

Dark Matter Search with Liquid Xenon TPCs today

LZ 7 t @ SURF

PandaX-4T 3.7 t @ JinPing

From the current to the next generation of liquid xenon detectors

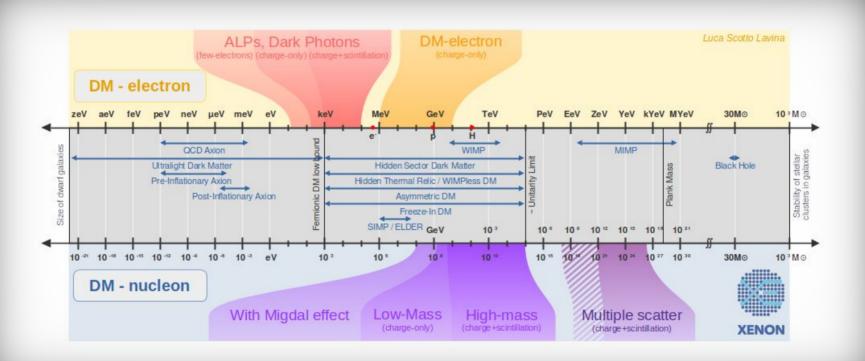
XENONnT:

- @LNGS, Italy
- 8.6t total Xe mass

LZ:

- @SURF, US
- 10t total Xe mass
- + DARWIN
- R&D program since a decade to build a 50t total mass

- Several sites considered
- 80t total Xe mass


PandaX-4T:

- @JinPing, China
- 6t total Xe mass

PandaX-xT:

- @JinPing, China
- 20t → 40t total Xe mass

The scoped energy domains

• Different dark matter models that can be probed:

Low-E Nuclear Recoils (NR)

SI elastic scattering

SD elastic scattering *

WIMP-pion coupling

Effective Field Theory on WIMPs (+iDM) *

Mirror DM

Electronic Recoils (ER)

Dark Photons

Bosonic SuperWIMPs, Magnetic dark matter

Solar axions and Axion-like Particles

Luminous DM

Both (NR+ER)

Inelastic DM

Annual modulation search

Low mass WIMPs (<10GeV)

Multiply-Interacting Massive Particles (MIMPs)

Migdal Effect and Bremsstrahlung

• New physics can be scoped:

Neutrinos

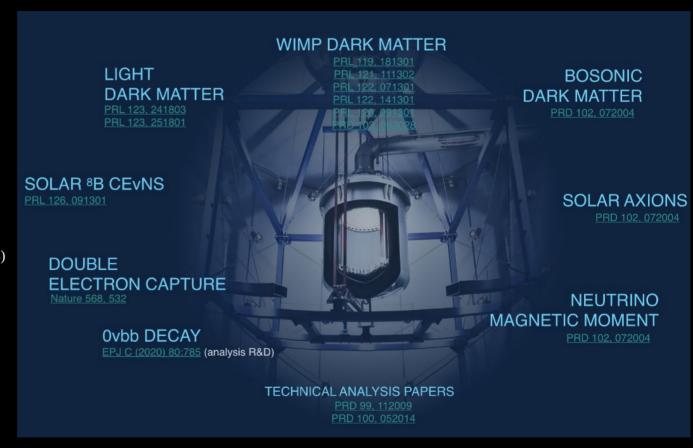
Solar 8B neutrinos (CEvNS → NR)

Neutrinoless double-beta decay *

Neutrino magnetic moment

Supernovae neutrinos

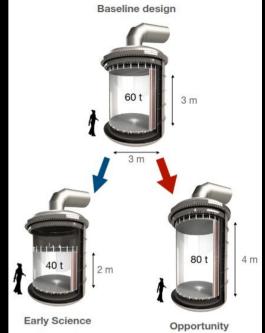
Rare events


Double electron capture *

Gravitational wave search

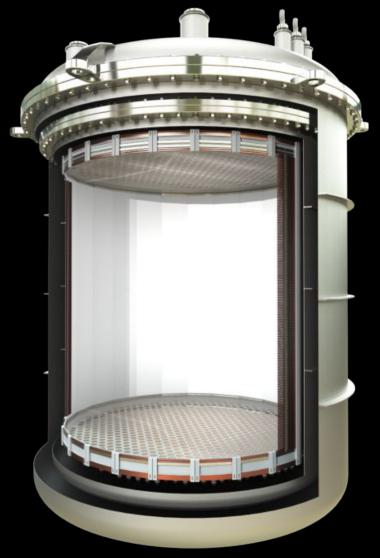

New particles

Solar Dark Photons


Physics cases

Bigger and more silent

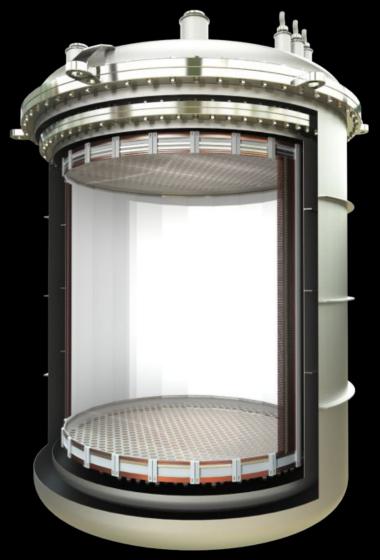
1000



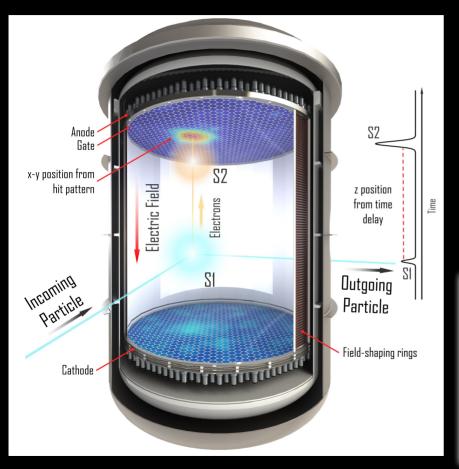
Size matters

New detector → **new challenges**

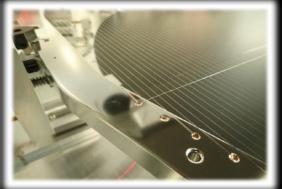
- Design of electrodes: robustness (minimal sagging/deflection), maximal transparency, reduced e- emission ("hot spots")
- **Electric field**: ensure spatial and temporal homogeneity, avoid charge-up of PTFE reflectors
- High-voltage supply to cathode design, avoid high-field regions
- Light sensors: reduce backgrounds and DRCs, improve PDE
- Cryogenic system and xenon purification
- Xenon storage and recovery : safety and reliability
- Computing: handling up to 2.4 PB / year of data



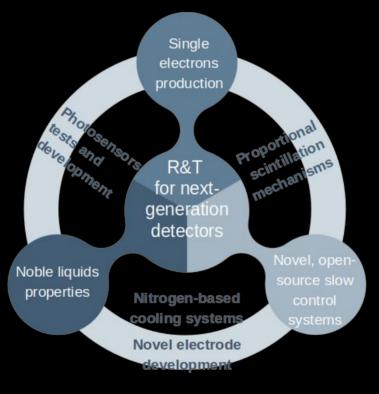
Size matters

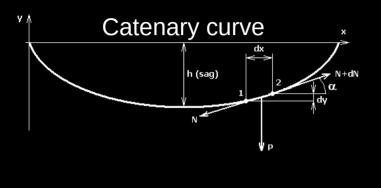

New detector → **new challenges**

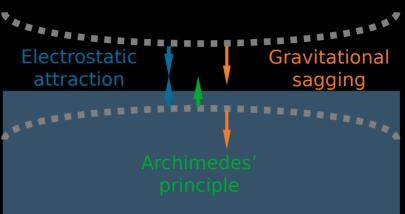
- Design of electrodes: robustness (minimal sagging/deflection), maximal transparency, reduced e- emission ("hot spots")
- Electric field: ensure spatial and temporal homogeneity, avoid charge-up of PTFE reflectors
- High-voltage supply to cathode design, avoid high-field regions
- Light sensors: reduce backgrounds and DRCs, improve PDE
- Cryogenic system and xenon purification
- Xenon storage and recovery : safety and reliability
- Computing: handling up to 2.4 PB / year of data


Large-scale TPC: obtaining a high proportional scintillation light

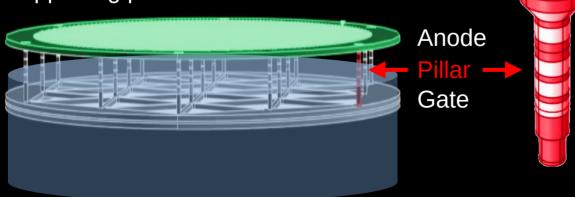
Development of large electrodes allowing:

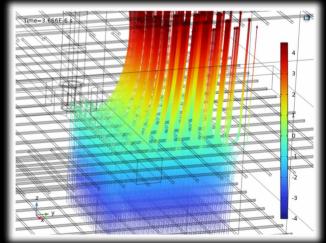

- high optical transparency
- high electron extraction efficiency
- high S2 gain
- uniformity on x,y position
- low radioactivity
- no electrical discharges (hot spots)


R&T on novel electrodes with the XeLab Project

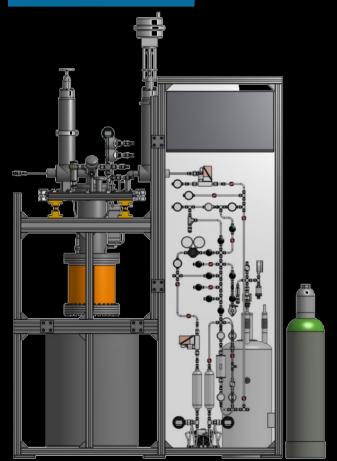


- CNRS/IN2P3 Master Project
- LPNHE and Subatech
- R&D for DARWIN / XLZD
- Part of DRD2 activities
- Presented already in XeSat23 and ICRC23
- Proceedings: https://hal.science/hal-04186811
- Technical paper in preparation


The idea of Spacer-Assisted Floating Electrodes (SAFE)



Our idea : "floating" electrodes with supporting pillars

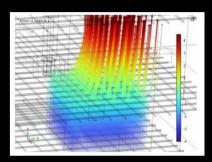


Simulations with COMSOL Multiphysics

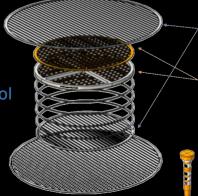
Lab

R&T with XeLab

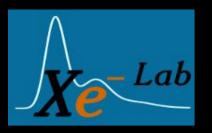
R&D Levelling system



R&DThree-way
heat
exchanger

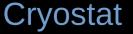

R&DStorage and recovery system

R&D Simulations electrodes


R&D Slow Control with RevPl

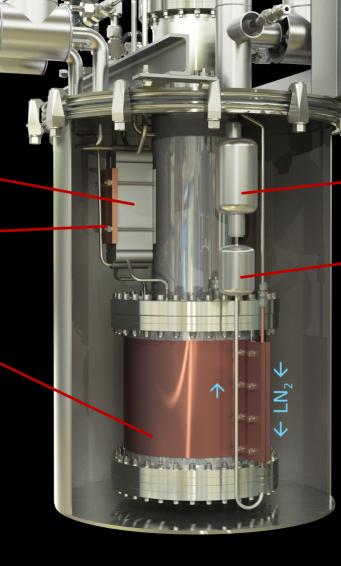
Standard electrodes

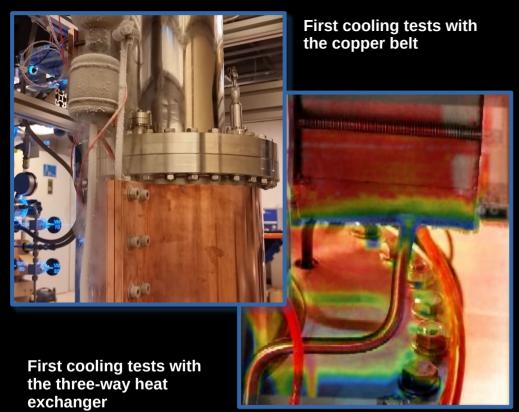
R&DFloating
electrodes


R&D Insulating pillar

3-way heat exchanger

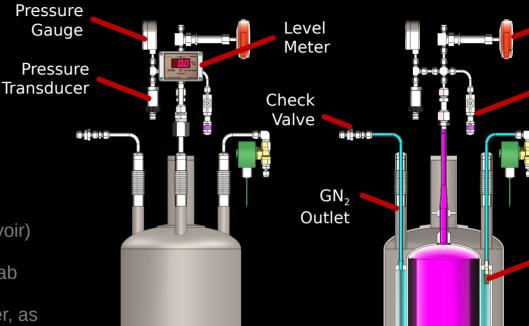
Heating resistor


Copper belt



Free floating vent

Degasser


- Vacuum insulated, double-walled
- Main cooling mode: copper belt
 - LN₂ from pressurized dewar
 - Overflow prevention from free floating vent
 - Temperature control from heating resistor
- Secondary cooling mode: heat exchanger
 - Temperature control from heating resistor
- Multi-layer insulation to prevent radiative losses (not shown)

MiniReStoX

Pressure Relief Valve

(200 mbar)

- Xenon recuperation and storage
- Three nested vessels
 - Vacuum insulation + MLI
 - Liquid nitrogen (from 15 000 L reservoir)
 - Xenon (max 70 bar)
- Can be kept cold at all time during XeLab operation
 - Immediate xenon recuperation trigger, as needed

Xe Vessel

Phase

Separator

LN₂ Vessel

Xenon Valve

Inlet/Outlet

Relief Valve

Solenoid Valve

LN₂ Inlet

Pressure

(70 bar)

Vacuum Vessel

Slow Control

- Based on the Revolution Pi technology
- Home-made code (CODESYS)
- Home-made PT100 readout board
- Python MQTT broker to pull the data
- Storage in InfluxDB database
- Data Visualization with Grafana

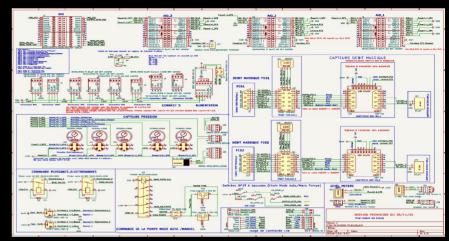
Slow Control

https://revolutionpi.com/en

Base Module:

REVOLUTION RevPi Connect S 8GB REF 100362

IO Modules:


3 x REVOLUTION PI RevPi AIO REF 100250

(6 entrées analogues (U = 4, I = 4 , RTD = 2,2 sorties analogiques (U = 2, I = 2)

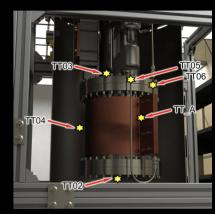
REVOLUTION PI RevPi DIO REF 100197 (14 Entrées / 14 Sorties)

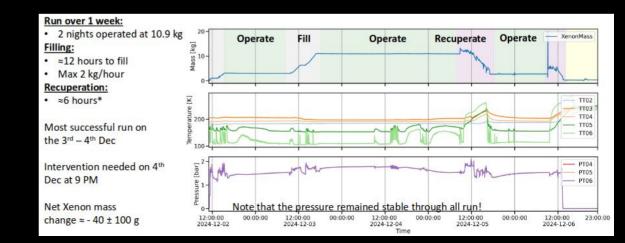
Alimentation:

MEAN WELL MDR-60-24 (1,8A *24V = 43,2W)

Capteurs Pression	Autre Capteur Pression	Capteurs Débits Massique	Capteur Niveau	Capteur Niveau	Electrovanne s	Pompe / Ventilateurs	Liquid Nitrogen	
OMEGA PX3005-150AI (4-20 mA, 0 - 150 psi)	Swagelok PTI-S-AG160- 12AQ (4- 20 mA, 0 - 160 bar) relecture via OMEGA DP20 assurant le contrôle de l'électrovanne ASCO 8263K206S1TD0H1.	Bronkhorst F-201CV-20k-AGD-88V (4-20 mA, 0-10 In/min) avec TPART + BRIGHT Compact Local Readout / Control Module + Module DB9 Rail DIN pour réaliser câblage de redirection des alimentations.	DEMACO C-STIC CRYO LEVEL GAUGE (4-20 mA, 0-100%) relecture via VEGAMET 841.	DEMACO C-STIC CRYO LEVEL GAUGE (4-20 mA, 0- 100%)	SMC VT307- 5DZ1-02F-Q piloté par un relais Finder série 22 REF 22.21.9.024.	Mode Auto /Manu, On/Off via 2 Levier sur panneau Mise en Marche via relais 220V FINDER- 55.34.8.024.0040 s ortie sur 2 prises secteur	Samson 3725 Positionneur électropneumatique (4-20 mA, 0-100%)	Xalis 1000u1 Indicateur à entrée Pont de Jauge avec 1 sortie analogique TEDEA Model 615 Jaune de contrainte 6 fils (- 200/200kg)
	95.3 :		3.76					CONF EGUR.
Qt = 5	Qt = 1	Qt = 2	Qt = 1	Qt = 1	Qt = 2	Qt = 1	Qt = 1	Qt = 1
PT02-PT06	PT01	FC01-FC02	LM01	LM03	SV02-SV03	CP01	LN2	LXe_Weight
5 Entrées Analogiques (4-20mA)	1 Entrée Analogique (4- 20mA)	2 Entrées Analogique (4-20mA) 2 Sorties Analogique (4-20mA)	1 Entrées Analogique (4- 20mA)	1 Entrées Analogique (4- 20mA)	2 Sortie TOR (0-24V) 2 Entrées Relecture TOR (0-24V)	1 Sortie TOR (0-24V) 2 Entrées Relecture TOR (0-24V)	1 Sortie Analogique (4-20mA)	1 Entrées Analogique (4-20mA)


Pre-commissioning with Argon, then with Xenon

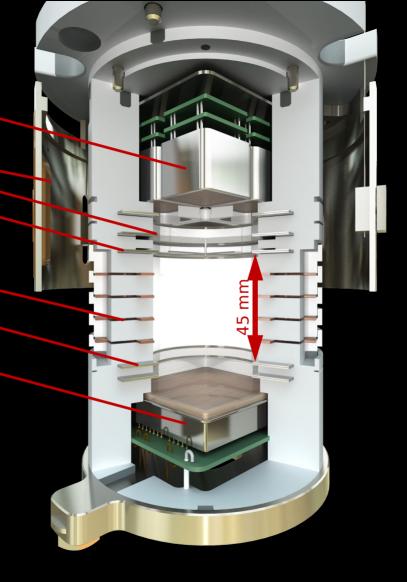

Run with 2 bar argon

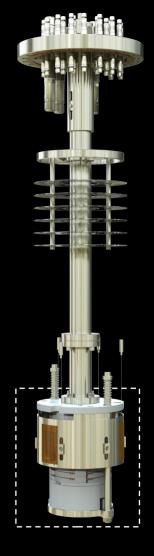

- Duration: 9 days
- First liquefaction of argon
- Demonstration of continuous, stable operation
- At 2 bar:
 - $T_{LAr} = 94.29 \text{ K}$
 - $T_{LXe} = 177.88 \text{ K}$

- 1) 7.45 kg, run time 3 days
- 2) 10.95 kg, run time 5 days
- Temperature stability ± 5 mK
- System very predictable and responsive
- Filling, operation and recuperation with no loss of xenon

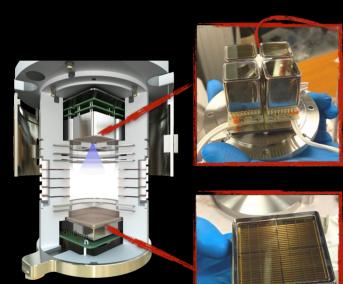
TPC

4x 1" PMT

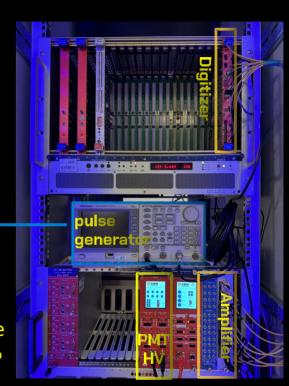

Level Sensors Anode Gate


Field Shaping Rings

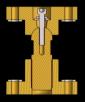
Cathode

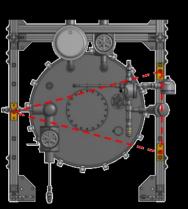

2" PMT

- Designed by Subatech
- Dual-phase TPC to test new electrode designs
- PTFE body (reflector)
- Stainless steel field-shaping rings
- · Liquid level monitoring and control
- Hamamatsu photosensors
 - Top: 4x 1" PMT
 - Bottom: 1x 2" multi-anode PMT


Photosensors and DAQ

R8520-406 1" single-anode PMT XENON10 | XENON100

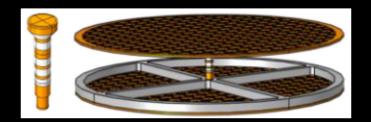

R12699-406-M4
2" multi-anode PMT
Low profile (fast)
75% pho. cath. coverage
High QE at 175 nm: 33%



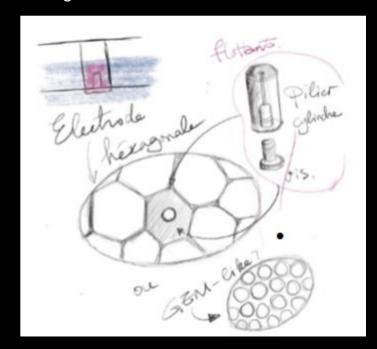
Control and monitoring of proportional scintillation light

Synergy mechanics and electronics

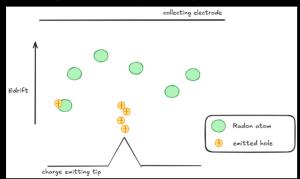
- Planarity of the gas-liquid interface with three regulation points
- Control with three level meters and 3(+1) thermocouples oriented at the same angles



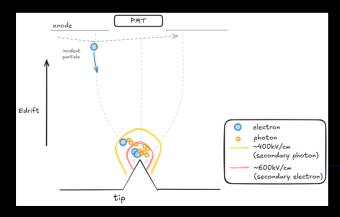
New electrodes design


- First electrodes prototype that could host a pillar (Subatech)
- Installed and first tests without pillars
- Designing the pillar and alternative designs

Design #1

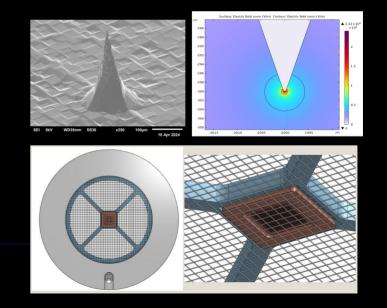


Design #2

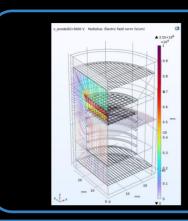


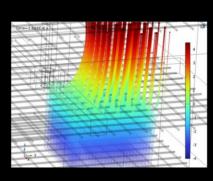
New electrodes design #3

Testing efficiency to capture Radon

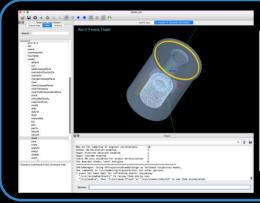


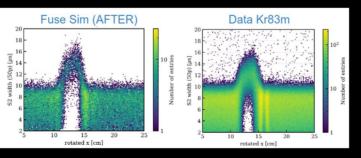
Testing efficiency to generate proportional scintillation

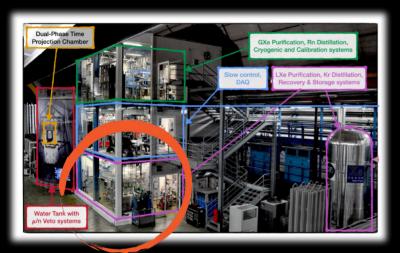


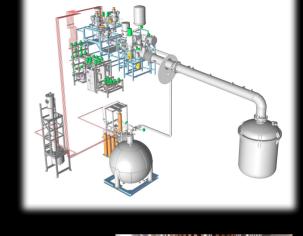

Test liquid-phase secondary scintillation ideas Compare simulation with experiment Setup adaptation in XeLab




Simulations



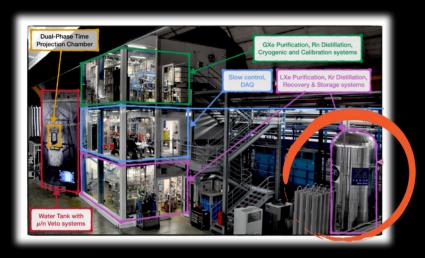



Garfield++ & Geant4 (including comparisons with XENONnT data)

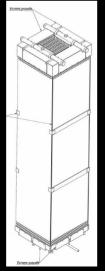
The XENON1T storage and recovery system: ReStoX 1

ReStoX1

- Capacity: 7.6 tons
- Max pressure: 75 bar
- Insulation: double sphere with vacuum and 30 layers of mylar
- Two N₂ cooling systems: inner (heat exchanger) and outer
- Heater to regulate pressure at high precision



The XENONnT storage and recovery system: ReStoX 2

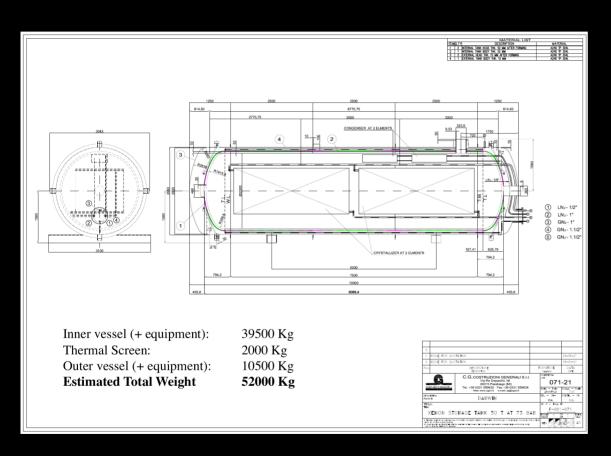

ReStoX2

Capacity: 10 tons

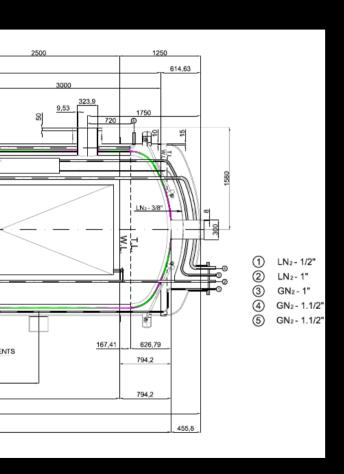
Max pressure : 71.5 bar

 Fast recovery with a N₂ cooling systems by crystalization

R&D in France for XLZD on storage systems


ReStoX for XLZD

- Two heat exchangers merging the functionalities of ReStoX1 and 2
- · Several capacity scenarios, depending on the hosting site
- Capacity: 10 to 50 tons


Design for the 50t storage

Credit : Jean-Marie Disdier, Julien Masbou

Drawings : Costruzioni Generali S.r.l., Parabiago, Milan (Italy)

Cooling based on Nitrogen

Inlet (1) LN₂

- → inner vessel cooling down
- → Outlet (5) GN₂

Inlet (2) LN₂

- → both condenser and crystallizer
- → Outlet (3) GN₂ condenser
- → Outlet (4) GN₂ crystallizer

Conclusion and outlook

Direct Dark Matter Search is a very exciting branch of astroparticle physics

LXe TPCs are, since 15 years, leading the field

Winning strategy: fast and effective upgrades, major technology breaks developed in the field directly on the nth-1 generation detector

Towards the 3^{rd} generation detector \rightarrow new challenges for which France is expert:

- Design of electrodes: robustness (minimal sagging/deflection), maximal transparency, reduced eemission ("hot spots") → XeLab Project
- Xenon **storage and recovery**: safety and reliability → Design of new ReStoX systems

Xe-Lab CNTS IN2P3 Thank you