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Quality Control

* New Detectors for New Physics

Good detector quality is required to reach our goal
=> Quality Control (QC) during detector production

Need bigger and more complex detectors

* Visual Inspection of detector components
Look for visible defects on detector components

=> Prevent future failures
=> Improve fabrication process

Time consuming and error prone process
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ITk pixel modules

* New Inner Tracker (ITk) for ATLAS detector

Part of the High Luminosity upgrade
of ATLAS experiment

8372 Pixel modules T

Pixel ‘%\\\\ : i ==
* Pixel module production in Japan exeiemaces

2800 pixel modules to be assembled and delivered
=> Main production as already started
Major challenge for QC

=> New tools are needed to improve QC procedures
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ITk pixel modules
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Several assembly stages
=> QC (including Visual Inspection) at each step

Two main QC sites in Japan
PCB and Bare Module QC @KEK
Assembled module QC @HR

New Visual Inspection step added before bump bonding

=> Looking for critical defects
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Al for Visual Inspection

* Objective
Improve the efficiency and reliability of Visual Inspection
=> Use deep Learning techniques

* Two categories of defects
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Al for Visual Inspection

* Objective
Improve the efficiency and reliability of Visual Inspection
=> Use deep Learning techniques

* Two categories of defects

Statistical anomalies

Anomalies that appear in a minority of images
=> O(1%) occurrence rate :

Very few examples available
=> Cannot make labeled dataset

Unsupervised defect detection
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Al for Visual Inspection

* Objective
Improve the efficiency and reliability of Visual Inspection
=> Use deep Learning techniques

* Two categories of defects

Statistical anomalies Expert anomalies
Anomalies that appear in a minority of images More recurrent/common anomalies
=> O(1%) occurrence rate => Recognized as defects by experts
Very few examples available Many examples available
=> Cannot make labeled dataset => Can make labeled dataset
Unsupervised defect detection Supervised defect classification
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Unsupervised defect detection

.- . input image
» Denoising Auto-Encoder —
Reconstruct main input fetures and encoding block 1
remove defect-like pattern —x
- ] encoding block 2
=> Enhance sensitivity for defect detection T
Select pixel areas with high reco error latent space
 Clustering and filtering deCOd‘”f block 2
Apply clustering to selected pixels decoding block 1
Keep only major clusters I

output image

=> Defect candidates
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Unsupervised defect detection

e Custom noise patterns ,
Add noise patterns on input images during training \ -

=> Randomize size, rotation and color Pattern examples

Compute MSE loss between output and original input
Noise patterns are made “by hand” to ressemble defect

=> Expert knowlege

e Selection threshold

Use clean test images and compute recontruction error

=> Define threshold based on image without major defects
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Supervised defect classification

* Feature Pyramid Network Input jmage
Extract high level features from Y ’_
InpUt Image \\upsample / :\
Successive dimension reduction block 2 N | E
=> Pattern of different sizes v \Jﬁr—me/ ] . "E
o ] block 3 > a
* Classification head network | g/ L / —
- block 4 >
Use FPN feature space to classify
- — I\ J
SpeCIfIC detects IRDE Classa‘?cation
=> Multiple classification objective head
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Supervised defect classification

* FPN pretraining
Generic feature extraction with Auto-Encoder-like objective
Training with images of various components and stages
=> Common training of each specific components
* Main classifier training
Use the same pretrained FPN for each component

Use one binary cross-entropy term per target defect class
loss (x, y)= Zyclog (x.)+(1—y_.)log(1—x.) ~ one score per category

Improved training loop under testing
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Deployment status

e Avallable models

Sensortile ] | FE chip (x4)!
Flex PCB
- Reception Bump bonding™ ) hsupervised model integrated to QC
‘- Population \ Bare module software
=> Ready to use
G'“l‘“g 5 unsupervised models already trained
Module Models for PCB and bare module deployed
READY - Assembly => Visual Inspection @KEK
| Ongoing ! ||*_Wire-bonding Models for module ready for deployment
T 77 ~7 |+ Parylene coating New model for ASIC before bump bonding
» Thermal cycle Procedure under discution
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Data preparation

* Data Acquisition
Camera and microscope with moving stage

* Data augmentation

Duplicate source images with random Image acquisition system @KEK
modifications

=> Cropping, scaling, brightness
Split augmented images in 8x8 tiles
(512x512 each)
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Some results

* Unsupervised defect detection
Visual Inspection before Bare Module assembly
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Some results

* Supervised defect classification

ROC curves showing performances for
5 defect categories
Good performances for 3 out of 5

Application to a flex PCB image

3 defect categories detected
Dust, contamination and scratch

1.0 = E
. >90% detection
\ i< 20% fake ;

. All 3 defects were

6’ 1 - LY L]

. properly identified
4 scratch pad (AUC=0.902) E
—— scratch_mask (AUC=0.697) |
—— contamin_pad (AUC=0.981) :
—— contamin_mask (AUC=0.966) E
—— dust (AUC=0.618) !
0.0 0.2 0.4 0.6 0.8 1.0 E

TP acceptance
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Conclusion

* Improving QC for ITk pixel modules

Use Deep Learning techniques to improve Visual Inspection
=> Find more defect faster

Successful integration of unsupervised model
=> Part of ITk QC software

* Generic API for Al-based Visual Inspection
Avallable on GitHub and PyPI

=> Facilitate integration into existing QC framework

Documentation and development features will be implemented
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Thank you !
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