Towards unveiling the properties of the massive black hole binary population with LISA

Vivienne Langen

Doctorante L2IT & Université de Toulouse

Amphi II @ Toulouse 4. Avril, 2025

Agenda

- Einstein's Universe
- The Laser Interferometer Space Antenna (LISA)
- Massive Black Hole Binaries (MBHBs)
- The Analytical Model
- Hierarchical Bayesian Inference
- Large scale catalog comparison
- Conclusions

Einstein's theory of gravity

 \times

Einstein's theory of gravity

Gravity

Spacetime curvature

 \times ///+ \cdot

Einstein's theory of gravity

>> Spacetime tells matter how to move,

 $g_{\mu
u}R$

and matter tells spacetime how to curve. <<

John Archibald Wheeler

 $8\pi G$

 \times ///+ \cdot

Einstein's theory of gravity

>> Spacetime tells matter how to move,

and matter tells spacetime how to curve. <<

John Archibald Wheeler

 $8\pi G$

 \times ///+ \cdot

Gravitational wave (GW) equation

 $g_{\mu
u}=\eta_{\mu
u}+h_{\mu
u}, \qquad |h_{\mu
u}|\ll 1.$

Flat spacetime + perturbation

Gravitational wave (GW) equation

$$g_{\mu
u} = \eta_{\mu
u} + h_{\mu
u}, \qquad |h_{\mu
u}| \ll 1,$$

Flat spacetime + perturbation

$$\partial^
u ar{h}_{\mu
u} = 0 \qquad \wedge \qquad ar{h}_{\mu
u} = h_{\mu
u} - rac{1}{2}\eta_{\mu
u}h \quad \wedge \qquad T_{\mu
u} = 0$$

Lorentz gauge

Vacuum solution

Gravitational wave (GW) equation

$$g_{\mu
u} = \eta_{\mu
u} + h_{\mu
u}, \qquad |h_{\mu
u}| \ll 1,$$

Flat spacetime + perturbation

$$\partial^
u ar{h}_{\mu
u} = 0 \qquad \wedge \qquad ar{h}_{\mu
u} = h_{\mu
u} - rac{1}{2}\eta_{\mu
u}h \quad \wedge \qquad T_{\mu
u} = 0$$

Lorentz gauge

Vacuum solution

$$\implies \qquad \left(-rac{\partial}{\partial t^2}+c^2
abla^2
ight)ar{h}_{\mu
u}=0$$

Wave equation !

The plane wave solution

Ripples in spacetime

$$ar{h}_{\mu
u}=A_{\mu
u}e^{ik_lpha x^lpha}$$

Plane wave solution

$$h^{ ext{TT}} = h_+ e^+_{ab} + h_ imes e^ imes_{ab}$$

Transverse traceless gauge

The plane wave solution

Ripples in spacetime

$$ar{h}_{\mu
u}=A_{\mu
u}e^{ik_lpha x^lpha}$$

Plane wave solution

$$h^{ ext{TT}} = h_+ e^+_{ab} + h_ imes e^ imes_{ab}$$

Transverse traceless gauge

GWs from a binary

Ripples in spacetime

Credit: LVK-collaboration

The first GW signal

GW140915 (September 15; 2014)

The first GW signal

GW140915 (September 15; 2014)

 Stellar origin black hole binary

•
$$M_1 = ~35 M_{\odot}$$
, $M_2 = ~30 M_{\odot}$
(equal mass)

- 35 Hz 150 Hz
- ~ 400 Mpc

(local universe)

Status of current observations

- > 90 events seen by the ground-based network (LIGO-Virgo-KAGRA)
- O1 O3; O4 on-going
- Binary masses from
 2 10² solar masses
- Local universe

GW spectrum

9

GW spectrum

Agenda

- Einstein's Universe
- The Laser Interferometer Space Antenna (LISA)
- Massive Black Hole Binaries (MBHBs)
- The Analytical Model
- Hierarchical Bayesian Inference
- Large scale catalog comparison
- Conclusions

The Laser Interferometer Space Antenna (LISA)

Credit: Stefan Strub

LISA

12

Agenda

- Einstein's Universe
- The Laser Interferometer Space Antenna (LISA)
- Massive Black Hole Binaries (MBHBs)
- The Analytical Model
- Hierarchical Bayesian Inference
- Large scale catalog comparison
- Conclusions

Massive black holes: the CORE of galaxies

Massive black holes: the CORE of galaxies

Massive black holes in the center of galaxies

Black hole - galaxy co-evolution

Galaxies in the center of dark matter halos

Halo - galaxy - BH co-evolution

J. Stuart B. Wyithe et al., 2002; Astrophys.J. 581 (2002) 886

Halos & galaxies aggregate hierarchically

... forming many MBHB across cosmic time

Massive black hole binaries (MBHB) Path to coalescence

Dynamical friction phase

Massive black hole binaries (MBHB) Path to coalescence

Dynamical friction phase

Stellar hardening

Massive black hole binaries (MBHB) Path to coalescence

Dynamical friction phase

Stellar hardening

<u>GW emission phase</u>

Dynamical friction phase

- Mpc \rightarrow kpc scale
- Timescale Gyr
- DM vs gaseous / stellar medium

Stellar hardening

<u>GW emission phase</u>

Dynamical friction phase

- Mpc \rightarrow ~kpc scale
- Timescale ~Gyr
- DM vs gaseous / stellar medium

Stellar hardening

<u>GW emission phase</u>

- Merged galaxy
- ~kpc pc scale at galaxy core
- Timescale ~100 Myr
- 3 body stellar encounters

MBHBs

Dynamical friction phase

Stellar hardening

Gas dynamics neglected !

- Mpc \rightarrow kpc scale
- Timescale ~Gyr
- DM vs gaseous / stellar medium

- Merged galaxy
- ~kpc pc scale at galaxy core
- Timescale ~100 Myr
- 3 body stellar encounters

<u>GW emission phase</u>

- Final stage
- < pc scale
- Shortest phase
- That's what LISA sees!

MBHBs

Dynamical friction phase

- Mpc \rightarrow kpc scale
- Timescale ~Gyr
- DM vs gaseous / stellar medium

Stellar hardening

- Merged galaxy
- ~kpc pc scale at galaxy core
- Timescale ~100 Myr
- 3 body stellar encounters

<u>GW emission phase</u>

- Final stage
- < pc scale
- Shortest phase
- That's what LISA sees!

LISA horizon

Danzman, K., 2012. The Gravitational Universe

LISA horizon

- Current GW observations
 - \rightarrow local universe & low masses

21

MBHBs

Danzman, K., 2012. The Gravitational Universe

LISA horizon

- Current GW observations
 - \rightarrow local universe & low masses
- EM facilities
 - \rightarrow limited to high masses

LISA horizon 20 black hole - black hole mergers 18 space based 16 gravitational wave observatory 14 -12 Redshift (z) 10 -8 EM probes

- Current GW observations
 - \rightarrow local universe & low masses
- EM facilities

future

- \rightarrow limited to high masses
- The spectrum of growing MBHs missing !
 - \rightarrow space-based GW facilities
 - \rightarrow <u>need LISA !</u>

70 20

3

50

200

5

1000

log(M/M_☉)

6

6

4 -

MBHB modelling Large scale simulations

Analytical models

Hydrodynamical, N-body simulations

MBHB modelling Large scale simulations

Analytical models

Hydrodynamical, N-body simulations

- Very efficient
- Fast data generation
 - \rightarrow ideal for inference
- Very flexible
- Many simplifying assumptions
- Limited physics

MBHB modelling Large scale simulations

Analytical models

- Very efficient
- Fast data generation
 → ideal for inference
- Very flexible
- Many simplifying assumptions
- Limited physics

Hydrodynamical, N-body simulations

- Computationally expensive
- Simultaneous, self-consistent simulation of DM assembly + their baryonic content
- Limited sub-grid physics possible
- Limited by their resolution

MBHBs

MBHB modelling Large scale simulations

Analytical models

- Very efficient
- Fast data generation
 → ideal for inference
- Very flexible
- Many simplifying assumptions
- Limited physics

Hydrodynamical, N-body simulations

- Computationally expensive
- Simultaneous, self-consistent simulation of DM assembly + their baryonic content
- Limited sub-grid physics possible
- Limited by their resolution

- Still efficient
- Based on halo or galaxy merger trees from numerical simulations
- Analytical prescription for sub-grid, small scale physics
- Limited by assumptions

MBHB modelling

Large scale simulations

Analytical models

- Very efficient
- Fast data generation
 → ideal for inference
- Very flexible
- Many simplifying assumptions
- Limited physics

Hydrodynamical, N-body simulations

- Computationally expensive
- Simultaneous, self-consistent simulation of DM assembly + their baryonic content
- Limited sub-grid physics possible
- Limited by their resolution

- Still efficient
- Based on halo or galaxy merger trees from numerical simulations
- Analytical prescription for sub-grid, small scale physics
- Limited by assumptions

Agenda

- Einstein's Universe
- The Laser Interferometer Space Antenna (LISA)
- Massive Black Hole Binaries (MBHBs)
- The Analytical Model
- Hierarchical Bayesian Inference
- Large scale catalog comparison
- Conclusions

H. Padmanabhan et al. 2020

H. Padmanabhan et al. 2020

H. Padmanabhan et al. 2020

Number density of MBHBs

H. Padmanabhan et al. 2020

Number density of MBHBs

$$egin{split} M_{
m bh} &= \epsilon \cdot M_{
m h} igg(rac{M_{
m h}}{10^{12} M_{\odot}} igg)^{rac{\gamma}{3}-1} \ & imes igg(rac{\Omega_{
m m} \cdot \Delta_c h^2}{\Omega_{
m m}^{
m z} \cdot 18 \pi^2} igg)^{rac{\gamma}{6}} (1+z)^{rac{\gamma}{2}} \end{split}$$

$$f_{\rm bh}(M_{\rm h};z_i,f_i,M_i',\varepsilon_i) = 1 - \frac{f_i}{1 + \left(\frac{\log_{10}(M_{\rm h})}{M_i'}\right)^{\varepsilon_i}} = \underbrace{\int_{-\infty}^{\infty} 0.6}_{-\frac{\varepsilon}{2}} \underbrace{\int_{-\infty}^{\infty} 0.6}_{0.5} \underbrace{\int_{-\infty}^{\infty} 0.6}_{-\frac{\varepsilon}{2}} \underbrace{\int_{-\infty}^{\infty} 0.6}_{0.4} \underbrace{Z = 0.25}_{-\frac{\varepsilon}{2} = 1.0} \underbrace{Z = 2.0}_{-\frac{\varepsilon}{2} = 3.0} \underbrace{Z = 2.0}_{-\frac{\varepsilon}{2} = 3.0} \underbrace{Z = 3.0}_{-\frac{\varepsilon}{2} = 0.25} \underbrace{Z = 1.0}_{-\frac{\varepsilon}{2} = 3.0} \underbrace{Z = 2.0}_{-\frac{\varepsilon}{2} = 3.0$$

$$f_{\rm bh}(M_{\rm h};z_i,f_i,M_i',\varepsilon_i) = 1 - \frac{f_i}{1 + \left(\frac{\log_{10}(M_{\rm h})}{M_i'}\right)^{\varepsilon_i}} = \underbrace{\int_{0.6}^{0.9} 0.6}_{0.6} \underbrace{\int_{0.6}^{0.9} 0.6}_{0.6} \underbrace{\int_{0.6}^{0.9} 0.6}_{0.7} \underbrace{\int_{0.6}^$$

$$f_{\rm bh}(M_{\rm h};z_i,f_i,M_i',\varepsilon_i) = 1 - \frac{f_i}{1 + \left(\frac{\log_{10}(M_{\rm h})}{M_i'}\right)^{\varepsilon_i}} = \underbrace{\int_{0.6}^{0.9} 0.6}_{0.6} \underbrace{\int_{0.6}^{0.9} 0.6}_{0.6} \underbrace{\int_{0.6}^{0.9} 0.6}_{0.7} \underbrace{\int_{0.6}^$$

$$f_{bh}(M_{h}; z_{i}, f_{i}, M'_{i}, \varepsilon_{i}) = 1 - \frac{f_{i}}{1 + \left(\frac{\log_{10}(M_{h})}{M'_{i}}\right)^{\varepsilon_{i}}}$$

$$\frac{z = 0.25 : f_{0} = 0.98, M'_{0} = 9.65, \epsilon_{0} = 9.98}{z = 3 : f_{3} = 0.48, M'_{3} = 10.5, \epsilon_{3} = 36.2}$$

$$\frac{1.0}{9}$$

$$\frac{0.9}{0.8}$$

$$\frac{0.7}{0.6}$$

$$\frac$$

Path to coalescence

In collaboration with E. Bortolas (Univ. Milano Bicocca)

Dynamical friction phase

Stellar hardening

GW emission phase

Path to coalescence

In collaboration with E. Bortolas (Univ. Milano Bicocca)

Dynamical friction phase

$$t_{ ext{DF}} = \overbrace{lpha_{ ext{fric}}}^{ ext{V}} imes rac{V_{ ext{virial}} \cdot R_{ ext{virial}}^2}{G \cdot m_{ ext{virial}} \cdot \ln \left(1 + rac{M_{ ext{virial}}}{m_{ ext{virial}}}
ight)}$$

C.A.

Stellar hardening

<u>GW emission phase</u>

Guo et al., 2011
Path to coalescence

In collaboration with E. Bortolas (Univ. Milano Bicocca)

Dynamical friction phase

Stellar hardening

<u>GW emission phase</u>

$$t_{ ext{DF}} = \overbrace{lpha_{ ext{fric}}}^{ ext{V}_{ ext{virial}}} imes rac{V_{ ext{virial}} \cdot R_{ ext{virial}}^2}{G \cdot m_{ ext{virial}} \cdot \ln \left(1 + rac{M_{ ext{virial}}}{m_{ ext{virial}}}
ight)}$$

$$t_{
m hardening} = rac{{\sigma _\infty }}{{GH}{
ho _\infty }{a_{GW}}}$$

Guo et al., 2011

Sesana & Khan, 2015

Path to coalescence

In collaboration with E. Bortolas (Univ. Milano Bicocca)

Dynamical friction phase

Stellar hardening

<u>GW emission phase</u>

$$\sigma_{
m F} = \overbrace{ \alpha_{
m fric}}^{
m V} imes rac{V_{
m virial} \cdot R_{
m virial}^2}{G \cdot m_{
m virial} \cdot \ln \left(1 + rac{M_{
m virial}}{m_{
m virial}}
ight)} ~,$$

$$t_{
m hardening} = rac{{\sigma _\infty }}{{GH
ho _\infty a_{GW} }}$$

$$t_{
m GW} = 5.81 imes 10^6 \, {
m yr} \Big(rac{a_{
m GW}}{0.01} \Big)^4 igg(rac{10^8}{m_1} igg)^3 rac{m_1^2}{m_2(m_1+m_2)}$$

Guo et al., 2011

Sesana & Khan, 2015

Maggiore, 2018

The Analytical Model

 $\left(rac{\mathrm{d}n_{\mathrm{bh}}}{\mathrm{d}\mathrm{log}M_{\mathrm{bh}}\mathrm{d}z\mathrm{d}q}
ight)$

			Mbh_desc	z	q	snr_merger
(dm)			45067.34663848167	0.4601581301143115	0.6175212755240307	717.6741155480061
			106763.66825689132	0.4891246352921214	0.1816927875976829	966.0925116586465
			114479.99112655567	0.5604190733782815	0.6966205806485715	1250.8661886034865
			329685.6130418605	0.5808666359461838	0.2963160492717632	2127.3399089549343
			787278.3397360283	0.5762229392915306	0.4002448584596854	4561.126684382561
			305921.9088253438	0.6712454254020717	0.1496229244081406	1320.3450490374712
$ _ un_{bh}]$	z		338683.9060766871	0.6183427909925768	0.218959508506081	1802.9666574132323
$\left(\frac{\mathrm{dlog}M_{\mathrm{bh}}\mathrm{d}z\mathrm{d}q}{} \right)$	q	Poisson	65177.75154886915	0.7873802553841631	0.3499873929022703	526.6212492646217
			434294.70816228125	0.8862611899375896	0.245575474461648	1591.1707438102412
		draw	271021.7900681352	0.9425961196991082	0.6077905342141617	1450.4526560171087
	Evaluation		1115073.022574774	0.9661786294116	0.3277342554932912	3585.9456548926873
	on a 3D grid		86824.08728314856	1.0491167594271302	0.8633681053025086	588.7843609892852
			488919.5376022535	1.011570965121033	0.102535286501045	935.4422270566105
			475190.6468197063	1.039180083126099	0.9159803422984928	2192.095532211184
	$M_{2} > 10^{4} M_{\odot}$		8442682.285731195	1.1644533579103826	0.3371133367488694	1707.7967607265728
	a = 1 - 10		96789.3081604071	1.2747434801747128	0.3306392076225322	461.05931909750205
	z = 0 - 20		645246.2625567305	1.25396466460293	0.1255972450172499	1040.5666729500942
	2 0 20		1771600.4097073562	1 2473896646099587	0 1769236188538361	2212 32550997808

Mock LISA data

lisabeta package *Marsat et al., 2021*

Mbh_desc	z	q	snr_merger
45067.34663848167	0.4601581301143115	0.6175212755240307	717.6741155480061
106763.66825689132	0.4891246352921214	0.1816927875976829	966.0925116586465
114479.99112655567	0.5604190733782815	0.6966205806485715	1250.8661886034865
329685.6130418605	0.5808666359461838	0.2963160492717632	2127.3399089549343
787278.3397360283	0.5762229392915306	0.4002448584596854	4561.126684382561
305921.9088253438	0.6712454254020717	0.1496229244081406	1320.3450490374712
338683.9060766871	0.6183427909925768	0.218959508506081	1802.9666574132323
65177.75154886915	0.7873802553841631	0.3499873929022703	526.6212492646217
434294.70816228125	0.8862611899375896	0.245575474461648	1591.1707438102412
271021.7900681352	0.9425961196991082	0.6077905342141617	1450.4526560171087
1115073.022574774	0.9661786294116	0.3277342554932912	3585.9456548926873
86824.08728314856	1.0491167594271302	0.8633681053025086	588.7843609892852
488919.5376022535	1.011570965121033	0.102535286501045	935.4422270566105
475190.6468197063	1.039180083126099	0.9159803422984928	2192.095532211184
8442682.285731195	1.1644533579103826	0.3371133367488694	1707.7967607265728
96789.3081604071	1.2747434801747128	0.3306392076225322	461.05931909750205
645246.2625567305	1.25396466460293	0.1255972450172499	1040.5666729500942
1771600.4097073562	1,2473896646099587	0.1769236188538361	2212.32550997808

Population statistics

Detection rates [/yr] (<u>Stochastic sc.r.</u>)	No - delay model	Delay model
Fiducial rates	385.7	144.5
Reduced rates	38.5	14.5

Detection rates [/yr] (<u>Deterministic sc.r.</u>)	No - delay model	Delay model
Fiducial rates	216	98.0
Reduced rates	21.6	9.8

Population statistics

Detection rates [/yr] (<u>Stochastic sc.r.</u>)	No - delay model	Delay model
Fiducial rates	385.7	144.5
Reduced rates	38.5	14.5
Detection rates [/yr] (<u>Deterministic sc.r.</u>)	No - delay model	Delay model
Fiducial rates	216	98.0
Reduced rates	21.6	9.8
L	•	20

Population statistics

The analytical model

That's it for the astrophysics,

Now it's about data analysis !

The analytical model

That's it for the astrophysics,

Now it's about *population inference* !

Our chosen hyper-parameters

- BH halo mass scaling relation :
- Occupation fraction :
- DF time delay efficiency :

- Einstein's Universe
- The Laser Interferometer Space Antenna (LISA)
- Massive Black Hole Binaries (MBHBs)
- The Analytical Model
- Hierarchical Bayesian Inference
- Large scale catalog comparison
- Conclusions

MCMC approach

- 4 yrs of LISA data
- Simple Poisson likelihood
- No selection effects
- Zero Poisson-noise
- Simplistic LISA-noise

Simplified scenario

No-delay model: deterministic VS stochastic sc. r.

No-delay model: deterministic VS stochastic sc. r.

Langen et al., 2025. MNRAS 536(4), 3366-3385.

- Zero delays
- Both scenarios consistent

with each other

• All parameters

constrained within < 10%

for the 90% C.I.

Delay model: deterministic VS stochastic sc. r.

Delay model: deterministic VS stochastic sc. r.

Langen et al., 2025. MNRAS 536(4), 3366-3385.

Higher dimensions & smaller
 rate

 \rightarrow worse constraints

- Errors enlarged to < 20% for 90% C.I.
- Except γ' remains within 10% →better constraints at low masses!
- Degeneracy between

arepsilon and $lpha_{
m fri}$

• Degeneracies for deterministic sc. r. *Less events at high masses?*

Predictive posterior distributions

Predictive posterior distributions

Predictive posterior distributions

Langen et al., 2025. MNRAS 536(4), 3366-3385.

- Better constraints at lower BH masses
- Smaller errors for the no-delay model

• Less evident difference between delay and no-delay model.

BH – halo mass scaling relation Langen et al., 2025. MNRAS 536(4), 3366-3385.

BH – halo mass scaling relation Langen et al., 2025. MNRAS 536(4), 3366-3385.

BH – halo mass scaling relation Langen et al., 2025. MNRAS 536(4), 3366-3385.

- Good constraints on the scaling relations up to high redshift
- Especially low masses hardly accessible by EM observations

Delay model: Reduced VS fiducial rates

Langen et al., 2025. MNRAS 536(4), 3366-3385.

- Stochastic sc. r.
- fiducial: 144 /yr

VS

- reduced = 14.4 /yr
- Smaller rates
 → larger errors
- Meaningful constraints on

 γ ' and f_3

- Einstein's Universe
- The Laser Interferometer Space Antenna (LISA)
- Massive Black Hole Binaries (MBHBs)
- The Analytical Model
- Hierarchical Bayesian Inference
- Large scale catalog comparison
- Conclusions

LISA Astrophysics Working Group, 2025 in prep.

Overview

My contribution

- Project started in September 2022 during the annual AstroGW meeting
- Comparison of 18 state-of-the-art semi-analytical and hydrodynamical / N-body simulations

LISA Astrophysics Working Group, 2025 in prep.

Overview

My contribution

- Project started in September 2022 during the annual AstroGW meeting
- Comparison of 18 state-of-the-art semi-analytical and hydrodynamical / N-body simulations
- Analysis on the single MBH population
 & MBHB merger population

LISA Astrophysics Working Group, 2025 in prep.

Overview

- Project started in September 2022 during the annual AstroGW meeting
- Comparison of 18 state-of-the-art semi-analytical and hydrodynamical / N-body simulations
- Analysis on the single MBH population
 & MBHB merger population

My contribution

• Participation since the beginning for the last 2.5 years of my PhD

LISA Astrophysics Working Group, 2025 in prep.

Overview

- Project started in September 2022 during the annual AstroGW meeting
- Comparison of 18 state-of-the-art semi-analytical and hydrodynamical / N-body simulations
- Analysis on the single MBH population
 & MBHB merger population

My contribution

- Participation since the beginning for the last 2.5 years of my PhD
- Computation of merger rates

LISA Astrophysics Working Group, 2025 in prep.

Overview

- Project started in September 2022 during the annual AstroGW meeting
- Comparison of 18 state-of-the-art semi-analytical and hydrodynamical / N-body simulations
- Analysis on the single MBH population
 & MBHB merger population

Results preliminary !

 \rightarrow paper writing in progress

My contribution

- Participation since the beginning for the last 2.5 years of my PhD
- Computation of merger rates
- Implementation of time delays
- Calculation of signal-to-noise ratios
- Section writing and interpretation (to lesser extent)

Large scale catalog comparison

Semi-analytical models

LISA Astrophysics Working Group, 2025 in prep.

- Large spread between merger rates
 → analytical model consistent among predictions
- Convergence at low redshift for no-DF

- Comparable DF time delays
- No clear difference between DF delay methods
Hydrodynamical, N-body simulations

LISA Astrophysics Working Group, 2025 in prep.

- Lower rates compared to the semi-analytical and our analytical model (especially at high z)
- Lower spatial & lower mass resolution

ightarrow longer DF delays and missing low mass mergers

Take-home messages & conclusions

- *Improved* analytical model of the MBHB population
 - \rightarrow In *agreement* with state-of-the-art models
 - \rightarrow **Delays reduce** the MBHB merger **rates**
 - \rightarrow Minor impact of stochastic scaling relation

Take-home messages & conclusions

- Improved analytical model of the MBHB population
 → In agreement with state-of-the-art models
 - \rightarrow **Delays reduce** the MBHB merger **rates**
 - \rightarrow Minor impact of stochastic scaling relation
- *First* Bayesian *inference pipeline* to constrain an MBHB model with *LISA*
 - \rightarrow Measurements on the mass scaling relation unaffected by stochasticity
 - \rightarrow Inference up to 5 parameters; despite degeneracy between ε and α_{fric}
 - \rightarrow Slope of the scaling relation better measured at low masses (for all z)
 - \rightarrow Reduced rates: meaningful constraints on γ ' and f_3 ; **low mass parameters!**

Take-home messages & conclusions

- Improved analytical model of the MBHB population
 → In agreement with state-of-the-art models
 - \rightarrow **Delays reduce** the MBHB merger **rates**
 - \rightarrow Minor impact of stochastic scaling relation
- *First* Bayesian *inference pipeline* to constrain an MBHB model with *LISA*
 - \rightarrow Measurements on the mass scaling relation unaffected by stochasticity
 - \rightarrow Inference up to 5 parameters; despite degeneracy between ε and α_{fric}
 - \rightarrow Slope of the scaling relation better measured at low masses (for all z)
 - \rightarrow Reduced rates: meaningful constraints on γ ' and f_3 ; **low mass parameters!**

\Rightarrow LISA will complement EM observations at high z low masses

Future prospects

- A lot of potential to improve the model
 - → implementation of *light-seeds* & *heavy-seeds* populations
 - \rightarrow introduction of *spins*
 - \rightarrow simple binary accretion prescription
 - \rightarrow inference of the mixing fraction between spin populations / seed populations ?

Future prospects

- A lot of potential to improve the model
 - → implementation of *light-seeds* & *heavy-seeds* populations
 - \rightarrow introduction of *spins*
 - \rightarrow simple binary *accretion prescription*
 - \rightarrow inference of the mixing fraction between spin populations / seed populations ?
- Improvement of the hierarchical inference
 - \rightarrow inclusion of intrinsic measurement errors in the likelihood
 - \rightarrow selection effects

Future prospects

- A lot of potential to improve the model
 - → implementation of *light-seeds* & *heavy-seeds* populations
 - \rightarrow introduction of *spins*
 - \rightarrow simple binary *accretion prescription*
 - \rightarrow inference of the mixing fraction between spin populations / seed populations ?
- Improvement of the hierarchical inference
 - \rightarrow inclusion of intrinsic measurement errors in the likelihood \rightarrow selection effects
- LISA: an unique window into the high-z universe
 → a new milestone in observational astronomy

Thank you for your attention!

Back-up slides

- Introduction and MBHs
- Full occupation fraction

Michelson - Morley interferometer

Measuring mass VS redshift

Galaxy - halo mass scaling relation

Behroozi, P., Wechsler, R. H., et al, 2019; MNRAS, 488, 3143

Darf galaxy - BH mass scaling relation

Figure 2. Correlations between mass and host galaxy properties at z = 0.25: [Top] Galaxy stellar mass versus BH mass $M_{\rm BH}$ for all main BHs. The grey distribution shows that stacked sample at all redshifts. [Bottom] Galaxy stellar mass versus accereted BH mass $M_{\rm BH,acc}$ for all BHs. Shown on both plots for comparison are observational data from Reines & Volonteri (2015) (RV15, green triangles), Baron & Ménard (2019) (BM19, brown contours) and Greene et al. (2019) (Greene20, blue markers and limits).The same observations are shown on both panels. α denotes the slope of the fits for each population of BHs. Errorbars for RV15 are omitted for clarity. Galaxies left of the dotted black line are considered dwarf galaxies.

New Horizon Simulation: R. S. Beckmann et al., 2022

MBH seeds

Pau Amaro-Seoane et al., 2023; Living reviews in Relaitiviy

The role of gas in the hardening phase

Bortolas+2021, ApjL, 918 L15

HMFcalc compared to TNG50

Halo merger rate per halo

O. Fakhouri et al., 2010

Original versus reduced occupation fraction

Deterministic VS stochastic relation: population distributions

Occupation fraction compared to *L***-***galaxies* model

Observed merger rate (equation)

$$\frac{dN}{dt} = \int_{0}^{z_{\text{max}}} dz \frac{dn}{dz} \times \frac{4\pi c \, d_L(z)^2}{(1+z)^2} \,.$$

$$(n_{\text{obs}})_{ijk} = n_{ijk} \times \frac{4\pi c \, d_L(z)^2}{(1+z)^2} \,.$$

$$\frac{dN}{dt} = \sum_{i,j,k=0}^{n_z,n_q,n_m} (n_{\text{obs}})_{ijk}.$$

$$(n_{\text{obs}})_{ijk} = n_{ijk} \times \frac{4\pi c \, d_L(z)^2}{(1+z)^2} \,.$$

Population on a grid

The mass-cut on a grid

Scatter plots for *q*-*M* and *q*-*z*

Histogram in q and time delays

Dependency of time delays on *M*, *q*, *z*

Intrinsic LISA measurement errors

 $\sigma_{d_L}(z) = A \cdot z^{\alpha} \cdot (1+z)^{\beta},$

$$\sigma_{\text{lensing}}(z) = \frac{0.096}{2} \left(\frac{1 - (1+z)^{-0.62}}{0.62} \right)^{2.36} \frac{\partial d_L}{\partial z}.$$

1D parameter estimation: no-delay

1D parameter estimation: delay VS no-delay

2D/3D posteriors: no-delay model

2D/3D/4D posteriors: delay VS no-delay

Alternative 5D case: degeneracy check

• No-delay model

Alternative 5D case: degeneracy check

- Delay model
- Stochastic scaling relation
- Better constraints in all parameters than for 5D delay case with $a_{\rm fric}$

Alternative 5D case: degeneracy check

- Delay model
- Stochastic scaling relation
- No apparent degeneracy

Scaling relation: reduced VS fiducial rates, high z

PPD in z log-scale and q

Parameter tests

DF time delays in MBHcat project

MBHcat project: resolutions and catalog separations

MBHcat project: resolutions and catalog separations (histogram)

Initial separations for DF modelling

MBHcat project: volumes

MBHcat project: absolute rates

		Total merger rate $[yr^{-1}]$	
	No-delay	DF delays with catalog sep.	DF delays with $R_{\rm eff,ob}$
		Cosmological simulations	
Astrid	0.991	0.0119	0.749
EAGLE	2.42	0.0257	0.7
FLARES	0.0437	0.000297	0.0112
Horizon-AGN	3.021	0.0476	2.0106
Illustris100	3.606	0.183	1.921
Ketju	0.0292	0.0245	0.00932
MassiveBlackII	0.6906	0.477	0.271
NewHorizon	10.721	6.639	4.3409
Obelisk	0.457	0.3508	0.2338
Renaissance	20.6109	5.955	11.4150
Romulus	26.468	15.2068	23.6387
Simba	0.694	0.00182	0.00276
TNG50	2.9313	1.735	1.9306
TNG100	3.2714	0.4258	2.0038
TNG300	3.359	0.2606	2.4882
		Semi-analytical models	
BACH	2373.587	568.969	2057.519
CAT	29.8195	0.1206	3.465
DELPHI	15.098	0.1472	11.6016
L-Galaxies	46.319	14.712	7.2424
SHARK	11.2608	0.0335	4.2379
		The analytical model	
Our model	379.5	160.5	-

Langen2025 --- DELPHI --- L-Galaxies --- SHARK --- CAT --- BACH

Merger rates for specific mass bins: SAMs

Merger rates for specific mass bins: numerical simulations

SNR distribution for all models

- models + DF delays using catalog separations
- no-smoothing

SNR distribution for all models

models + DF delays using catalog separations

SNR distribution for all models (updated)

models + DF delays using catalog separations

MBHcat scatter plots: SAMs (appendix)

MBHcat scatter plots: numerical simulations (appendix)

Additional paper material

POMPOCO LISA merger rate

Fig. 8. Prediction of the rate of mergers detectable by LISA as a function of the redshift, assuming an SNR threshold of 8. See also Fig. 7.

Ref: arXiv:2410.17916 (2024).

POMPOCO constraints on seeding and delays

Fig. 4. Posterior on the model parameters related to seeding and BH mergers, when fitting for the LF and GW background. We show: the mean and standard deviation of the log-normal distribution of seed BH masses, μ_{aeed} and σ_{seed} the minimum mass of halos seeded $M_{h,seed}$ and the seeding probability f_{seed} ; the delay of binary BH mergers (in addition to halo dynamical friction), f_{delav} .

Ref: arXiv:2410.17916 (2024).

Backup list

- Think of legit answer how to include spins and accretion in my model; possible combined? Aligned spins favor coherent accretion?
- Intuition why a_GW is in t_hard
- Backup slide for error sm matrices and error formulas
- Put all fucking thesis plots in the back up slides.
- Read abstract from each paper in model again
- Measure halo masses in observation
- Give values for relative uncertainty in mass and redshift.
- Read email conversation between massimo and S/N again
- Read the reports again; check comments