2\pi} \int d\Delta X \ \langle X + \frac{\Delta X}{2} | \rho | X - \frac{\Delta X}{2}
angle e^{-iP\Delta X}$$

Symetrically ordered expectation values: ∫ d²α |α|²W(α) = (^{â†â+ââ†}/₂)
 M' = V' + i^Ω/₂ non-semidefinite positive → Entanglement!

$$\rho : W(X_1, X_2, P_1, P_2) \rightarrow \rho^{T_2} : W(X_1, X_2, P_1, -P_2)$$
$$\rightarrow V' = \Lambda V \Lambda, \ \Lambda \equiv \text{diag}[1, 1, 1, -1]$$

J. R. Muñoz de Nova

Quantum Colliders

Quantum Many-Body Field Theory

• Second-quantization many-body Hamiltonian (fermions and bosons):

$$\hat{H} = \int d\mathbf{x} \, \hat{\Psi}^{\dagger}(\mathbf{x}) \left[-\frac{\hbar^2}{2m} \nabla^2 + V(\mathbf{x}) \right] \hat{\Psi}(\mathbf{x}) \\ + \frac{1}{2} \int d\mathbf{x} \int d\mathbf{x}' \hat{\Psi}^{\dagger}(\mathbf{x}) \hat{\Psi}^{\dagger}(\mathbf{x}') V(\mathbf{x} - \mathbf{x}') \hat{\Psi}(\mathbf{x}') \hat{\Psi}(\mathbf{x})$$

• Field operator: $\hat{\Psi}(\mathbf{x}) = \sum_{n} \hat{a}_{n} \phi_{n}(\mathbf{x}), \quad \hat{a}_{n} = \langle \phi_{n} | \hat{\Psi} \rangle$

- Fermionic or bosonic annihilation operators: $[\hat{a}_n, \hat{a}_m^{\dagger}]_{\pm} = \delta_{nm}$
- Heisenberg equation of motion of field operator:

$$\begin{split} i\hbar\partial_t \hat{\Psi}(\mathbf{x},t) &= [\hat{\Psi}(\mathbf{x},t),\hat{H}] \\ &= \left[-\frac{\hbar^2}{2m} \nabla^2 + V(\mathbf{x}) + \int \mathrm{d}\mathbf{x}' \hat{\Psi}^{\dagger}(\mathbf{x}',t) V(\mathbf{x}-\mathbf{x}') \hat{\Psi}(\mathbf{x}',t) \right] \hat{\Psi}(\mathbf{x},t) \end{split}$$

• Same equation of motion derived from a classical Lagrangian:

$$L = \int \mathrm{d}\mathbf{x} \; i\Psi^* \partial_t \Psi - H$$

Non-relativistic vs. relativistic QFT

• Differences with respect relativistic QFT:

- Not Lorentz invariant
- Fixed cutoffs (IR \rightarrow System size; UV \rightarrow Microscopic physics)
- Interactions are (typically) classical
- Effective and approximate theories
- Second-quantization is not fundamental (trick to rewrite symmetric/antisymmetric wavefunctions)
- Features:
 - Highly tunable (interactions, external potential, mass)
 - Non-trivial spatiotemporal dependence leads to rich physics (Analogue Gravity, Floquet systems)
 - Solution Variety of internal degrees of freedom (high spin, isospin, mixtures)
 - Many-body systems lead to spontaneous symmetry breaking (supersolids, time crystals)
 - Topological physics and synthetic dimensions

Condensates: GP mean-field

- Bose-Einstein condensate close to T = 0
- Field operator: $\hat{\Psi}(\mathbf{x},t) = \Psi(\mathbf{x},t) + \hat{\varphi}(\mathbf{x},t) \rightarrow \text{Higgs-mechanism}$
- Contact interaction V(x − x') = gδ(x − x') → Non-relativistic Higgs boson!

$$\mathcal{L} = i\Psi^*\partial_t\Psi - \frac{|\nabla\Psi|^2}{2m} - V(\mathbf{x})|\Psi|^2 - g\frac{|\Psi|^4}{2}$$

Heisenberg e.o.m. → Gross-Pitaevskii equation:

$$i\hbar\partial_t \Psi(\mathbf{x},t) = \left[-rac{\hbar^2}{2m}
abla^2 + V(\mathbf{x}) + g|\Psi(\mathbf{x},t)|^2
ight] \Psi(\mathbf{x},t)$$

 Condensate wavefunction=Coherent state spontaneously breaking U(1) symmetry

Condensates: Bogoliubov approximation

Stationary condensate: Ψ̂(x, t) = [Ψ₀(x) + φ̂(x, t)]e^{-iµt/ħ}+Quantum fluctuations at linear order → Bogoliubov-de Gennes equations:

$$M\hat{\Phi} = i\hbar\partial_t\hat{\Phi}, \ M = \begin{bmatrix} N & A \\ -A^* & -N^* \end{bmatrix}, \ \hat{\Phi} \equiv \begin{bmatrix} \hat{\varphi}(\mathbf{x},t) \\ \hat{\varphi}^{\dagger}(\mathbf{x},t) \end{bmatrix}$$
$$N = -\frac{\hbar^2\nabla^2}{2m} + V(\mathbf{x}) + 2g|\Psi_0(\mathbf{x})|^2 - \mu, \ A = g\Psi_0^2(\mathbf{x})$$

• Eigenmodes: $Mz_n = \epsilon_n z_n$, $z_n = \begin{bmatrix} u_n \\ v_n \end{bmatrix}$, $M\bar{z}_n = -\epsilon_n^* \bar{z}_n$, $\bar{z}_n = \sigma_x z_n^*$

Conserved inner product:

$$(z_n|z_m) \equiv \langle z_n|\sigma_z|z_m \rangle = \int \mathrm{d}\mathbf{x} \ z_n^{\dagger}\sigma_z z_m = \int \mathrm{d}\mathbf{x} \ u_n^* u_m - v_n^* v_m$$

• Complete basis $(z_n|z_m) = \delta_{nm} \Longrightarrow$ Quantization mimics KG field:

$$\hat{\Phi} = \sum_{n} z_n \hat{b}_n + \bar{z}_n \hat{b}_n^{\dagger}$$

J. R. Muñoz de Nova

Bogoliubov vs. Higgs

• Amplitude-phase (Madelung) decomposition:

$$\hat{\Psi}(\mathbf{x},t) = \sqrt{\hat{n}(\mathbf{x},t)}e^{i\hat{ heta}(\mathbf{x},t)} = \sqrt{n(\mathbf{x},t) + \delta\hat{n}(\mathbf{x},t)}e^{i(heta(\mathbf{x},t) + \delta\hat{ heta}(\mathbf{x},t))}$$

Density/phase fluctuations=Higgs/Goldstone modes:

$$\begin{split} \delta \hat{n}(\mathbf{x},t) &= \Psi_0^*(\mathbf{x})\hat{\varphi}(\mathbf{x},t) + \Psi_0(\mathbf{x})\hat{\varphi}^{\dagger}(\mathbf{x},t) \\ \delta \hat{\theta}(\mathbf{x},t) &= i \frac{\Psi_0(\mathbf{x})\hat{\varphi}^{\dagger}(\mathbf{x},t) - \Psi_0^*(\mathbf{x})\hat{\varphi}(\mathbf{x},t)}{2|\Psi_0(\mathbf{x})|^2} \end{split}$$

Homogeneous condensate: Ψ₀(x) = √n₀ → Massless superluminal dispersion relation for both Higgs and Goldstone modes:

$$\omega^2 = c^2 k^2 \left(1 + \frac{k^2}{4\Lambda^2} \right), \ c^2 = \frac{gn_0}{m}, \ \Lambda = \frac{1}{\xi_0} = \frac{mc}{\hbar}$$

• Actual Higgs: $\omega^2 = c^2 k^2$ (Goldstone), $\omega^2 = \frac{m_H^2 c^4}{\hbar^2} + c^2 k^2$ (Higgs)

Analogue gravity

GP/Schrödinger equation similar to Euler equation for potential flow!

$$\frac{\partial_t n + \nabla(n\mathbf{v}) = 0, \ \mathbf{v}(\mathbf{x}, t) = \frac{\hbar \nabla \theta(\mathbf{x}, t)}{m} \to \text{Potential flow!}}{\hbar \partial_t \theta} = \frac{\hbar^2 \nabla^2 \sqrt{n}}{2m\sqrt{n}} - \frac{1}{2}m\mathbf{v}^2 - gn - V$$

• Neglecting quantum (\hbar) potential in smooth background \rightarrow Ideal potential flow \rightarrow Analogue gravity (massless Hermitian field in curved spacetime)

$$\Box \delta \hat{\theta} \equiv \frac{1}{\sqrt{-g}} \partial_{\mu} (\sqrt{-g} g^{\mu\nu} \partial_{\nu} \delta \hat{\theta}) = 0$$

$$g_{\mu\nu}(x) = \frac{n(x)}{c(x)} \begin{bmatrix} -[c^{2}(x) - v^{2}(x)] & -\mathbf{v}^{T}(x) \\ -\mathbf{v}(x) & \delta_{ij} \end{bmatrix},$$

Gravitational phenomena (e.g., Hawking radiation) in the lab!
 W. G. Unruh, PRL 46, 1351 (1981)
 L. J. Garay, J. R. Anglin, J. I. Cirac, P. Zoller, PRL 85, 4643 (2000)

Quantum Colliders

How did I end up here????

LETTER

• Theoretical PhD: CS violation and entanglement in Hawking radiation

PHYSICAL REVIEW A 89, 043808 (2014)	New Journal of Physics The spen-sectory Journal of the Northwest of Departure	HOP Institute of Physics	Published in partnership with DeutscherPhysikalische Gesellischaft sind the Institute of Physics
Violation of Cauchy-Schwarz inequalifies by spontaneous Hawking radiation in resonant boson structures J. R. M. de Nova, F. Sols, and I. Zapata Departamente de Fisica et de Materialez. Universidad Compitence de Material, 520(4) Material, Spain (Received 7 November 2012; revised manuscript received 20 February 2014; published 7 April 2014)	PAPER Entanglement and violation of classical inequalities in the Hawking radiation of flowing atom condensates III.McKeiwe, Jakobal Zapata Regumented Result August		e Hawking

Experimental postdoc at the Technion: first observation of Hawking effect!

https://doi.org/10.1038/s41586-019-1241-0

Observation of thermal Hawking radiation and its temperature in an analogue black hole

Juan Ramón Muñoz de Nova¹, Katrine Golubkov¹, Victor I. Kolobov¹ & Jeff Steinhauer¹*

nature physics ARTICLES

Observation of stationary spontaneous Hawking radiation and the time evolution of an analogue black hole

Victor I. Kolobov, Katrine Golubkov, Juan Ramón Muñoz de Nova© and Jeff Steinhauer© 22

• Exciting prospects in analogue gravity: black-hole laser, Quantum Chronodynamics!

PHYSICAL REVIEW RESEARCH 5, 043282 (2023)

Black-hole laser to Bogoliubov-Cherenkov-Landau crossover: From nonlinear to linear quantum amplification

Juan Ramén Mulloz de Nova®' and Fernando Solo® actoures de Filico de Matrides, Universidad Completense de Matrid, 5-2000 Matrid, Spain Simultaneous symmetry breaking in spontaneous Floquet states: Floquet-Nambu-Goldstone modes, Floquet thermodynamics, and the time operator

Juan Ramón Muñoz de Nova and Fernando Sols Departamento de Física de Materiales, Universidad Completense de Madrid, B-28040 Madrid, Spain (Dated: April 22, 2024)

30 / 48

12/05/2025

In memoriam: Renaud Parentani

- Renaud Parentani (1962-2020):
- PhD student of Robert Brout
- Full professor at Université Paris-Sud, Orsay
- Huge expert on quantum aspects of cosmology and black holes
- Almost exactly 10 years ago, I visited him at LPT in Orsay to talk about black-hole lasers...
- Seminal work on entanglement in Hawking radiation:

PHYSICAL REVIEW D 89, 105024 (2014)

Quantum entanglement in analogue Hawking radiation: When is the final state nonseparable?

Xavier Busch^{*} and Renaud Parentani[†] Laboratoire de Physique Théorique, CNRS UMR 8627, Bâtiment 210, Université Paris-Sud 11, 91405 Orsay CEDEX, France (Received 14 March 2014; published 23 May 2014)

We study the quantum estingalement of the quasiparticle pairs emitted by snakeg black holes. We use a phenomenological desorption of the spectra in dispervive neuralito to study the domains in parameter space where the final state is non-parable. In stationary flows, three modes are involved in each sector of fixed frequency, and not to us in homogeneous situations. The finite paratetime state are an environment for the pairs, and the strength of the coupling significantly reduces the quantum obserses. The nonsegurability of the pairs emitted by white holes is also considered and compared with that of black holes.

PHYSICAL REVIEW D 96, 045012 (2017)

Assessing degrees of entanglement of phonon states in atomic Bose gases through the measurement of commuting observables

Scott Robertson,^{1,2} Florent Michel,^{1,2,4} and Renaud Parentani^{1,4} ¹Laboratoire de Physique Théorique (UMR 8627), CMRS, Univ. Paris-Sud, Université Paris-Sacday, Public SO Gray, France ²Center for Particle Theory, Darham University, South Road, Darham DHA 3LE, United Kingdow (Received 30 Mbg 2017; publicate 16 August 2014).

We show that measuring commuting observables can be sufficient to assess that a hipping state is a maniped according to either mesogenability of the stronger criterios of "strenchilop"; balloot, the strength strenching is a strength stre

Quantum Colliders

Part III: Quantum Colliders

Fateful coffee!

- So many analogies...why not studying quantum problems in High-Energy Physics, a relativistic QFT?
- One day, after years of coffee breaks at the Technion with my friend Yoav Afik...
- Juan: Mmmm...Could you measure a CS violation in a collider? It is like entanglement but not the same and...
- Yoav: This Cauchy-Schwarz thing is weird...Entanglement is interesting. Tell me more. With fermions.
- Juan: Oh, well, then there is the spin, it is a qubit you see, there are products of Pauli matrices...

Dramatization

Yoav: Better. Give me a sec.

Top Drosophila

Yoav eventually came to my office and showed me one single equation on top quarks...

$$R^{I}_{\alpha_{1}\alpha_{2}, \beta_{1}\beta_{2}} = \sum [t(k_{1}, \alpha_{2}), \bar{t}(k_{2}, \beta_{2})|\mathcal{T}|a(p_{1}), b(p_{2}))^{*} \times \langle t(k_{1}, \alpha_{1}), \bar{t}(k_{2}, \beta_{1})|\mathcal{T}|a(p_{1}), b(p_{2})\rangle$$

(2.3)

where $I \equiv ab = g_{g_i} q_{\bar{q}}$ and the bar denotes averaging over the spins and colors of Iand summing over the colors of t, \bar{t} . Moreover, α, β are spin labels referring to t and \bar{t} , respectively. The matrices R^{I} can be decomposed in the spin spaces of t and \bar{t} as follows:

$$R^{I} = f_{I} \left[A^{I} 1 \otimes 1 + \tilde{B}_{i}^{I+} \sigma^{i} \otimes 1 + \tilde{B}_{i}^{I-} 1 \otimes \sigma^{i} + \tilde{C}_{ij}^{I} \sigma^{i} \otimes \sigma^{j} \right],$$
 (2.4
 $f_{gg} = \frac{(4\pi \alpha_{s})^{2}}{N_{c}(N_{c}^{2} - 1)}, \quad f_{q\bar{q}} = \frac{(N_{c}^{2} - 1)(4\pi \alpha_{s})^{2}}{N_{c}^{2}},$

where N_c denotes the number of colors. The first (second) factor in the tensor products of the 2 × 2 unit matrix 1 and of the Pauli matrices σ^i refers to the $t(\bar{t})$ spin space.

W. Bernreuther, D. Heisler, Z.-G. Si, JHEP 12, 026 (2015)

 Top quarks are a drosophila of relativistic two-qubit system → Huge potential!

Quantum High-Energy Colliders?

- Naively, Quantum Correlations should be easily studied in colliders...right? → Not so fast!
 - Solution $Momentum measurement \rightarrow Decoherence$
 - Solution Lack of control of internal d.o.f. in initial state \rightarrow Decoherence
 - Most relevant observables in colliders: cross-sections, lifetimes...→ Classical probabilistic objects
 - QFT cares about expectation values, not quantum states!

Top-pair production: Kinematics

• Kinematics determined by invariant mass $M_{t\bar{t}}$ and top direction \hat{k} in c.m. frame

$$k^{\mu} = (k^0, \mathbf{k}), \bar{k}^{\mu} = (k^0, -\mathbf{k})$$
$$M_{t\bar{t}}^2 \equiv s \equiv (k + \bar{k})^2$$

• Invariant mass M is simply related to top c. m. velocity β

$$M_{t\bar{t}} = rac{2m_t}{\sqrt{1-\beta^2}}
ightarrow eta = 0
ightarrow M_{t\bar{t}} = 2m_t$$

Top-pair production: Quantum State

- Production process from initial state *I* with internal degrees of freedom λ : $|I\lambda\rangle \rightarrow t + \bar{t}$
- $t\bar{t}$ spins described by production spin density matrix:

$$R^{I\lambda}_{\alpha\beta,\alpha'\beta'}(M_{t\bar{t}},\hat{k}) \equiv \langle M_{t\bar{t}}\hat{k}\alpha\beta | T | I\lambda \rangle \langle I\lambda | T^{\dagger} | M_{t\bar{t}}\hat{k}\alpha'\beta' \rangle$$

 Experiment: Momentum measurements+Average over events → Genuine density-matrix description!

$$R^{I}(M_{t\bar{t}},\hat{k}) = \frac{1}{N_{\lambda}} \sum_{\lambda} R^{I\lambda}(M_{t\bar{t}},\hat{k})$$
$$\rho^{I}(M_{t\bar{t}},\hat{k}) = \frac{R^{I}(M_{t\bar{t}},\hat{k})}{\operatorname{tr} \left[R^{I}(M_{t\bar{t}},\hat{k}) \right]}$$

37 / 48

LO QCD $t\bar{t}$ Quantum state

• $t\bar{t}$ production from most elementary QCD processes:

$$q + \bar{q} \rightarrow t + \bar{t}, q = u, d...$$

 $g + g \rightarrow t + \bar{t}$

• Initial state $I = q\bar{q}, gg \rightarrow \rho^{I}(M_{t\bar{t}}, \hat{k})$

• LHC \rightarrow Total quantum state: *Incoherent* mixture of $I = q\bar{q}, gg$ processes with (PDF-dependent) probability w_I

$$\rho(M_{t\bar{t}},\hat{k}) = \sum_{I=q\bar{q},gg} w_I(M_{t\bar{t}})\rho^I(M_{t\bar{t}},\hat{k})$$

• QCD Input: $w_I(M_{t\bar{t}}), \rho^I(M_{t\bar{t}}, \hat{k}) \rightarrow \text{QI Output: Textbook problem of convex sum of quantum states!}$

12/05/2025

$t\bar{t}$ Quantum Correlations

- Quantum state $\rho(M_{t\bar{t}}, \hat{k})$: Function of scattering angle Θ and $M_{t\bar{t}}$.
- Two main regions of quantumness:
 - Ultrarelativistic high- p_T for both $q\bar{q}$ and gg (spin triplet)
 - Threshold for gg (spin singlet).
- Colorbar: Discord.
- Solid, dashed-dotted, dashed: Boundaries of Entanglement, Steering, Bell Nonlocality → Hierarchy!
- a) $gg \rightarrow t\bar{t}$
- b) $q\bar{q} \rightarrow t\bar{t}$
- c) Run 2 LHC $\sqrt{s} = 13 \text{ TeV}$
- d) Tevatron $\sqrt{s} = 1.96 \text{ TeV}$

Y. Afik, JRMdN, PRL 130, 221801 (2023)

Quantum Colliders

12/05/2025

39 / 48

Cauchy-Schwarz violation

• Simple criterion of entanglement: Cauchy-Schwarz violation

$$|\operatorname{tr} \mathbf{C}| = |\langle \boldsymbol{\sigma}_{+} \cdot \boldsymbol{\sigma}_{-} \rangle| = \left| \int \mathrm{d}\Omega_{A} \mathrm{d}\Omega_{B} P(\mathbf{n}_{A}, \mathbf{n}_{B}) \mathbf{n}_{A} \cdot \mathbf{n}_{B} \right|$$
$$\leq \int \mathrm{d}\Omega_{A} \mathrm{d}\Omega_{B} P(\mathbf{n}_{A}, \mathbf{n}_{B}) |\mathbf{n}_{A} \cdot \mathbf{n}_{B}| \leq \int \mathrm{d}\Omega_{A} \mathrm{d}\Omega_{B} P(\mathbf{n}_{A}, \mathbf{n}_{B}) = 1$$

•
$$D = \frac{\operatorname{tr} \mathbf{C}}{3} < -1/3 \rightarrow \text{CS Violation} \rightarrow \text{Entanglement}$$

- Wait a minute...A cosine average larger than one???
- D=Quantum observable with a genuine quantum range of values $-1 \le D < -1/3$

Y. Afik, JRMdN, EPJ Plus 136, 907 (2021), Quantum 6, 820 (2022)

Quantum Tomography: Two qubits, two tops

- **Quantum Tomography**: Reconstruction of quantum state from measurement of a set of observables.
- Two-qubits → Quantum tomography = Measurement of spin polarizations and spin correlations.
- Top quarks: Spin polarizations \mathbf{B}^{\pm} and spin correlation matrix \mathbf{C} extracted from cross-section $\sigma_{\ell\bar{\ell}}$ of dileptonic decay

$$\frac{1}{\sigma_{\ell\bar{\ell}}} \frac{\mathrm{d}\sigma_{\ell\bar{\ell}}}{\mathrm{d}\Omega_{+}\mathrm{d}\Omega_{-}} = \frac{1}{(4\pi)^{2}} \left[1 + \mathbf{B}^{+} \cdot \hat{\ell}_{+} - \mathbf{B}^{-} \cdot \hat{\ell}_{-} - \hat{\ell}_{+} \cdot \mathbf{C} \cdot \hat{\ell}_{-} \right]$$

• $\hat{\ell}_{\pm}$: lepton directions in each top (antitop) rest frames.

$$g \underbrace{000000}_{\overline{t}} \underbrace{t}_{\overline{b}} \underbrace{W^{+}}_{\overline{v}_{e}, v_{\mu}, v_{\tau}, \overline{q}'} \underbrace{W^{-}}_{\overline{b}} \underbrace{e_{\tau}^{e} \mu_{\tau}^{-} \tau_{\tau}^{-} \overline{q}}_{\overline{v}_{e}, \overline{v}_{\mu}, \overline{v}_{\tau}, q'}$$

Experimental entanglement observation

• *D* directly measurable from decay cross-section of angular separation of lepton products:

$$\frac{1}{\sigma}\frac{d\sigma}{d\cos\varphi} = \frac{1}{2}(1 - D\cos\varphi), \ \cos\varphi \equiv \hat{\ell}_{+}\cdot\hat{\ell}_{-}$$

- Entanglement detection from one single magnitude → No need for Quantum Tomography!
- Entanglement observed by ATLAS and CMS with more than 5σ !
- Toponium signatures?

ATLAS, Nature 633, 542 (2024) CMS, ROPP 87, 117801 (2024)

New Physics Witnesses

- Approximate *CP*-invariance of Standard Model → C = C^T, B⁺ = B⁻ → Symmetric Discord and Steering!
- Therefore: Discord and/or Steering asymmetry → New Physics!
- New physics witnesses: Symmetry protected observables by SM, only non-zero for New Physics:

$$D_{t\bar{t}} \equiv \mathcal{D}_t - \mathcal{D}_{\bar{t}}$$

- Asymmetries in steering measurements.
- No SM contribution to New Physics witnesses!

Y. Afik, JRMdN, PRL 130, 221801 (2023)

Alternative and complementary approaches

• Quantum spin-correlations in alternative qubits and qutrits:

- t (EPJ Plus 136, 907 (2021))
- b (arXiv 2406.04402 (2024))
- ④ τ (EPJC 83, 162 (2023))
- W[±](PLB 825, 136866 (2022))
- Z⁰(PRD 107, 016012 (2023)).

- Complementary approaches QI-HEP:
 - Flavor entanglement in mesons: PRL 99, 131802 (2007)
 - 2 Neutrino oscillations: PRL 117, 050402 (2016)
 - 3 QI techniques to study QCD interactions: PRL 124, 062001 (2020)

Quantum Bottoms

- Mutatis mutandis: Quantum information with $b\bar{b}!$
- $b\bar{b}$ quantum tomography: $\Lambda_b(udb), \overline{\Lambda}_b(\bar{u}d\bar{b})$ decays retain $b\bar{b}$ spin information Y. Kats, D. Uzan, JHEP 03 (2024) 063.
- Experimentally challenging ↔ Theoretically interesting:
 - Spin correlations in bb not measured yet \rightarrow Uncharted territory!
 - Ultrarelativistic bb at LHC
 - ATLAS, CMS and also LHCb can play the game!
 - Paves the way to study guantum correlations in hadronizing systems \rightarrow Quark-Gluon Plasma STAR

Collaboration, Nature 548, 62 (2017).

Figure: bb concurrence. Y. Afik, Y. Kats, JRMdN, A. Soffer, D. Uzan arXiv 2406.04402 (2024)

12/05/2025

45 / 48

Conclusions and outlook

- Quantum Information theory ↔ High-Energy Physics. Interdisciplinary, huge potential and great interest!
- QI perspective:
 - Highest-energy observation of entanglement ever!
 - ② Genuinely relativistic, exotic symmetries and interactions, fundamental nature → Frontier of known Physics!
 - 3 Highly-demanding measurements naturally implemented at LHC.
- HEP perspective:
 - Quantum Tomography: Novel experimental tool.
 - QI measurements can be used to understand HEP (e.g., toponium, hadronization).
 - QI techniques can inspire new approaches for searching New Physics: PRD 106, 055007 (2022), JHEP 148, (2023), EPJC 83, 162 (2023)
- Already first measurements of $t\bar{t}$ entanglement by ATLAS and CMS. Highest-energy entanglement ever!
- Many more measurements on its way!

Quantum Community

• Well-established quantum community:

Quantum Information meets High-Energy Physics: Input to the update of the European Strategy for Particle Physics

Contact Persons: Yoav Afik *1, Federica Fabbri ^{12,3}, Matthew Low ¹⁴, Luca Marzola ^{§5,6}, Juan Antonio Aguilar-Saavedra⁷, Mohammad Mahdi Altakach⁶, Nedaa Alexandra Asbah⁹, Yang Bai^{10,11}, Hannah Banks¹², Alan J. Bart¹³, Alexander Bernal⁷, Thomas E. Browder¹⁴, Paweł Caban¹⁵, J. Alberto Casas⁷, Kun Cheng⁴, Frédéric Déliot¹⁶, Regina Demina¹⁷, Antonio Di Domenico^{18,19}, Michał Eckstein²⁰, Marco Fabbriches²¹, Benjamin Fuks²², Emidio Gabrielli^{5,21,23}, Dorival Gonçalves²⁴, Radosław Grabarczyk²⁵, Michele Grossi⁹, Tao Han⁴, Timothy J. Hobbs¹¹, Paweł Horodecki^{26,27}, James Howarth²⁸, Shih-Chieh Hsu²⁹, Stephen Jiggins³⁰, Eleanor Jones³⁰, Andreas W. Jung³¹, Andrea Helen Knue³², Steffen Korn³³, Theodota Lagouri³⁴, Priyanka Lamba^{2,3}, Gabriel T. Landi¹⁷, Haifeng Li³⁵, Qiang Li³⁶, Ian Low^{11,37}, Fabio Malton^{12,3,38}, Josh McFayden³⁹, Navin McGinnis⁴⁰, Roberto A. Morales⁴¹, Jesús M. Moreno⁷, Juan Ramón Muñoz de Nova⁴², Giulia Negro³¹, Davide Pagani³, Giovanni Pelliccioli^{43,44}, Michele Pinamonti^{45,46}, Laura Pintucci^{45,46}, Baptiste Ravina⁹, Alim Ruz³⁶, Kazuki Sakurai⁴⁷, Ethan Simpson⁴⁶, Maximiliano Siol^{2,3}, Shufang Su⁴⁰, Sokratis Trifinopoulos⁴⁹, Sven E. Vahsen¹⁴, Sofia Vallecorsa⁹, Alessandro Vicini^{50,51}, Marcel Vos⁵² Eleni Vryonidou⁴⁸, Chris D. White⁵³, Martin J. White⁴⁴, Andrew J. Wildridga³¹, Tong Arthur Wu⁴, Laura Zan¹⁵⁵, Yulei Zhana²⁹, and Knut Zoch⁵⁶

Figure: arXiv:2504.00086 (2025)

Thank You

Backup Slides

Backup

Quantum Theory: Measurement

- Copenhagen interpretation of Quantum Mechanics:
 - Wavefunction collapses by measurement process: Quantum state projected to measured state.
- Simple model of measurement: System+Apparatus get entangled

$$\Psi\rangle\otimes|A\rangle\rightarrow\sum_{n}c_{n}|\phi_{n}\rangle\otimes|A_{n}\rangle\rightarrow\rho=\sum_{n,n}c_{n}c_{m}^{*}|\phi_{n}\rangle\otimes|A_{n}\rangle\langle\phi_{m}|\otimes\langle A_{m}|$$

• Decoherence: Tracing out environment \rightarrow

$$ho_{\mathcal{S}} = \operatorname{tr}_{\mathcal{E}}(
ho) = \sum_{n} |c_{n}|^{2} |\phi_{n}\rangle \otimes |A_{n}\rangle \langle \phi_{n}| \otimes \langle A_{n}|$$

- Probabilities according to Born rule!
- Collapse is irreversible and... who is irreversible??? Exactly!
- CAUTION: Still not solved

12/05/2025

Steering: Two qubits

- Measurements of Bob can "steer" quantum state of Alice.
- Steering: Original conception of Schrödinger of EPR paradox → Only well-defined in 2007! (Wiseman, Jones, Doherty, PRL 98, 140402 (2007))
- Alice post-measurement state described by local-hidden states:

$$\tilde{\rho}_{\hat{\mathbf{n}}} = \Pi^{B}_{\hat{\mathbf{n}}} \rho \Pi^{B}_{\hat{\mathbf{n}}} = \int d\lambda \ p(1|\hat{\mathbf{n}}\lambda) p(\lambda) \rho_{B}(\lambda)$$

• If not, quantum state is steerable.

51 / 48

Steering: Two qubits

• Alice post-measurement state: same as for quantum discord.

$$\rho_{\hat{\mathbf{n}}} = \frac{\tilde{\rho}_{\hat{\mathbf{n}}}}{\mathrm{Tr}\tilde{\rho}_{\hat{\mathbf{n}}}} = \frac{1 + \mathbf{B}_{\hat{\mathbf{n}}}^+ \cdot \sigma}{2}, \ \mathbf{B}_{\hat{\mathbf{n}}}^+ = \frac{\mathbf{B}^+ + \mathbf{C} \cdot \hat{\mathbf{n}}}{1 + \hat{\mathbf{n}} \cdot \mathbf{B}^-}$$

- Set of conditional polarizations $B_{\hat{n}}^+$ describes an ellipsoid.
- Steering ellipsoid: Fundamental QI object, containing all information about the system.
- Similar for Bob \rightarrow Steering: also asymmetric between Alice and Bob.

Jevtic, Pusey, Jennings, Rudolph PRL 113, 020402 (2014)

Basis Selection

- Different basis for computing spin polarization and spin correlations characterizing the quantum state.
- Helicity basis: $\{\hat{k}, \hat{r}, \hat{n}\}$:
 - \hat{k} top direction in $t\bar{t}$ c.m. frame.
 - $\widehat{p} \text{beam direction } (\cos \Theta = \widehat{k} \cdot \widehat{p}).$

$$\hat{r} = (\hat{p} - \cos \Theta \hat{k}) / \sin \Theta.$$

$$\hat{n}=\hat{r}\times\hat{k}.$$

Study of individual tt production with fixed energy and direction.

- Beam basis: $\{\hat{x}, \hat{y}, \hat{z}\}$:
 - \bigcirc \hat{z} along beam axis.
 -) \hat{x}, \hat{y} transverse directions to beam.
 - Sixed in space: no change with \hat{k} .
 - Study of total integrated quantum state.

LO QCD Quantum State

• Most general 2-qubit density matrix (15 parameters):

$$\rho(M_{t\bar{t}},\hat{k}) = \frac{1 + \sum_{i} \left(B_{i}^{+}\sigma^{i} + B_{i}^{-}\bar{\sigma}^{i}\right) + \sum_{i,j} C_{ij}\sigma^{i}\bar{\sigma}^{j}}{4}$$

- Standard Model \rightarrow $\mathbf{B}^+ = \mathbf{B}^-$, $\mathbf{C}^{\mathrm{T}} = \mathbf{C}$
- LO QCD \rightarrow
 - $\ \, {\bf 0} \ \, \rho(M_{t\bar{t}},\hat{k}) \ \, {\rm is \ a \ T-state \ (unpolarized)} \rightarrow {\bf B}^{\pm}=0 \ \,$
 - 2 Spin along \hat{n} is uncorrelated to other directions
- Only 4 parameters in SM LO QCD: C_{kk}, C_{rr}, C_{nn}, C_{kr}

$$\mathbf{B}^{\pm} = 0, \ \mathbf{C} = \begin{bmatrix} C_{kk} & C_{kr} & 0\\ C_{kr} & C_{rr} & 0\\ 0 & 0 & C_{nn} \end{bmatrix}$$

Two-qubit Quantum Criteria

- In general, evaluation of all quantum correlations is a complicated problem (discord and steering).
- However, due to the simple form of $\rho(M_{t\bar{t}}, \hat{k})$ in SM LO QCD:
- Quantum Discord: Analytical (*T*-states).
- **2** Entanglement: Concurrence $0 \leq C[\rho] \leq 1$, $C[\rho] > 0$ iff ρ entangled:

$$\mathcal{C}[\rho] = \max(\Delta, 0), \ \Delta \equiv \frac{-C_{nn} + |C_{kk} + C_{rr}| - 1}{2}$$

- Steerability iff $\int d\hat{\mathbf{n}} \sqrt{\hat{\mathbf{n}}^{\mathrm{T}} \mathbf{C}^{\mathrm{T}} \mathbf{C} \hat{\mathbf{n}}} > 2\pi$ (T-state).
- CHSH violation iff $\mu_1 + \mu_2 > 1$ ($\mu_{1,2}$ largest eigenvalues of $\mathbf{C}^{\mathrm{T}}\mathbf{C}$).

Steering ellipsoid

● Normalized dileptonic cross-section → Angular distribution:

$$p(\hat{\ell}_+, \hat{\ell}_-) = \frac{1}{\sigma_{\ell\bar{\ell}}} \frac{\mathrm{d}\sigma_{\ell\bar{\ell}}}{\mathrm{d}\Omega_+ \mathrm{d}\Omega_-} = \frac{1 + \mathbf{B}^+ \cdot \hat{\ell}_+ - \mathbf{B}^- \cdot \hat{\ell}_- - \hat{\ell}_+ \cdot \mathbf{C} \cdot \hat{\ell}_-}{(4\pi)^2}$$

Conditional quantum states:

$$\rho_{\hat{\mathbf{n}}}^{(\pm)} = \frac{1 + \mathbf{B}_{\hat{\mathbf{n}}}^{\pm} \cdot \boldsymbol{\sigma}_{\pm}}{2}, \ \mathbf{B}_{\hat{\mathbf{n}}}^{\pm} = \frac{\mathbf{B}^{\pm} + \mathbf{C}^{\pm} \cdot \hat{\mathbf{n}}}{1 + \mathbf{B}^{\mp} \cdot \hat{\mathbf{n}}}, \ \mathbf{C}^{+} = \mathbf{C}, \ \mathbf{C}^{-} = \mathbf{C}^{\mathcal{T}}$$

Direct conditional quantum tomography:

$$p(\hat{\ell}_{\pm}|\hat{\ell}_{\mp}=\mp\hat{\mathbf{n}})=rac{p(\hat{\ell}_{\pm},\hat{\ell}_{\mp}=\mp\hat{\mathbf{n}})}{p(\hat{\ell}_{\mp}=\mp\hat{\mathbf{n}})}=rac{1\pm\mathbf{B}_{\hat{\mathbf{n}}}^{\pm}\cdot\hat{\ell}_{\pm}}{4\pi}$$

- Discord \rightarrow Minimization over conditional entropies.
- $\mathbf{B}^{\pm}_{\hat{\mathbf{n}}} \rightarrow \text{Steering ellipsoid.}$
- Highly-challenging measurements in conventional setups → Natural implementation in colliders!

J. R. Muñoz de Nova

h